The neighborhood of a singular leaf
[Le voisinage d’une feuille singulière]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 1037-1064.

Un résultat important concernant les feuilletages réguliers est leur trivialité semi-locale formelle au voisinage des feuilles simplement connexes. Nous étendons ce résultat aux feuilletages singuliers pour toute feuille 2-connexe et pour une classe importante de feuilles 1-connexes en démontrant un théorème de Levi-Malcev semi-local pour la partie semi-simple de leur algébroïde de Lie d’holonomie.

An important result for regular foliations is their formal semi-local triviality near simply connected leaves. We extend this result to singular foliations for all 2-connected leaves and a wide class of 1-connected leaves by proving a semi-local Levi-Malcev theorem for the semi-simple part of their holonomy Lie algebroid.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.165
Classification : 53C12, 57R30, 93B18
Keywords: Singular foliations, singular leaves, linearizations in control theory, Levi-Malcev theorems, Lie algebroids
Mot clés : Feuilletages singuliers, feuilles singulières, théorie du contrôle et linéarisation, théorèmes de Levi-Malcev, algébroïdes de Lie
Camille Laurent-Gengoux 1 ; Leonid Ryvkin 2, 3, 4

1 Institut Élie Cartan de Lorraine, UMR 7502, Université de Lorraine Metz, France
2 Faculty of Mathematics, Universität Duisburg-Essen Essen, Germany
3 Institut Mathématiques de Jussieu, Université Paris Diderot Paris, France
4 Institut für Mathematik, Georg-August-Universität Göttingen Göttingen, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2021__8__1037_0,
     author = {Camille Laurent-Gengoux and Leonid Ryvkin},
     title = {The neighborhood of a singular leaf},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1037--1064},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.165},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.165/}
}
TY  - JOUR
AU  - Camille Laurent-Gengoux
AU  - Leonid Ryvkin
TI  - The neighborhood of a singular leaf
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 1037
EP  - 1064
VL  - 8
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.165/
DO  - 10.5802/jep.165
LA  - en
ID  - JEP_2021__8__1037_0
ER  - 
%0 Journal Article
%A Camille Laurent-Gengoux
%A Leonid Ryvkin
%T The neighborhood of a singular leaf
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 1037-1064
%V 8
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.165/
%R 10.5802/jep.165
%G en
%F JEP_2021__8__1037_0
Camille Laurent-Gengoux; Leonid Ryvkin. The neighborhood of a singular leaf. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 1037-1064. doi : 10.5802/jep.165. https://jep.centre-mersenne.org/articles/10.5802/jep.165/

[AM69] M. F. Atiyah & I. G. Macdonald - Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, MA, 1969 | Zbl

[And17] I. Androulidakis - “Personal communication”, 2017

[AS09] I. Androulidakis & G. Skandalis - “The holonomy groupoid of a singular foliation”, J. reine angew. Math. 626 (2009), p. 1-37 | DOI | MR | Zbl

[AZ13] I. Androulidakis & M. Zambon - “Smoothness of holonomy covers for singular foliations and essential isotropy”, Math. Z. 275 (2013) no. 3-4, p. 921-951 | DOI | MR | Zbl

[AZ14] I. Androulidakis & M. Zambon - “Holonomy transformations for singular foliations”, Adv. Math. 256 (2014), p. 348-397 | DOI | MR | Zbl

[BLM19] H. Bursztyn, H. Lima & E. Meinrenken - “Splitting theorems for Poisson and related structures”, J. reine angew. Math. 754 (2019), p. 281-312 | DOI | MR | Zbl

[Cer79] D. Cerveau - “Distributions involutives singulières”, Ann. Inst. Fourier (Grenoble) 29 (1979) no. 3, p. 261-294 | DOI | Numdam | MR | Zbl

[Daz85] P. Dazord - “Feuilletages à singularités”, Indag. Math. 47 (1985), p. 21-39 | DOI | Zbl

[Deb01] C. Debord - “Holonomy groupoids of singular foliations”, J. Differential Geom. 58 (2001) no. 3, p. 467-500 | MR | Zbl

[Duf01] J.-P. Dufour - “Normal forms for Lie algebroids”, in Lie algebroids and related topics in differential geometry (Warsaw, 2000), Banach Center Publ., vol. 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, p. 35-41 | DOI | MR | Zbl

[GG20] K. Grabowska & J. Grabowski - “Solvable Lie algebras of vector fields and a Lie’s conjecture”, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), article ID 065, 14 pages | DOI | MR | Zbl

[Her63] R. Hermann - “On the accessibility problem in control theory”, in Internat. Sympos. Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963, p. 325-332 | DOI | Zbl

[Hoc54] G. Hochschild - “Cohomology classes of finite type and finite dimensional kernels for Lie algebras”, Amer. J. Math. 76 (1954), p. 763-778 | DOI | MR | Zbl

[LGLS20] C. Laurent-Gengoux, S. Lavau & T. Strobl - “The universal Lie -algebroid of a singular foliation”, Doc. Math. 25 (2020), p. 1571-1652 | MR | Zbl

[LGR19] C. Laurent-Gengoux & L. Ryvkin - “The holonomy of a singular leaf”, 2019 | arXiv

[Mac87] K. Mackenzie - Lie groupoids and Lie algebroids in differential geometry, London Math. Society Lect. Note Series, vol. 124, Cambridge University Press, Cambridge, 1987 | DOI | Numdam | MR | Zbl

[Mac05] K. Mackenzie - General theory of Lie groupoids and Lie algebroids, London Math. Society Lect. Note Series, vol. 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[Mal67] B. Malgrange - Ideals of differentiable functions, TIFR Studies in Math., vol. 3, Tata Institute of Fundamental Research/Oxford University Press, Bombay/London, 1967 | MR

[MZ04] P. Monnier & N. T. Zung - “Levi decomposition for smooth Poisson structures”, J. Differential Geom. 68 (2004) no. 2, p. 347-395 | MR | Zbl

[Ree52] G. Reeb - Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Ind., vol. 1183, Hermann & Cie., Paris, 1952 | Zbl

[Tou68] J.-C. Tougeron - “Idéaux de fonctions différentiables. I”, Ann. Inst. Fourier (Grenoble) 18 (1968) no. 1, p. 177-240 | DOI | Zbl

[Wei00] A. Weinstein - “Linearization problems for Lie algebroids and Lie groupoids”, Lett. Math. Phys. 52 (2000) no. 1, p. 93-102 | DOI | MR

[Zam19] M. Zambon - “Personal communication”, 2019

[Zun03] N. T. Zung - “Levi decomposition of analytic Poisson structures and Lie algebroids”, Topology 42 (2003) no. 6, p. 1403-1420 | DOI | MR | Zbl

Cité par Sources :