The generalized Franchetta conjecture for some hyper-Kähler varieties, II
[La conjecture de Franchetta généralisée pour certaines variétés hyper-kählériennes, II]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 1065-1097.

Nous démontrons la conjecture de Franchetta généralisée pour la famille localement complète de variétés hyper-kählériennes de dimension 8 construite par Lehn-Lehn-Sorger-van Straten (LLSS). Comme corollaire, nous établissons la conjecture de Beauville-Voisin pour les variétés LLSS très générales. Notre stratégie consiste à utiliser la description récente de ces variétés LLSS comme espaces de modules d’objets semistables (au sens de Bridgeland) dans la composante de Kuznetsov de la catégorie dérivée d’hypersurfaces cubiques, et notamment la version relative due à Bayer-Lahoz-Macrì-Nuer-Perry-Stellari, pour nous réduire à la propriété de Franchetta pour les puissances relatives quatrièmes d’hypersurfaces cubiques de dimension 4. Nos résultats nous permettent également de décrire le motif de Chow de la variété de Fano des droites sur une hypersurface cubique lisse en termes du motif de Chow de l’hypersurface cubique.

We prove the generalized Franchetta conjecture for the locally complete family of hyper-Kähler eightfolds constructed by Lehn–Lehn–Sorger–van Straten (LLSS). As a corollary, we establish the Beauville–Voisin conjecture for very general LLSS eightfolds. The strategy consists in reducing to the Franchetta property for relative fourth powers of cubic fourfolds, by using the recent description of LLSS eightfolds as moduli spaces of Bridgeland semistable objects in the Kuznetsov component of the derived category of cubic fourfolds, together with its generalization to the relative setting due to Bayer–Lahoz–Macrì–Nuer–Perry–Stellari. As a by-product, we compute the Chow motive of the Fano variety of lines on a smooth cubic hypersurface in terms of the Chow motive of the cubic hypersurface.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.166
Classification : 14C25,  14C15,  14J42,  14J28,  14F08,  14J70,  14D20,  14H10
Mots clés : Anneau de Chow, motifs, variétés hyper-kählériennes, hypersurfaces cubiques, conjecture de Franchetta, conjecture de Beauville-Voisin, catégories dérivées, conditions de stabilité, composante de Kuznetsov, espaces de modules de faisceaux, anneau tautologique
@article{JEP_2021__8__1065_0,
     author = {Lie Fu and Robert Laterveer and Charles Vial},
     title = {The generalized {Franchetta} conjecture for some {hyper-K\"ahler} varieties, {II}},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1065--1097},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.166},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.166/}
}
Lie Fu; Robert Laterveer; Charles Vial. The generalized Franchetta conjecture for some hyper-Kähler varieties, II. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 1065-1097. doi : 10.5802/jep.166. https://jep.centre-mersenne.org/articles/10.5802/jep.166/

[AHLH18] J. Alper, D. Halpern-Leistner & J. Heinloth - “Existence of moduli spaces for algebraic stacks”, 2018 | arXiv:1812.01128

[AHR20] J. Alper, J. Hall & D. Rydh - “A Luna étale slice theorem for algebraic stacks”, Ann. of Math. (2) 191 (2020) no. 3, p. 675-738 | Article | Zbl 07190303

[And04] Y. André - Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas & Synthèses, vol. 17, Société Mathématique de France, Paris, 2004 | Zbl 1060.14001

[Ara06] D. Arapura - “Motivation for Hodge cycles”, Adv. Math. 207 (2006) no. 2, p. 762-781 | Article | MR 2271985 | Zbl 1109.14012

[AT14] N. Addington & R. Thomas - “Hodge theory and derived categories of cubic fourfolds”, Duke Math. J. 163 (2014), p. 1885-1927 | Article | MR 3229044 | Zbl 1309.14014

[BD85] A. Beauville & R. Donagi - “La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) no. 14, p. 703-706 | Zbl 0602.14041

[BLM + 17] A. Bayer, M. Lahoz, E. Macrì, P. Stellari & X. Zhao - “Stability conditions on Kuznetsov components”, Ann. Sci. École Norm. Sup. (4) (2017), to appear | arXiv:1703.10839

[BLM + 21] A. Bayer, M. Lahoz, E. Macrì, H. Nuer, A. Perry & P. Stellari - “Stability conditions in families”, Publ. Math. Inst. Hautes Études Sci. (2021) | arXiv:1902.08184 | Article

[BM14a] A. Bayer & E. Macrì - “MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations”, Invent. Math. 198 (2014) no. 3, p. 505-590 | Article | MR 3279532 | Zbl 1308.14011

[BM14b] A. Bayer & E. Macrì - “Projectivity and birational geometry of Bridgeland moduli spaces”, J. Amer. Math. Soc. 27 (2014) no. 3, p. 707-752 | Article | MR 3194493 | Zbl 1314.14020

[Bri07] T. Bridgeland - “Stability conditions on triangulated categories”, Ann. of Math. (2) 166 (2007) no. 2, p. 317-345 | Article | MR 2373143 | Zbl 1137.18008

[Bri08] T. Bridgeland - “Stability conditions on K3 surfaces”, Duke Math. J. 141 (2008) no. 2, p. 241-291 | Article | MR 2376815 | Zbl 1138.14022

[BV04] A. Beauville & C. Voisin - “On the Chow ring of a K3 surface”, J. Algebraic Geom. 13 (2004) no. 3, p. 417-426 | Article | MR 2047674 | Zbl 1069.14006

[Bül20] T.-H. Bülles - “Motives of moduli spaces on K3 surfaces and of special cubic fourfolds”, Manuscripta Math. 161 (2020) no. 1-2, p. 109-124 | Article | MR 4046978 | Zbl 1432.14006

[Dia19] H. A. Diaz - “The Chow ring of a cubic hypersurface”, Internat. Math. Res. Notices (2019), article ID rnz299 | Article

[DK19] O. Debarre & A. Kuznetsov - “Gushel-Mukai varieties: linear spaces and periods”, Kyoto J. Math. 40 (2019), p. 5-57 | Article

[DV10] O. Debarre & C. Voisin - “Hyper-Kähler fourfolds and Grassmann geometry”, J. reine angew. Math. 649 (2010), p. 63-87 | Article | Zbl 1217.14028

[FFZ21] S. Floccari, L. Fu & Z. Zhang - “On the motive of O’Grady’s ten-dimensional hyper-Kähler varieties”, Commun. Contemp. Math. 23 (2021) no. 4, p. 2050034, 50 | Article | Zbl 1458.14016

[FLV21] L. Fu, R. Laterveer & C. Vial - “Multiplicative Chow-Künneth decompositions and varieties of cohomological K3 type”, Ann. Mat. Pura Appl. (4) (2021), to appear

[FLVS19] L. Fu, R. Laterveer, C. Vial & M. Shen - “The generalized Franchetta conjecture for some hyper-Kähler varieties”, J. Math. Pures Appl. (9) 130 (2019), p. 1-35 | Zbl 1423.14033

[Ful98] W. Fulton - Intersection theory, Ergeb. Math. Grenzgeb. (3), vol. 2, Springer-Verlag, Berlin, 1998 | MR 1644323 | Zbl 0885.14002

[FV20] L. Fu & C. Vial - “Distinguished cycles on varieties with motive of Abelian type and the section property”, J. Algebraic Geom. 29 (2020) no. 1, p. 53-107 | Article | MR 4028066 | Zbl 1430.14020

[GG03] M. Green & P. Griffiths - “An interesting 0-cycle”, Duke Math. J. 119 (2003) no. 2, p. 261-313 | Article | MR 1997947 | Zbl 1058.14014

[GG12] S. Gorchinskiy & V. Guletskiĭ - “Motives and representability of algebraic cycles on threefolds over a field”, J. Algebraic Geom. 21 (2012) no. 2, p. 347-373 | Article | MR 2877438 | Zbl 1256.14007

[GK14] N. Ganter & M. Kapranov - “Symmetric and exterior powers of categories”, Transform. Groups 19 (2014) no. 1, p. 57-103 | Article | MR 3177367 | Zbl 1307.18007

[GS14] S. Galkin & E. Shinder - “The Fano variety of lines and rationality problem for a cubic hypersurface”, 2014 | arXiv:1405.5154

[Gus83] N. P. Gushel - “On Fano varieties of genus 6, Izv. Math. 21 (1983) no. 3, p. 445-459 | Article | Zbl 0554.14014

[Huy19] D. Huybrechts - “The geometry of cubic hypersurfaces”, 2019, Notes available from http://www.math.uni-bonn.de/people/huybrech/

[HW89] P. Hanlon & D. Wales - “On the decomposition of Brauer’s centralizer algebras”, J. Algebra 121 (1989) no. 2, p. 409-445 | Article | MR 992775 | Zbl 0695.20026

[Jan92] U. Jannsen - “Motives, numerical equivalence, and semi-simplicity”, Invent. Math. 107 (1992) no. 3, p. 447-452 | Article | MR 1150598 | Zbl 0762.14003

[Kim05] S.-I. Kimura - “Chow groups are finite dimensional, in some sense”, Math. Ann. 331 (2005) no. 1, p. 173-201 | Article | MR 2107443 | Zbl 1067.14006

[Kim09] S.-I. Kimura - “Surjectivity of the cycle map for Chow motives”, in Motives and algebraic cycles, Fields Inst. Commun., vol. 56, American Mathematical Society, Providence, RI, 2009, p. 157-165 | MR 2562457 | Zbl 1179.14005

[KP18] A. Kuznetsov & A. Perry - “Derived categories of Gushel-Mukai varieties”, Compositio Math. 154 (2018), p. 1362-1406 | Article | MR 3826460 | Zbl 1401.14181

[Kuz10] A. Kuznetsov - Derived categories of cubic fourfolds, Progress in Math. 282 (2010), p. 219-243 | Article | MR 2605171 | Zbl 1202.14012

[Lat17a] R. Laterveer - “Algebraic cycles on Fano varieties of some cubics”, Results Math. 72 (2017) no. 1-2, p. 595-616 | Article | MR 3684447 | Zbl 1386.14029

[Lat17b] R. Laterveer - “A remark on the motive of the Fano variety of lines of a cubic”, Ann. Math. Qué. 41 (2017) no. 1, p. 141-154 | Article | MR 3639654 | Zbl 1386.14027

[Lat21] R. Laterveer - “On the Chow ring of some Lagrangian fibrations”, Bull. Belg. Math. Soc. Simon Stevin (2021), to appear, arXiv:2105.06857

[Lie06] M. Lieblich - “Moduli of complexes on a proper morphism”, J. Algebraic Geom. 15 (2006) no. 1, p. 175-206 | Article | MR 2177199 | Zbl 1085.14015

[LLMS18] M. Lahoz, M. Lehn, E. Macrì & P. Stellari - “Generalized twisted cubics on a cubic fourfold as a moduli space of stable objects”, J. Math. Pures Appl. (9) 114 (2018), p. 85-117 | Article | MR 3801751 | Zbl 1401.18034

[LLSvS17] C. Lehn, M. Lehn, C. Sorger & D. van Straten - “Twisted cubics on cubic fourfolds”, J. reine angew. Math. 731 (2017), p. 87-128 | Article | MR 3709061 | Zbl 1376.53096

[LPZ18] C. Li, L. Pertusi & X. Zhao - “Twisted cubics on cubic fourfolds and stability conditions”, 2018 | arXiv:1802.01134

[LPZ20] C. Li, L. Pertusi & X. Zhao - “Elliptic quintics on cubic fourfolds, O’Grady 10, and Lagrangian fibrations”, 2020 | arXiv:2007.14108

[LS06] M. Lehn & C. Sorger - “La singularité de O’Grady”, J. Algebraic Geom. 15 (2006) no. 4, p. 753-770 | Article | Zbl 1156.14030

[Mar12] E. Markman - “Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces”, J. reine angew. Math. 544 (2012), p. 61-82 | Article | MR 1887889 | Zbl 0988.14019

[MNP13] J. P. Murre, J. Nagel & C. A. M. Peters - Lectures on the theory of pure motives, University Lect. Series, vol. 61, American Mathematical Society, Providence, RI, 2013 | Article | MR 3052734 | Zbl 1273.14002

[MS19] E. Macrì & P. Stellari - “Lectures on non-commutative K3 surfaces, Bridgeland stability, and moduli spaces”, in Birational geometry of hypersurfaces, Lect. Notes of the UMI, vol. 26, Springer, 2019 | Article | Zbl 1442.14061

[MT15] M. Marcolli & G. Tabuada - “From exceptional collections to motivic decompositions via noncommutative motives”, J. reine angew. Math. 701 (2015), p. 153-167 | Article | MR 3331729 | Zbl 1349.14021

[Muk84] S. Mukai - “Symplectic structure of the moduli space of sheaves on an abelian or K3 surface”, Invent. Math. 77 (1984) no. 1, p. 101-116 | Article | MR 751133 | Zbl 0565.14002

[Muk89] S. Mukai - “Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U.S.A. 86 (1989) no. 9, p. 3000-3002 | Article | MR 995400 | Zbl 0679.14020

[MZ16] C. Meachan & Z. Zhang - “Birational geometry of singular moduli spaces of O’Grady type”, Adv. Math. 296 (2016), p. 210-267 | Article | MR 3490768 | Zbl 1344.14012

[MZ20] A. Marian & X. Zhao - “On the group of zero-cycles of holomorphic symplectic varieties”, Épijournal de Géom. Alg. 4 (2020), article ID 3, 5 pages | Article | MR 4077111 | Zbl 1442.14035

[Ouc17] G. Ouchi - “Lagrangian embeddings of cubic fourfolds containing a plane”, Compositio Math. 153 (2017) no. 5, p. 947-972 | Article | MR 3631230 | Zbl 1398.14027

[O’G99] K. G. O’Grady - “Desingularized moduli spaces of sheaves on a K3”, J. reine angew. Math. 512 (1999), p. 49-117 | Article | MR 1703077 | Zbl 0928.14029

[O’G03] K. G. O’Grady - “A new six-dimensional irreducible symplectic variety”, J. Algebraic Geom. 12 (2003) no. 3, p. 435-505 | Article | MR 1966024 | Zbl 1068.53058

[O’G13] K. G. O’Grady - “Moduli of sheaves and the Chow group of K3 surfaces”, J. Math. Pures Appl. (9) 100 (2013) no. 5, p. 701-718 | Article | MR 3115830 | Zbl 1325.14054

[O’S11] P. O’Sullivan - “Algebraic cycles on an abelian variety”, J. reine angew. Math. 654 (2011), p. 1-81 | Article | MR 2795752 | Zbl 1258.14006

[Pop18] P. Popov - “Twisted cubics and quadruples of points on cubic surfaces”, 2018 | arXiv:1810.04563

[PPZ19] A. Perry, L. Pertusi & X. Zhao - “Stability conditions and moduli spaces for Kuznetsov components of Gushel-Mukai varieties”, 2019 | arXiv:1912.06935

[PR13] A. Perego & A. Rapagnetta - “Deformation of the O’Grady moduli spaces”, J. reine angew. Math. 678 (2013), p. 1-34 | Article | MR 3056101 | Zbl 1275.14029

[PSY17] N. Pavic, J. Shen & Q. Yin - “On O’Grady’s generalized Franchetta conjecture”, Internat. Math. Res. Notices (2017) no. 16, p. 4971-4983 | Article | MR 3687122 | Zbl 1405.14017

[Rie14] U. Rieß - “On the Chow ring of birational irreducible symplectic varieties”, Manuscripta Math. 145 (2014) no. 3-4, p. 473-501 | Article | MR 3268859 | Zbl 1325.14016

[SV16a] M. Shen & C. Vial - The Fourier transform for certain hyperkähler fourfolds, Mem. Amer. Math. Soc., vol. 240, no. 1139, American Mathematical Society, Providence, RI, 2016 | Article | Zbl 1386.14025

[SV16b] M. Shen & C. Vial - “The motive of the Hilbert cube X [3] , Forum Math. Sigma 4 (2016), article ID e30, 55 pages | Article | MR 3570075 | Zbl 1362.14003

[Tav11] M. Tavakol - “The tautological ring of M 1,n ct , Ann. Inst. Fourier (Grenoble) 61 (2011) no. 7, p. 2751-2779 | Article | Numdam | MR 3112507 | Zbl 1323.14019

[Tav14] M. Tavakol - “The tautological ring of the moduli space M 2,n rt , Internat. Math. Res. Notices (2014) no. 24, p. 6661-6683 | Article | MR 3291636 | Zbl 1442.14095

[Tav18] M. Tavakol - “Tautological classes on the moduli space of hyperelliptic curves with rational tails”, J. Pure Appl. Algebra 222 (2018) no. 8, p. 2040-2062 | Article | MR 3771847 | Zbl 1420.14057

[Via10] C. Vial - “Pure motives with representable Chow groups”, Comptes Rendus Mathématique 348 (2010) no. 21-22, p. 1191-1195 | Article | MR 2738925 | Zbl 1201.14005

[Via13] C. Vial - “Projectors on the intermediate algebraic Jacobians”, New York J. Math. 19 (2013), p. 793-822 | MR 3141813 | Zbl 1292.14005

[Voi08] C. Voisin - “On the Chow ring of certain algebraic hyper-Kähler manifolds”, Pure Appl. Math. Q 4 (2008) no. 3, p. 613-649, Special Issue: In honor of Fedor Bogomolov. Part 2 | Article | Zbl 1165.14012

[Voi12] C. Voisin - “Chow rings and decomposition theorems for families of K3 surfaces and Calabi-Yau hypersurfaces”, Geom. Topol. 16 (2012) no. 1, p. 433-473 | Article | MR 2916291 | Zbl 1253.14005

[Voi16] C. Voisin - “Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties”, in K3 surfaces and their moduli, Progress in Math., vol. 315, Birkhäuser/Springer, 2016, p. 365-399 | Article | Zbl 1352.32010

[Voi17] C. Voisin - “On the universal CH 0 group of cubic hypersurfaces”, J. Eur. Math. Soc. (JEMS) 19 (2017) no. 6, p. 1619-1653 | Article | Zbl 1366.14009

[Voi18] C. Voisin - “Hyper-Kähler compactification of the intermediate Jacobian fibration of a cubic fourfold: the twisted case”, in Local and global methods in algebraic geometry, Contemp. Math., vol. 712, American Mathematical Society, Providence, RI, 2018, p. 341-355 | Article | Zbl 1398.14050

[Yin15a] Q. Yin - “Finite-dimensionality and cycles on powers of K3 surfaces”, Comment. Math. Helv. 90 (2015) no. 2, p. 503-511 | Article | MR 3351754 | Zbl 1316.14011

[Yin15b] Q. Yin - “The generic nontriviality of the Faber-Pandharipande cycle”, Internat. Math. Res. Notices (2015) no. 5, p. 1263-1277 | Article | MR 3340355 | Zbl 1330.14010

[Yos01] K. Yoshioka - “Moduli spaces of stable sheaves on abelian surfaces”, Math. Ann. 321 (2001) no. 4, p. 817-884 | Article | MR 1872531 | Zbl 1066.14013

[YY14] S. Yanagida & K. Yoshioka - “Bridgeland’s stabilities on abelian surfaces”, Math. Z. 276 (2014) no. 1-2, p. 571-610 | Article | MR 3150219 | Zbl 1292.14012