Morse-Smale flow, Milnor metric, and dynamical zeta function
[Flot de Morse-Smale, métrique de Milnor et fonction zêta dynamique]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 585-607.

À l’aide des interactions entre les points fixes et les orbites fermées d’un flot de Morse-Smale, nous introduisons une métrique de Milnor sur le déterminant de la cohomologie de la variété fermée sous-jacente à valeurs dans un fibré vectoriel plat. Ceci permet de généraliser la notion de valeur absolue au point zéro de la fonction zêta dynamique de Ruelle, même dans le cas où cette valeur n’est pas bien définie au sens classique. Nous donnons une formule reliant les métriques de Milnor et de Ray-Singer. Un ingrédient essentiel de notre preuve est le théorème de Bismut-Zhang.

We introduce a Milnor metric on the determinant line of the cohomology of the underlying closed manifold with coefficients in a flat vector bundle, by means of interactions between the fixed points and the closed orbits of a Morse-Smale flow. This enables us to generalize the notion of absolute value at the zero point of the Ruelle dynamical zeta function, even in the case where this value is not well-defined in the classical sense. We give a formula relating the Milnor metric and the Ray-Singer metric. An essential ingredient of our proof is Bismut-Zhang’s theorem.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.154
Classification : 37D15,  37C30,  58J52,  57Q10
Mots clés : Flot de Morse-Smale, fonction zêta dynamique, torsion analytique, fibré déterminant
@article{JEP_2021__8__585_0,
     author = {Shu Shen and Jianqing Yu},
     title = {Morse-Smale flow, {Milnor} metric, and dynamical zeta function},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {585--607},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.154},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.154/}
}
Shu Shen; Jianqing Yu. Morse-Smale flow, Milnor metric, and dynamical zeta function. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 585-607. doi : 10.5802/jep.154. https://jep.centre-mersenne.org/articles/10.5802/jep.154/

[BG01] J.-M. Bismut & S. Goette - Families torsion and Morse functions, Astérisque, vol. 275, Société Mathématique de France, Paris, 2001 | Numdam | Zbl 1071.58025

[BGS88] J.-M. Bismut, H. Gillet & C. Soulé - “Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion”, Comm. Math. Phys. 115 (1988) no. 1, p. 49-78 | Article | MR 929146 | Zbl 0651.32017

[Bis11] J.-M. Bismut - Hypoelliptic Laplacian and orbital integrals, Annals of Math. Studies, vol. 177, Princeton University Press, Princeton, NJ, 2011 | MR 2828080 | Zbl 1234.58001

[BM13] J. Brüning & X. Ma - “On the gluing formula for the analytic torsion”, Math. Z. 273 (2013) no. 3-4, p. 1085-1117 | Article | MR 3030691 | Zbl 1318.58018

[BZ92] J.-M. Bismut & W. Zhang - An extension of a theorem by Cheeger and Müller, Astérisque, vol. 205, Société Mathématique de France, Paris, 1992, With an appendix by François Laudenbach | Numdam

[BZ94] J.-M. Bismut & W. Zhang - “Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle”, Geom. Funct. Anal. 4 (1994) no. 2, p. 136-212 | Article | MR 1262703 | Zbl 0830.58030

[Che45] S. S. Chern - “On the curvatura integra in a Riemannian manifold”, Ann. of Math. (2) 46 (1945), p. 674-684 | Article | MR 14760 | Zbl 0060.38104

[Che79] J. Cheeger - “Analytic torsion and the heat equation”, Ann. of Math. (2) 109 (1979) no. 2, p. 259-322 | Article | MR 528965 | Zbl 0412.58026

[dR50] G. de Rham - “Complexes à automorphismes et homéomorphie différentiable”, Ann. Inst. Fourier (Grenoble) 2 (1950), p. 51-67 | Numdam | MR 43468 | Zbl 0043.17601

[DR19] N. V. Dang & G. Rivière - “Spectral analysis of Morse-Smale gradient flows”, Ann. Sci. École Norm. Sup. (4) 52 (2019) no. 6, p. 1403-1458 | Article | MR 4061023 | Zbl 1448.37029

[DR20a] N. V. Dang & G. Rivière - “Spectral analysis of Morse-Smale flows I: construction of the anisotropic spaces”, J. Inst. Math. Jussieu 19 (2020) no. 5, p. 1409-1465 | Article | MR 4138948 | Zbl 07238540

[DR20b] N. V. Dang & G. Rivière - “Spectral analysis of Morse-Smale flows, II: Resonances and resonant states”, Amer. J. Math. 142 (2020) no. 2, p. 547-593 | Article | MR 4084163 | Zbl 1444.37026

[DR20c] N. V. Dang & G. Rivière - “Topology of Pollicott-Ruelle resonant states”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. XXI (2020), p. 827-871, special issue | Article

[DR21] N. V. Dang & G. Rivière - “Pollicott-Ruelle spectrum and Witten Laplacians”, J. Eur. Math. Soc. (JEMS) (2021), online first | Article

[Fra35] W. Franz - “Über die Torsion einer Überdeckung”, J. reine angew. Math. 173 (1935), p. 245-254 | Article | Zbl 61.1350.01

[Fra79] J. M. Franks - “Morse-Smale flows and homotopy theory”, Topology 18 (1979) no. 3, p. 199-215 | Article | MR 546790 | Zbl 0426.58013

[Fra82] J. M. Franks - Homology and dynamical systems, CBMS Regional Conference Series in Math., vol. 49, American Mathematical Society, Providence, RI, 1982 | MR 669378 | Zbl 0497.58018

[Fri86] D. Fried - “Analytic torsion and closed geodesics on hyperbolic manifolds”, Invent. Math. 84 (1986) no. 3, p. 523-540 | Article | MR 837526 | Zbl 0621.53035

[Fri87] D. Fried - “Lefschetz formulas for flows”, in The Lefschetz centennial conference, Part III (Mexico City, 1984), Contemp. Math., vol. 58, American Mathematical Society, Providence, RI, 1987, p. 19-69 | Article | MR 893856 | Zbl 0619.58034

[Hör90] L. Hörmander - The analysis of linear partial differential operators. I, Grundlehren Math. Wiss., vol. 256, Springer-Verlag, Berlin, 1990 | Article | MR 1065993

[KM76] F. F. Knudsen & D. Mumford - “The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div””, Math. Scand. 39 (1976) no. 1, p. 19-55 | Article | MR 437541 | Zbl 0343.14008

[KT74] F. W. Kamber & P. Tondeur - “Characteristic invariants of foliated bundles”, Manuscripta Math. 11 (1974), p. 51-89 | Article | MR 334237 | Zbl 0267.57012

[LR91] J. Lott & M. Rothenberg - “Analytic torsion for group actions”, J. Differential Geom. 34 (1991) no. 2, p. 431-481 | Article | MR 1131439 | Zbl 0744.57021

[Lüc93] W. Lück - “Analytic and topological torsion for manifolds with boundary and symmetry”, J. Differential Geom. 37 (1993) no. 2, p. 263-322 | Article | MR 1205447 | Zbl 0792.53025

[Mil66] J. Milnor - “Whitehead torsion”, Bull. Amer. Math. Soc. 72 (1966), p. 358-426 | Article | MR 196736 | Zbl 0147.23104

[Mil68] J. Milnor - “Infinite cyclic coverings”, in Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), Prindle, Weber & Schmidt, Boston, Mass., 1968, p. 115-133 | Zbl 0179.52302

[MQ86] V. Mathai & D. Quillen - “Superconnections, Thom classes, and equivariant differential forms”, Topology 25 (1986) no. 1, p. 85-110 | Article | MR 836726 | Zbl 0592.55015

[MS91] H. Moscovici & R. J. Stanton - “R-torsion and zeta functions for locally symmetric manifolds”, Invent. Math. 105 (1991) no. 1, p. 185-216 | Article | MR 1109626 | Zbl 0789.58073

[Mül78] W. Müller - “Analytic torsion and R-torsion of Riemannian manifolds”, Adv. in Math. 28 (1978) no. 3, p. 233-305 | Article | MR 498252 | Zbl 0395.57011

[Mül93] W. Müller - “Analytic torsion and R-torsion for unimodular representations”, J. Amer. Math. Soc. 6 (1993) no. 3, p. 721-753 | Article | MR 1189689 | Zbl 0789.58071

[Pal68] J. Palis - “On Morse-Smale dynamical systems”, Topology 8 (1968), p. 385-404 | Article | MR 246316

[PdM82] J. Palis & W. de Melo - Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982

[PS70] J. Palis & S. Smale - “Structural stability theorems”, in Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., vol. XIV, American Mathematical Society, Providence, RI, 1970, p. 223-231 | Zbl 0214.50702

[Qui85] D. Quillen - “Superconnections and the Chern character”, Topology 24 (1985) no. 1, p. 89-95 | Article | MR 790678 | Zbl 0569.58030

[Rei35] K. Reidemeister - “Homotopieringe und Linsenräume”, Abh. Math. Sem. Univ. Hamburg 11 (1935) no. 1, p. 102-109 | Article | MR 3069647 | Zbl 61.1352.01

[RS71] D. B. Ray & I. M. Singer - “R-torsion and the Laplacian on Riemannian manifolds”, Adv. in Math. 7 (1971), p. 145-210 | Article | MR 295381 | Zbl 0239.58014

[See67] R. T. Seeley - “Complex powers of an elliptic operator”, in Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), American Mathematical Society, Providence, RI, 1967, p. 288-307 | Article | Zbl 0159.15504

[She18] S. Shen - “Analytic torsion, dynamical zeta functions, and the Fried conjecture”, Anal. PDE 11 (2018) no. 1, p. 1-74 | Article | MR 3707290 | Zbl 1378.58022

[SM96] H. Sánchez-Morgado - “Reidemeister torsion and Morse-Smale flows”, Ergodic Theory Dynam. Systems 16 (1996) no. 2, p. 405-414 | Article | MR 1389631 | Zbl 0872.58041

[Sma61] S. Smale - “On gradient dynamical systems”, Ann. of Math. (2) 74 (1961), p. 199-206 | Article | MR 133139 | Zbl 0136.43702

[SY17] S. Shen & J. Yu - “Flat vector bundles and analytic torsion on orbifolds”, 2017, to appear in Comm. Anal. Geom. | arXiv:1704.08369