An important result for regular foliations is their formal semi-local triviality near simply connected leaves. We extend this result to singular foliations for all -connected leaves and a wide class of -connected leaves by proving a semi-local Levi-Malcev theorem for the semi-simple part of their holonomy Lie algebroid.
Un résultat important concernant les feuilletages réguliers est leur trivialité semi-locale formelle au voisinage des feuilles simplement connexes. Nous étendons ce résultat aux feuilletages singuliers pour toute feuille -connexe et pour une classe importante de feuilles -connexes en démontrant un théorème de Levi-Malcev semi-local pour la partie semi-simple de leur algébroïde de Lie d’holonomie.
Accepted:
Published online:
Keywords: Singular foliations, singular leaves, linearizations in control theory, Levi-Malcev theorems, Lie algebroids
Mots-clés : Feuilletages singuliers, feuilles singulières, théorie du contrôle et linéarisation, théorèmes de Levi-Malcev, algébroïdes de Lie
Camille Laurent-Gengoux 1; Leonid Ryvkin 2, 3, 4

@article{JEP_2021__8__1037_0, author = {Camille Laurent-Gengoux and Leonid Ryvkin}, title = {The neighborhood of a singular leaf}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1037--1064}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.165}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.165/} }
TY - JOUR AU - Camille Laurent-Gengoux AU - Leonid Ryvkin TI - The neighborhood of a singular leaf JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 1037 EP - 1064 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.165/ DO - 10.5802/jep.165 LA - en ID - JEP_2021__8__1037_0 ER -
%0 Journal Article %A Camille Laurent-Gengoux %A Leonid Ryvkin %T The neighborhood of a singular leaf %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 1037-1064 %V 8 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.165/ %R 10.5802/jep.165 %G en %F JEP_2021__8__1037_0
Camille Laurent-Gengoux; Leonid Ryvkin. The neighborhood of a singular leaf. Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 1037-1064. doi : 10.5802/jep.165. https://jep.centre-mersenne.org/articles/10.5802/jep.165/
[AM69] - Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, MA, 1969 | Zbl
[And17] - “Personal communication”, 2017
[AS09] - “The holonomy groupoid of a singular foliation”, J. reine angew. Math. 626 (2009), p. 1-37 | DOI | MR | Zbl
[AZ13] - “Smoothness of holonomy covers for singular foliations and essential isotropy”, Math. Z. 275 (2013) no. 3-4, p. 921-951 | DOI | MR | Zbl
[AZ14] - “Holonomy transformations for singular foliations”, Adv. Math. 256 (2014), p. 348-397 | DOI | MR | Zbl
[BLM19] - “Splitting theorems for Poisson and related structures”, J. reine angew. Math. 754 (2019), p. 281-312 | DOI | MR | Zbl
[Cer79] - “Distributions involutives singulières”, Ann. Inst. Fourier (Grenoble) 29 (1979) no. 3, p. 261-294 | DOI | Numdam | MR | Zbl
[Daz85] - “Feuilletages à singularités”, Indag. Math. 47 (1985), p. 21-39 | DOI | Zbl
[Deb01] - “Holonomy groupoids of singular foliations”, J. Differential Geom. 58 (2001) no. 3, p. 467-500 | MR | Zbl
[Duf01] - “Normal forms for Lie algebroids”, in Lie algebroids and related topics in differential geometry (Warsaw, 2000), Banach Center Publ., vol. 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, p. 35-41 | DOI | MR | Zbl
[GG20] - “Solvable Lie algebras of vector fields and a Lie’s conjecture”, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), article ID 065, 14 pages | DOI | MR | Zbl
[Her63] - “On the accessibility problem in control theory”, in Internat. Sympos. Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963, p. 325-332 | DOI | Zbl
[Hoc54] - “Cohomology classes of finite type and finite dimensional kernels for Lie algebras”, Amer. J. Math. 76 (1954), p. 763-778 | DOI | MR | Zbl
[LGLS20] - “The universal Lie -algebroid of a singular foliation”, Doc. Math. 25 (2020), p. 1571-1652 | MR | Zbl
[LGR19] - “The holonomy of a singular leaf”, 2019 | arXiv
[Mac87] - Lie groupoids and Lie algebroids in differential geometry, London Math. Society Lect. Note Series, vol. 124, Cambridge University Press, Cambridge, 1987 | DOI | Numdam | MR | Zbl
[Mac05] - General theory of Lie groupoids and Lie algebroids, London Math. Society Lect. Note Series, vol. 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[Mal67] - Ideals of differentiable functions, TIFR Studies in Math., vol. 3, Tata Institute of Fundamental Research/Oxford University Press, Bombay/London, 1967 | MR
[MZ04] - “Levi decomposition for smooth Poisson structures”, J. Differential Geom. 68 (2004) no. 2, p. 347-395 | MR | Zbl
[Ree52] - Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Ind., vol. 1183, Hermann & Cie., Paris, 1952 | Zbl
[Tou68] - “Idéaux de fonctions différentiables. I”, Ann. Inst. Fourier (Grenoble) 18 (1968) no. 1, p. 177-240 | DOI | Zbl
[Wei00] - “Linearization problems for Lie algebroids and Lie groupoids”, Lett. Math. Phys. 52 (2000) no. 1, p. 93-102 | DOI | MR
[Zam19] - “Personal communication”, 2019
[Zun03] - “Levi decomposition of analytic Poisson structures and Lie algebroids”, Topology 42 (2003) no. 6, p. 1403-1420 | DOI | MR | Zbl
Cited by Sources: