An axiomatic characterization of the Brownian map
[Une caractérisation axiomatique de la carte brownienne]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 609-731.

La carte brownienne est un espace métrique mesuré aléatoire homéomorphe à une sphère, qui est construit en « recollant » les arbres continus décrits respectivement par l’abscisse et l’ordonnée d’un serpent brownien. Nous présentons une construction alternative, reliée au processus d’épluchage ou au cactus brownien, qui produit une surface à partir d’un certain processus de branchement décoré, correspondant à un parcours « en largeur » de la carte brownienne par une exploration.

En utilisant ces idées, nous montrons que la carte brownienne est le seul espace métrique mesuré aléatoire homéomorphe à une sphère possédant certaines propriétés, à savoir l’invariance d’échelle et l’indépendance conditionnelle du côté intérieur et du côté extérieur de certaines « tranches » délimitées par des géodésiques et des bords de boules métriques. Nous formulons aussi une caractérisation en termes du réseau de Lévy produit par une exploration métrique d’un point typique pour la métrique à un autre. Ce résultat est un élément important dans une série d’articles montrant l’équivalence entre la carte brownienne et la sphère en gravité quantique de Liouville de paramètre γ=8/3.

The Brownian map is a random sphere-homeomorphic metric measure space obtained by “gluing together” the continuum trees described by the x and y coordinates of the Brownian snake. We present an alternative “breadth-first” construction of the Brownian map, which produces a surface from a certain decorated branching process. It is closely related to the peeling process, the hull process, and the Brownian cactus.

Using these ideas, we prove that the Brownian map is the only random sphere-homeomorphic metric measure space with certain properties: namely, scale invariance and the conditional independence of the inside and outside of certain “slices” bounded by geodesics and metric ball boundaries. We also formulate a characterization in terms of the so-called Lévy net produced by a metric exploration from one measure-typical point to another. This characterization is part of a program for proving the equivalence of the Brownian map and the Liouville quantum gravity sphere with parameter γ=8/3.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.155
Classification : 60D05
Keywords: Brownian map, Brownian snake, Brownian tree, Brownian disk, random planar map, Liouville quantum gravity
Mot clés : Carte brownienne, serpent brownien, arbre brownien, disque brownien, carte planaire aléatoire, gravité quantique de Liouville

Jason Miller 1 ; Scott Sheffield 2

1 University of Cambridge, Statslab, DPMMS Wilberforce Road, Cambridge CB3 0WB, UK
2 Department of Mathematics, MIT 77 Massachusetts Avenue Cambridge, MA 02139, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2021__8__609_0,
     author = {Jason Miller and Scott Sheffield},
     title = {An axiomatic characterization of {the~Brownian} map},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {609--731},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.155},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.155/}
}
TY  - JOUR
AU  - Jason Miller
AU  - Scott Sheffield
TI  - An axiomatic characterization of the Brownian map
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 609
EP  - 731
VL  - 8
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.155/
DO  - 10.5802/jep.155
LA  - en
ID  - JEP_2021__8__609_0
ER  - 
%0 Journal Article
%A Jason Miller
%A Scott Sheffield
%T An axiomatic characterization of the Brownian map
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 609-731
%V 8
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.155/
%R 10.5802/jep.155
%G en
%F JEP_2021__8__609_0
Jason Miller; Scott Sheffield. An axiomatic characterization of the Brownian map. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 609-731. doi : 10.5802/jep.155. https://jep.centre-mersenne.org/articles/10.5802/jep.155/

[Ald91a] D. Aldous - “The continuum random tree. I”, Ann. Probab. 19 (1991) no. 1, p. 1-28 | DOI | MR | Zbl

[Ald91b] D. Aldous - “The continuum random tree. II. An overview”, in Stochastic analysis (Durham, 1990), London Math. Soc. Lecture Note Ser., vol. 167, Cambridge Univ. Press, Cambridge, 1991, p. 23-70 | DOI | MR | Zbl

[Ald93] D. Aldous - “The continuum random tree. III”, Ann. Probab. 21 (1993) no. 1, p. 248-289 | DOI | MR | Zbl

[ALG18] C. Abraham & J.-F. Le Gall - “Excursion theory for Brownian motion indexed by the Brownian tree”, J. Eur. Math. Soc. (JEMS) 20 (2018) no. 12, p. 2951-3016 | DOI | MR | Zbl

[Ang03] O. Angel - “Growth and percolation on the uniform infinite planar triangulation”, Geom. Funct. Anal. 13 (2003) no. 5, p. 935-974 | DOI | MR | Zbl

[AS03] O. Angel & O. Schramm - “Uniform infinite planar triangulations”, Comm. Math. Phys. 241 (2003) no. 2-3, p. 191-213 | DOI | MR | Zbl

[BBCK18] J. Bertoin, T. Budd, N. Curien & I. Kortchemski - “Martingales in self-similar growth-fragmentations and their connections with random planar maps”, Probab. Theory Related Fields 172 (2018) no. 3-4, p. 663-724 | DOI | MR | Zbl

[BBI01] D. Burago, Y. Burago & S. Ivanov - A course in metric geometry, Graduate Studies in Math., vol. 33, American Mathematical Society, Providence, RI, 2001 | MR

[BCK18] J. Bertoin, N. Curien & I. Kortchemski - “Random planar maps and growth-fragmentations”, Ann. Probab. 46 (2018) no. 1, p. 207-260 | DOI | MR | Zbl

[Beg44] E. G. Begle - “Regular convergence”, Duke Math. J. 11 (1944), p. 441-450 | DOI | MR | Zbl

[Ber96] J. Bertoin - Lévy processes, Cambridge Tracts in Math., vol. 121, Cambridge University Press, Cambridge, 1996 | Zbl

[Ber07] O. Bernardi - “Bijective counting of tree-rooted maps and shuffles of parenthesis systems”, Electron. J. Combin. 14 (2007) no. 1, article ID 9, 36 pages | MR | Zbl

[BM17] J. Bettinelli & G. Miermont - “Compact Brownian surfaces I: Brownian disks”, Probab. Theory Related Fields 167 (2017) no. 3-4, p. 555-614 | DOI | MR | Zbl

[BMS00] M. Bousquet-Mélou & G. Schaeffer - “Enumeration of planar constellations”, Adv. in Appl. Math. 24 (2000) no. 4, p. 337-368 | DOI | MR | Zbl

[Cha96] L. Chaumont - “Conditionings and path decompositions for Lévy processes”, Stochastic Process. Appl. 64 (1996) no. 1, p. 39-54 | DOI | Zbl

[CK14] N. Curien & I. Kortchemski - “Random stable looptrees”, Electron. J. Probab. 19 (2014), article ID 108, 35 pages | DOI | MR | Zbl

[CLG16] N. Curien & J.-F. Le Gall - “The hull process of the Brownian plane”, Probab. Theory Related Fields 166 (2016) no. 1-2, p. 187-231 | DOI | MR | Zbl

[CLG17] N. Curien & J.-F. Le Gall - “Scaling limits for the peeling process on random maps”, Ann. Inst. H. Poincaré Probab. Statist. 53 (2017) no. 1, p. 322-357 | DOI | MR | Zbl

[CLGM13] N. Curien, J.-F. Le Gall & G. Miermont - “The Brownian cactus I. Scaling limits of discrete cactuses”, Ann. Inst. H. Poincaré Probab. Statist. 49 (2013) no. 2, p. 340-373 | DOI | Numdam | MR | Zbl

[CLUB09] M. E. Caballero, A. Lambert & G. Uribe Bravo - “Proof(s) of the Lamperti representation of continuous-state branching processes”, Probab. Surv. 6 (2009), p. 62-89 | DOI | MR | Zbl

[CS02] P. Chassaing & G. Schaeffer - “Random planar lattices and integrated superBrownian excursion”, in Math. and computer science, II (Versailles, 2002), Trends Math., Birkhäuser, Basel, 2002, p. 127-145 | Zbl

[Cur15] N. Curien - “A glimpse of the conformal structure of random planar maps”, Comm. Math. Phys. 333 (2015) no. 3, p. 1417-1463 | DOI | MR | Zbl

[CV81] R. Cori & B. Vauquelin - “Planar maps are well labeled trees”, Canad. J. Math. 33 (1981) no. 5, p. 1023-1042 | DOI | MR | Zbl

[DK88] B. Duplantier & K.-H. Kwon - “Conformal Invariance and Intersections of random walks”, Phys. Rev. Lett. 61 (1988) no. 22, p. 2514-2517 | DOI

[DLG02] T. Duquesne & J.-F. Le Gall - Random trees, Lévy processes and spatial branching processes, Astérisque, vol. 281, Société Mathématique de France, Paris, 2002 | Numdam | Zbl

[DLG05] T. Duquesne & J.-F. Le Gall - “Probabilistic and fractal aspects of Lévy trees”, Probab. Theory Related Fields 131 (2005) no. 4, p. 553-603 | DOI | Zbl

[DLG06] T. Duquesne & J.-F. Le Gall - “The Hausdorff measure of stable trees”, ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), p. 393-415 | MR | Zbl

[DLG09] T. Duquesne & J.-F. Le Gall - “On the re-rooting invariance property of Lévy trees”, Electron. Comm. Probab. 14 (2009), p. 317-326 | DOI | Zbl

[DMS14] B. Duplantier, J. Miller & S. Sheffield - “Liouville quantum gravity as a mating of trees”, 2014, to appear in Astérisque | arXiv

[DS89] B. Duplantier & H. Saleur - “Exact fractal dimension of 2D Ising clusters”, Phys. Rev. Lett. 63 (1989) no. 22, p. 2536 | DOI

[Dup98] B. Duplantier - “Random walks and quantum gravity in two dimensions”, Phys. Rev. Lett. 81 (1998) no. 25, p. 5489-5492 | DOI | MR | Zbl

[Dur10] R. Durrett - Probability: theory and examples, Cambridge Series in Statistical and Probabilistic Math., Cambridge University Press, Cambridge, 2010 | DOI | Zbl

[FT83] B. Fristedt & S. J. Taylor - “Constructions of local time for a Markov process”, Z. Wahrsch. Verw. Gebiete 62 (1983) no. 1, p. 73-112 | DOI | MR | Zbl

[GM16] E. Gwynne & J. Miller - “Convergence of the self-avoiding walk on random quadrangulations to SLE_8/3 on 8/3-Liouville quantum gravity”, 2016, to appear in Ann. Sci. École Norm. Sup. (4) | arXiv

[GM17] E. Gwynne & J. Miller - “Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology”, Electron. J. Probab. 22 (2017), article ID 84, 47 pages | DOI | MR | Zbl

[GM19] E. Gwynne & J. Miller - “Metric gluing of Brownian and 8/3-Liouville quantum gravity surfaces”, Ann. Probab. 47 (2019) no. 4, p. 2303-2358 | DOI | MR | Zbl

[GPW09] A. Greven, P. Pfaffelhuber & A. Winter - “Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees)”, Probab. Theory Related Fields 145 (2009) no. 1-2, p. 285-322 | DOI | MR | Zbl

[Jiř58] M. Jiřina - “Stochastic branching processes with continuous state space”, Czechoslovak Math. J. 8 (83) (1958), p. 292-313 | DOI | MR | Zbl

[JS98] B. Jacquard & G. Schaeffer - “A bijective census of nonseparable planar maps”, J. Combin. Theory Ser. A 83 (1998) no. 1, p. 1-20 | DOI | MR

[Kri05] M. Krikun - “Uniform infinite planar triangulation and related time-reversed critical branching process”, J. Math. Sci. 131 (2005) no. 2, p. 5520-5537

[Kyp06] A. E. Kyprianou - Introductory lectures on fluctuations of Lévy processes with applications, Universitext, Springer-Verlag, Berlin, 2006 | Zbl

[Lam67a] J. Lamperti - “Continuous state branching processes”, Bull. Amer. Math. Soc. 73 (1967), p. 382-386 | DOI | MR

[Lam67b] J. Lamperti - “The limit of a sequence of branching processes”, Z. Wahrsch. Verw. Gebiete 7 (1967), p. 271-288 | DOI | MR | Zbl

[Law05] G. F. Lawler - Conformally invariant processes in the plane, Math. Surveys and Monographs, vol. 114, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[LG99] J.-F. Le Gall - Spatial branching processes, random snakes and partial differential equations, Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 1999 | DOI | Zbl

[LG10] J.-F. Le Gall - “Geodesics in large planar maps and in the Brownian map”, Acta Math. 205 (2010) no. 2, p. 287-360 | DOI | MR | Zbl

[LG13] J.-F. Le Gall - “Uniqueness and universality of the Brownian map”, Ann. Probab. 41 (2013) no. 4, p. 2880-2960 | DOI | MR | Zbl

[LG14a] J.-F. Le Gall - “The Brownian map: a universal limit for random planar maps”, in XVIIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2014, p. 420-428 | Zbl

[LG14b] J.-F. Le Gall - “Random geometry on the sphere”, in Proceedings of the I.C.M. (Seoul 2014) Vol. 1, Kyung Moon Sa, Seoul, 2014, p. 421-442 | Zbl

[LG18] J.-F. Le Gall - “Subordination of trees and the Brownian map”, Probab. Theory Related Fields 171 (2018) no. 3-4, p. 819-864 | DOI | MR | Zbl

[LG19] J.-F. Le Gall - “Brownian disks and the Brownian snake”, Ann. Inst. H. Poincaré Probab. Statist. 55 (2019) no. 1, p. 237-313 | DOI | MR | Zbl

[LGLJ98] J.-F. Le Gall & Y. Le Jan - “Branching processes in Lévy processes: the exploration process”, Ann. Probab. 26 (1998) no. 1, p. 213-252 | DOI | Zbl

[LGM12] J.-F. Le Gall & G. Miermont - “Scaling limits of random trees and planar maps”, in Probability and statistical physics in two and more dimensions, Clay Math. Proc., vol. 15, American Mathematical Society, Providence, RI, 2012, p. 155-211 | MR | Zbl

[LGP08] J.-F. Le Gall & F. Paulin - “Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere”, Geom. Funct. Anal. 18 (2008) no. 3, p. 893-918 | DOI | MR | Zbl

[Löh13] W. Löhr - “Equivalence of Gromov-Prohorov- and Gromov’s ̲ λ -metric on the space of metric measure spaces”, Electron. Comm. Probab. 18 (2013), article ID 17, 10 pages | MR | Zbl

[Mie08] G. Miermont - “On the sphericity of scaling limits of random planar quadrangulations”, Electron. Comm. Probab. 13 (2008), p. 248-257 | DOI | MR | Zbl

[Mie13] G. Miermont - “The Brownian map is the scaling limit of uniform random plane quadrangulations”, Acta Math. 210 (2013) no. 2, p. 319-401 | DOI | MR | Zbl

[Mie14] G. Miermont - “Aspects of random planar maps” (2014), http://perso.ens-lyon.fr/gregory.miermont/coursSaint-Flour.pdf

[Mil04] J. Milnor - “Pasting together Julia sets: a worked out example of mating”, Experiment. Math. 13 (2004) no. 1, p. 55-92 | DOI | MR | Zbl

[MM06] J.-F. Marckert & A. Mokkadem - “Limit of normalized quadrangulations: the Brownian map”, Ann. Probab. 34 (2006) no. 6, p. 2144-2202 | DOI | MR | Zbl

[Moo25] R. L. Moore - “Concerning upper semi-continuous collections of continua”, Trans. Amer. Math. Soc. 27 (1925) no. 4, p. 416-428 | DOI | MR | Zbl

[MS16a] J. Miller & S. Sheffield - “Imaginary geometry I: interacting SLEs”, Probab. Theory Related Fields 164 (2016) no. 3-4, p. 553-705 | DOI | MR | Zbl

[MS16b] J. Miller & S. Sheffield - “Imaginary geometry II: reversibility of SLE κ (ρ 1 ;ρ 2 ) for κ(0,4), Ann. Probab. 44 (2016) no. 3, p. 1647-1722 | DOI | MR

[MS16c] J. Miller & S. Sheffield - “Imaginary geometry III: reversibility of SLE κ for κ(4,8), Ann. of Math. (2) 184 (2016) no. 2, p. 455-486 | DOI | Zbl

[MS16d] J. Miller & S. Sheffield - “Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding”, 2016, to appear in Ann. Probab. | arXiv

[MS16e] J. Miller & S. Sheffield - “Liouville quantum gravity and the Brownian map III: the conformal structure is determined”, 2016, to appear in Probab. Theory Related Fields | arXiv

[MS16f] J. Miller & S. Sheffield - “Quantum Loewner evolution”, Duke Math. J. 165 (2016) no. 17, p. 3241-3378 | DOI | MR | Zbl

[MS17] J. Miller & S. Sheffield - “Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees”, Probab. Theory Related Fields 169 (2017) no. 3-4, p. 729-869 | DOI | MR | Zbl

[MS19] J. Miller & S. Sheffield - “Liouville quantum gravity spheres as matings of finite-diameter trees”, Ann. Inst. H. Poincaré Probab. Statist. 55 (2019) no. 3, p. 1712-1750 | DOI | MR | Zbl

[MS20] J. Miller & S. Sheffield - “Liouville quantum gravity and the Brownian map I: the QLE (8/3,0) metric”, Invent. Math. 219 (2020) no. 1, p. 75-152 | DOI | MR | Zbl

[Mul67] R. C. Mullin - “On the enumeration of tree-rooted maps”, Canad. J. Math. 19 (1967), p. 174-183 | DOI | MR | Zbl

[RRT14] R. B. Richter, B. Rooney & C. Thomassen - “Commentary for “On planarity of compact, locally connected, metric spaces””, Combinatorica 34 (2014) no. 2, p. 253-254 | DOI | Zbl

[RT02] R. B. Richter & C. Thomassen - “3-connected planar spaces uniquely embed in the sphere”, Trans. Amer. Math. Soc. 354 (2002) no. 11, p. 4585-4595 | DOI | MR | Zbl

[RY99] D. Revuz & M. Yor - Continuous martingales and Brownian motion, Grundlehren Math. Wiss., vol. 293, Springer-Verlag, Berlin, 1999 | MR | Zbl

[Sat99] K.-i. Sato - Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Math., vol. 68, Cambridge University Press, Cambridge, 1999 | Zbl

[Sch97] G. Schaeffer - “Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees”, Electron. J. Combin. 4 (1997) no. 1, article ID 20, 14 pages | MR | Zbl

[Sch99] G. Schaeffer - “Random sampling of large planar maps and convex polyhedra”, in Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, 1999, p. 760-769 | DOI | Zbl

[Sch00] O. Schramm - “Scaling limits of loop-erased random walks and uniform spanning trees”, Israel J. Math. 118 (2000), p. 221-288 | DOI | MR | Zbl

[Ser97] L. Serlet - “A large deviation principle for the Brownian snake”, Stochastic Process. Appl. 67 (1997) no. 1, p. 101-115 | DOI | MR | Zbl

[She16a] S. Sheffield - “Conformal weldings of random surfaces: SLE and the quantum gravity zipper”, Ann. Probab. 44 (2016) no. 5, p. 3474-3545 | DOI | MR | Zbl

[She16b] S. Sheffield - “Quantum gravity and inventory accumulation”, Ann. Probab. 44 (2016) no. 6, p. 3804-3848 | DOI | MR | Zbl

[SW12] S. Sheffield & W. Werner - “Conformal loop ensembles: the Markovian characterization and the loop-soup construction”, Ann. of Math. (2) 176 (2012) no. 3, p. 1827-1917 | DOI | MR | Zbl

[Tut62] W. T. Tutte - “A census of planar triangulations”, Canad. J. Math. 14 (1962), p. 21-38 | DOI | MR | Zbl

[Tut68] W. T. Tutte - “On the enumeration of planar maps”, Bull. Amer. Math. Soc. 74 (1968), p. 64-74 | DOI | MR | Zbl

[Vil09] C. Villani - Optimal transport. Old and new, Grundlehren Math. Wiss., vol. 338, Springer-Verlag, Berlin, 2009 | DOI | Zbl

[Wat95] Y. Watabiki - “Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation”, Nuclear Phys. B 441 (1995) no. 1-2, p. 119-163 | DOI | MR | Zbl

Cité par Sources :