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MORSE-SMALE FLOW, MILNOR METRIC, AND

DYNAMICAL ZETA FUNCTION

by Shu Shen & Jianqing Yu

Abstract. —We introduce a Milnor metric on the determinant line of the cohomology of the
underlying closed manifold with coefficients in a flat vector bundle, by means of interactions
between the fixed points and the closed orbits of a Morse-Smale flow. This enables us to
generalize the notion of absolute value at the zero point of the Ruelle dynamical zeta function,
even in the case where this value is not well-defined in the classical sense. We give a formula
relating the Milnor metric and the Ray-Singer metric. An essential ingredient of our proof is
Bismut-Zhang’s theorem.

Résumé (Flot de Morse-Smale, métrique de Milnor et fonction zêta dynamique)
À l’aide des interactions entre les points fixes et les orbites fermées d’un flot de Morse-Smale,

nous introduisons une métrique de Milnor sur le déterminant de la cohomologie de la variété
fermée sous-jacente à valeurs dans un fibré vectoriel plat. Ceci permet de généraliser la notion
de valeur absolue au point zéro de la fonction zêta dynamique de Ruelle, même dans le cas
où cette valeur n’est pas bien définie au sens classique. Nous donnons une formule reliant les
métriques de Milnor et de Ray-Singer. Un ingrédient essentiel de notre preuve est le théorème
de Bismut-Zhang.
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Introduction

The study of the relation between the combinatorial/analytic torsion of a flat vector
bundle and the Morse-Smale flow was initiated by Fried [Fri87] and Sánchez-Morgado
[SM96]. In this paper, we give a formula relating

– a spectral invariant: the Ray-Singer metric associated with a flat vector bundle
with a Hermitian metric on a closed Riemannian manifold;

– a dynamical invariant: the Milnor metric which reflects the interactions between
the fixed points and the closed orbits of the Morse-Smale flow, and generalizes the
absolute value at zero point of the Ruelle dynamical zeta function;

– a transgressed Euler class: the Mathai-Quillen current.

0.1. Background. — Let X be a connected closed smooth manifold of dimension m.
Let (F,∇F ) be a complex flat vector bundle of rank r on X with flat connection ∇F .
Let ρ : π1(X) → GLr(C) be the holonomy representation of the fundamental group
π1(X). Denote by H•(X,F ) the cohomology of the sheaf of locally constant sections
of F , and by λ =

⊗m
i=0(detHi(X,F ))(−1)i the determinant line of H•(X,F ).

Assume that H•(X,F ) = 0 and that F is equipped with a flat metric, which is
equivalent to say that its holonomy representation ρ is unitary. The Reidemeister
torsion [Rei35, Fra35, dR50] is a positive real number defined by means of of a tri-
angulation on X. However, it does not depend on the triangulation and becomes a
topological invariant. It is the first invariant that could distinguish closed manifolds
such as lens spaces which are homotopy equivalent but not homeomorphic.

The analytic torsion was introduced by Ray and Singer [RS71] as an analytic
counterpart of the Reidemeister torsion. In order to define the analytic torsion one
has to choose a Riemannian metric on X. The analytic torsion is a certain weighted
alternating product of regularized determinants of the Hodge Laplacians acting on
the space of differential forms with values in F .

The celebrated Cheeger-Müller theorem [Che79, Mül78] tells us that the Ray-
Singer analytic torsion coincides with the Reidemeister combinatorial torsion. Bismut-
Zhang [BZ92] and Müller [Mül93] simultaneously considered generalizations of this
result. Müller [Mül93] extended his result to the case where F is unimodular, i.e.,
|det ρ(γ)| = 1 for all γ ∈ π1(X). Bismut and Zhang [BZ92, Th. 0.2] generalized the
original Cheeger-Müller theorem to arbitrary flat vector bundles with arbitrary Her-
mitian metrics. There are also various extensions to the equivariant case by Lott-
Rothenberg [LR91], Lück [Lüc93], and Bismut-Zhang [BZ94], to the family case by
Bismut-Goette [BG01], and to manifolds with boundaries by Brüning-Ma [BM13].

Let us explain Bismut-Zhang’s theorem [BZ92, Th. 0.2] in more detail. Indeed,
to formulate their result in the case where the flat vector bundle is not necessarily
acyclic or unitarily flat, Bismut and Zhang introduced the so-called Ray-Singer metric,
which is a metric on λ defined as the product of the analytic torsion with an L2-metric
on λ. Also they introduced the Milnor metric on λ which is a combinatorial metric
associated with a Morse-Smale gradient flow. It generalizes the Reidemeister torsion
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to the case where F is neither acyclic nor unitarily flat. In this way, they were able
to extend the Cheeger-Müller theorem to a comparison theorem of two metrics on λ,
one is analytic and the other one is combinatorial.

The study of the relation between the combinatorial/analytic torsion and the dyna-
mical system can be traced back to Milnor [Mil68]. Fried [Fri86] showed that on
hyperbolic manifolds the analytic torsion of an acyclic unitarily flat vector bundle is
equal to the value at zero point of the Ruelle dynamical zeta function of the geodesic
flow. He conjectured [Fri87, p. 66 Conj.] that similar results should hold true for
more general flows. In [She18], following previous contributions by Moscovici-Stanton
[MS91], using Bismut’s orbital integral formula [Bis11], the author affirmed the Fried
conjecture for geodesic flows on closed locally symmetric manifolds. In [SY17], the
authors made a further generalization to closed locally symmetric orbifolds.

Besides the gradient flow, Morse-Smale flow is the simplest structurally stable
dynamical system which has only two types of recurrent behaviors: closed orbits
and fixed points [Pal68, PS70]. Fried [Fri87, Th. 3.1] proved his conjecture for the
Morse-Smale flows without fixed points. When compared with Bismut-Zhang’s theo-
rem [BZ92, Th. 0.2], it seems natural to ask whether there is a relation between the
torsion invariant (or more generally the Ray-Singer metric for non acyclic and non
unitarily flat vector bundle) and a general Morse-Smale flow which has both fixed
points and closed orbits.

This is one of the motivations of Sánchez-Morgado’s work [SM96]. He showed that
the heteroclinic orbits have a non trivial contribution in the torsion invariant, and in
this way he constructed a counterexample to Fried’s conjecture on Seifert manifolds.

In this paper, we introduce a new Milnor metric, which indeed contains the hete-
roclinic contributions and generalizes the absolute value at zero point of the Ruelle
dynamical zeta function, and we give a comparison theorem for the Milnor and Ray-
Singer metrics on λ. We believe that in this way we give a complete answer in the
affirmative to the above question.

Let us mention that there is another interpretation of the Ruelle dynamical zeta
function provided by Dang-Rivière [DR20c]. See also [DR19, DR20a, DR20b, DR21]
for related works.

0.2. A new Milnor metric. — A vector field V is called Morse-Smale if V generates
a flow whose nonwandering set is the union of a finite set A of hyperbolic fixed points
and a finite set B of hyperbolic closed orbits, and if the stable and unstable manifolds
of the critical elements in A

∐
B intersect transversally.

Let us take a Hermitian metric gF on F . In Section 2.4, we construct on λ a Milnor
type metric ‖·‖M,2

λ,V using long exact sequences associated with a Smale filtration of the
Morse-Smale flow. Note that the long exact sequences encode the information about
the interactions between the critical elements in A

∐
B. If V is a negative gradient of

a Morse function, then our Milnor metric is just the classical one as defined in [BZ92,
Def. 1.9], which generalizes [Mil66].

J.É.P. — M., 2021, tome 8
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Our first result says that the Milnor metric ‖·‖M,2
λ,V is a generalization of the absolute

value at zero point of the Ruelle dynamical zeta function. For a closed orbit γ ∈ B, let
`γ ∈ R∗+ be its minimal period, and let ind(γ) ∈ N be its index (see (2.3)). Take ∆(γ)

to be 1 if γ is untwist and −1 in the contrary case (see (2.4)). The Ruelle dynamical
zeta function is defined for s ∈ C by

Rρ(s) =
∏
γ∈B

det(1−∆(γ)ρ(γ)e−s`γ )(−1)ind(γ) .

Proposition 0.1. — If V does not have any fixed points, and if none of ∆(γ) is
an eigenvalue of ρ(γ), then H•(X,F ) = 0, and the norm of the canonical section
1 ∈ C = λ is given by

‖1‖Mλ,V = |Rρ(0)|−1.

0.3. The main result of the paper. — Let gTX be a metric on TX. Let ψ(TX,∇TX)

be the Mathai-Quillen current associated with the Levi-Civita connection ∇TX (see
Section 3.2). It is a current of degree m− 1 defined on the total space of the tangent
bundle TX, which takes values in o(TX), the orientation line bundle of TX. Let
‖·‖RS,2

λ be the Ray-Singer metric on λ associated with (gTX , gF ) (see Section 3.3).
Set θ(F, gF ) = Tr[(gF )−1∇F gF ] ∈ Ω1(X). Our main result is the following.

Theorem 0.2. — We have

(0.1) log
(
‖·‖RS,2

λ /‖·‖M,2
λ,V

)
= −

∫
X

θ(F, gF )(−V )∗ψ(TX,∇TX).

If V does not have any closed orbits, Theorem 0.2 reduces to [BZ92, Th. 0.2]. Note
also that if F is unitarily flat, then the right-hand side of (0.1) varnishes. Therefore,
if V does not have any fixed points and if F is unitarily flat, by Proposition 0.1, our
theorem corresponds to [Fri87, Th. 3.1].

Our proof of Theorem 0.2 is based on a result of Franks [Fra79, Prop. 5.1], who
constructed a gradient flow by destroying the closed orbits of the Morse-Smale flow.
In Section 2.5, we first establish a comparison formula between our Milnor metric
associated with the original Morse-Smale flow and the classical one associated with
Franks’ gradient flow. In Section 3, to obtain Theorem 0.2, we apply Bismut-Zhang’s
formula [BZ92, Th. 0.2], which compares the Ray-Singer metric with the Milnor metric
for Franks’ gradient flow.

Recall that F is said to be unimodular, if its holonomy representation ρ is unimod-
ular, i.e., |det ρ(γ)| = 1 for all γ ∈ π1(X). This is equivalent to the fact that there is
a Hermitian metric gF such that θ(F, gF ) = 0. By Theorem 0.2, we get

Corollary 0.3. — If (F, gF ) is unimodular, then

‖·‖RS,2
λ = ‖·‖M,2

λ,V .
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0.4. Organization of the paper. — In Section 1, we introduce some conventions on
the determinant line, the cohomology of a circle, and also a long exact sequence asso-
ciated with three manifolds Y1 ⊂ Y2 ⊂ Y3. In Section 2, we recall some background on
Morse-Smale flows. We also introduce the Milnor type metric, and we show Propo-
sition 0.1. In Section 3, we recall the constructions of Mathai-Quillen current and
Ray-Singer metric. We show our main result. We use the convention N = {0, 1, 2, . . .}
and R∗+ = (0,∞).

Acknowledgements. — We are indebted to Xiaolong Han and Xiaonan Ma for reading
a preliminary version of this paper and for useful suggestions. S.S. would like to thank
Nguyen Viet Dang and Gabriel Rivière for fruitful discussions on Morse-Smale flows.

1. Preliminaries

This section is organized as follows. In Section 1.1, we introduce our convention
on the determinant line. In Section 1.2, we give a metric on the determinant line
of the cohomology of S1. This is our model case near the closed orbits of a flow.
In Section 1.3, we explain a long exact sequence associated with a triple of manifolds
Y1 ⊂ Y2 ⊂ Y3.

1.1. The determinant line. — Let W be a complex finite dimensional vector space.
We denote by W ∗ the dual space. If dimW = 1, we write W−1 = W ∗. Take Λ•(W ) =⊕dimW

j=0 Λj(W ) to be the exterior algebra. Set

detW = ΛdimW
(W ).

Clearly, detW is a complex line. If W = {0}, then

detW = C.

Let E• =
⊕

i∈ZE
i be a finite dimensional Z-graded space. Put

detE• =
⊗
i∈Z

(detEi)(−1)i .

For m ∈ N, let

(C•, d) : 0 −→ C0 −→ C1 −→ · · · −→ Cm −→ 0

be a complex of finite dimensional vector spaces. By [KM76] or [BGS88, (1.5)], we
have the canonical isomorphism of lines

(1.1) τC• : detC• ' detH•(C•, d).

If skj ∈ Ck such that {skj }
kj
j=1 projects to a basis of Ck/ ker(d|Ck), if µkj ∈ ker(d|Ck)

such that {µkj }
k′j
j=1 projects to a basis of Hk(C•, d), then

(1.2) (∧js0
j ⊗∧jµ0

j )⊗ (∧j(ds0
j )⊗∧js1

j ⊗∧jµ1
j )
−1 ⊗ · · · ⊗ (∧j(dsm−1

j )⊗∧jµmj )(−1)m

defines a canonical element of detC•. If µkj denotes the image of µkj in Hk(C•, d),
under (1.1), the element (1.2) maps to

(1.3) (∧jµ0
j )⊗ (∧jµ1

j )
−1 ⊗ · · · ⊗ (∧jµmj )(−1)m ∈ detH•(C•, d).

J.É.P. — M., 2021, tome 8



590 S. Shen & J. Yu

1.2. The cohomology of S1. — Let S1 = R/Z be an oriented circle. Let F be a flat
vector bundle of rank r on S1. Let ρ : π1(S1) → GLr(C) be the holonomy(1) of F .
Let a0 ∈ π1(S1) be the generator of π1(S1), which is compatible with the orientation
on S1. Set A = ρ(a0) ∈ GLr(C).

Consider the canonical triangulation on S1 induced by one 0-simplex σ0 and one
1-simplex σ1 as in Figure 1.1. It induces a complex of simplicial cochains with values

σ0

σ1

Figure 1.1. A triangulation on S1.

in F given by

(C•(S1, F ), d) : 0 −→ Cr A− 1−−−−−−→ Cr −→ 0.

By (1.1), the canonical element 1 ∈ C = detC•(S1, F ) defines an element

(1.4) σA ∈ detH•(S1, F ).

We equip detH•(S1, F ) with a metric ‖·‖2detH•(S1,F ) such that

(1.5) ‖σA‖detH•(S1,F ) = 1.

If 1 is not an eigenvalue of A, then H•(S1, F ) = 0. By (1.2), the norm of the
canonical element 1 ∈ C = detH•(S1, F ) is given by

(1.6) ‖1‖detH•(S1,F ) = |det (1−A)|−1
.

Remark 1.1. — Equation (1.6) is just Proposition 0.1 for the rotation flow on S1.

Remark 1.2. — Since the flat vector bundle is not necessarily unimodular, i.e.,
|det (A)| is not necessarily equal to 1, the choice of the orientation on S1 is very
important.

(1)For any flat vector bundle F on a manifold X, the holonomy is a representation ρ : π1(X)→
GLr(C) of the fundamental group π1(X) such that F = π1(X)r (X̃×Cr), where X̃ is the universal
cover of X and π1(X) acts on the left on X̃ by the deck transformation and on Cr by ρ.

J.É.P. — M., 2021, tome 8
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1.3. A fusion principle. — Let Y1 ⊂ Y2 ⊂ Y3 be three compact smooth manifolds
with boundaries of the same dimension such that Y1 ⊂ Y̊2 and Y2 ⊂ Y̊3. Let F be
a flat vector bundle on Y3 of rank r. Denote by H•(Y3, Y2, F ), H•(Y3, F ), . . . , the
corresponding relative or absolute cohomologies with coefficients in F .

As in [BM13, (0.16)], we have a long exact sequence

(1.7) · · · −→ Hi(Y3, Y2, F ) −→ Hi(Y3, Y1, F ) −→ Hi(Y2, Y1, F )

−→ Hi+1(Y3, Y2, F ) −→ · · · .

By (1.1) and (1.7), we get an isomorphism of lines

(1.8) f21,32 : detH•(Y2, Y1, F )⊗ detH•(Y3, Y2, F ) ' detH•(Y3, Y1, F ).

Using the other triples (∅, Y1, Y2) and (∅, Y1, Y3), we get similar isomorphisms

(1.9)
f1,21 : detH•(Y1, F )⊗ detH•(Y2, Y1, F ) ' detH•(Y2, F ),

f1,31 : detH•(Y1, F )⊗ detH•(Y3, Y1, F ) ' detH•(Y3, F ).

By (1.8) and (1.9), we see that f2,32 ◦ (f1,21 ⊗ id) and f1,31 ◦ (id⊗f21,32) define two
isomorphisms

(1.10) detH•(Y1, F )⊗ detH•(Y2, Y1, F )⊗ detH•(Y3, Y2, F ) ' detH•(Y3, F ).

Proposition 1.3. — There is µ = 1 or −1(2) such that

(1.11) f2,32 ◦ (f1,21 ⊗ id) = µ× f1,31 ◦ (id⊗f21,32).

Proof. — As in [BM13, (0.15)], let us take a smooth triangulation of Y3 such that it
induces also smooth triangulations on Y1 and Y2. Denote by

(C•(Y1, F ), d), (C•(Y2, Y1, F ), d), . . . ,

the complexes of simplicial cochains with coefficients in F . Then we have an exact
sequence of complexes

(1.12) 0 −→ (C•(Y2, Y1, F ), d) −→ (C•(Y2, F ), d) −→ (C•(Y1, F ), d) −→ 0.

By (1.1) and (1.12), we get an isomorphism of lines

fC1,21 : detC•(Y1, F )⊗ detC•(Y2, Y1, F ) −→ detC•(Y2, F ).

We can define fC2,32, fC1,31 and fC21,32 in a similar way. By an easy calculation, there is
µ = 1 or −1 such that

(1.13) fC2,32 ◦ (fC1,21 ⊗ id) = µ× fC1,31 ◦ (id⊗fC21,32).

(2)See [BGS88, Rem. 1.2] or [KM76] for the detail about the sign.

J.É.P. — M., 2021, tome 8
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By (1.2) and (1.3), there is µ = 1 or −1 such that the diagram

(1.14)
detC•(Y1, F )⊗ detC•(Y2, Y1, F )

τC•(Y1,F ) ⊗ τC•(Y2,Y1,F )

��

fC1,21
// detC•(Y2, F )

µτC•(Y2,F )

��

detH•(Y1, F )⊗ detH•(Y2, Y1, F )
f1,21

// detH•(Y2, F )

commutes. Tensoring each vertical line of (1.14) by the isomorphism

τC•(Y3,Y2,F ) : detC•(Y3, Y2, F ) ' detH•(Y3, Y2, F ),

and using (1.14) again for the pair (Y2, Y3), we find that there is µ = 1 or −1 such
that the diagram
(1.15)

detC•(Y1, F )⊗ detC•(Y2, Y1, F )⊗ detC•(Y3, Y2, F )

τC•(Y1,F )⊗τC•(Y2,Y1,F )⊗τC•(Y3,Y2,F )

��

fC2,32◦(f
C
1,21⊗id)

// detC•(Y3, F )

µτC•(Y3,F )

��

detH•(Y1, F )⊗ detH•(Y2, Y1, F )⊗ detH•(Y3, Y2, F )
f2,32◦(f1,21⊗id)

// detH•(Y3, F )

commutes. In (1.15), if we replace the horizontal morphisms by fC1,31 ◦(id⊗fC21,32) and
f1,31◦(id⊗f21,32), the corresponding diagram still commutes. By (1.13), we get (1.11).

�

2. Milnor metric

This section is organized as follows. In Sections 2.1 and 2.2, we recall the definitions
of Morse-Smale flow and the associated Ruelle dynamical zeta function. In Section 2.3,
we recall some results due to Franks [Fra79, Fra82] on the construction of a new gra-
dient flow by destroying the closed orbits of the original Morse-Smale flow. In Sec-
tion 2.4, using the Smale filtration, we introduce the Milnor metric. In Section 2.5,
we establish a comparison formula for the two Milnor metrics, one is associated with
the Morse-Smale flow and the other is associated with the gradient flow constructed
by Franks.

We refer the reader to the classical textbook of Palis and de Melo [PdM82] for the
basic notion on dynamical system.

2.1. Morse-Smale flow. — Let X be a connected closed smooth manifold of dimen-
sion m. Let V be a vector field on X. Consider the differential equation

(2.1) dx

dt
= V (x).

Equation (2.1) defines a group of diffeomorphism (φt)t∈R of X.
If x ∈ X, an orbit of x is defined by the image t ∈ R 7→ φt(x) ∈ X. We call x ∈ X

is a fixed point, if its orbit reduces to a point, i.e, for all t ∈ R,

φt(x) = x.

J.É.P. — M., 2021, tome 8
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Clearly, x ∈ X is a fixed point if and only if V (x) = 0. We call an orbit is closed if it
is diffeomorphic to S1. Denote by A the set of fixed points and by B the set of closed
orbits.

Definition 2.1. — A fixed point x ∈ X of the flow φ· is called hyperbolic if there is
a φt-invariant splitting

TxX = Eu
x ⊕ Es

x,

and there exist C > 0, θ > 0 and a Riemannian metric gTX on X such that for v ∈ Eu
x ,

v′ ∈ Es
x, and t > 0, we have

|φ−t,∗v| 6 Ce−θt |v| , |φt,∗v′| 6 Ce−θt |v′| .

The unstable and stable manifolds of the hyperbolic fixed point x are defined by

W u
x =

{
y ∈ X : lim

t→−∞
dX(φt(y), x) = 0

}
, W s

x =
{
y ∈ X : lim

t→∞
dX(φt(y), x) = 0

}
,

where dX denotes the Riemannian distance on (X, gTX). The index ind(x) ∈ N of x
is defined by
(2.2) ind(x) = dimEu

x .

Note that if V = −∇f is a negative gradient of a Morse function f with respect
to some Riemannian metric, then the index ind(x) of the critical point x is just the
Morse index of f at x.

Definition 2.2. — A closed orbit γ of the flow φ· is called hyperbolic, if there is a
φt-invariant continuous splitting

TX|γ = RV ⊕ Eu
γ ⊕ Es

γ ,

of C0-vector bundles over γ such that (2.1) holds. The associated unstable and stable
manifolds are defined by

W u
γ =

⋃
x∈γ

{
y ∈ X : limt→−∞ dX(φt(y), φt(x)) = 0

}
,

W s
γ =

⋃
x∈γ

{
y ∈ X : limt→+∞ dX(φt(y), φt(x)) = 0

}
.

The index ind(γ) ∈ N of γ is defined by

(2.3) ind(γ) = rkEu
γ .

Definition 2.3. — The nonwandering set of φ· is defined by{
x ∈ X : ∀ open neighborhood U of x, ∀T > 0, U ∩

⋃
t>T φt(U) 6= ∅

}
.

Clearly, A ∪
⋃
γ∈B γ is contained in the nonwandering set.

Definition 2.4. — A vector field V or a flow φ· is called Morse-Smale if
– the sets A and B are finite and contain only hyperbolic elements;
– the nonwandering set of φ· is equal to A ∪

⋃
γ∈B γ;

– the stable and unstable manifold of any critical element in A
∐
B intersect

transversally.

In the sequel, we assume that V is a Morse-Smale vector field.
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2.2. Ruelle dynamical zeta function. — For γ ∈ B, denote by `γ ∈ R∗+ its minimal
period. A closed orbit γ ∈ B is called untwist if Eu

γ is orientable along γ, and is called
twist otherwise. Put

(2.4) ∆(γ) =

{
1 if γ is untwist,
−1 if γ is twist.

Let ρ : π1(X) → GLr(C) be a representation of the fundamental group of X.
If γ ∈ B, denote by ρ(γ) the holonomy along γ. Clearly, ρ(γ) is well-defined up to a
conjugation.

Definition 2.5. — The twist Ruelle dynamical zeta function is a meromorphic func-
tion on C defined for s ∈ C by

(2.5) Rρ(s) =
∏
γ∈B

det(1−∆(γ)ρ(γ)e−s`γ )(−1)ind(γ) .

2.3. Franks’ Morse function. — We follow [Fra79, §1]. Let Dr be the r-dimensional
open unit ball of center 0 ∈ Rr. A fixed point x ∈ A of index p is said to be of standard
form if there is a system of coordinates (y1, . . . , ym) ∈ Dm on a neighborhood of x
such that x is represented by 0 and

V =

p∑
i=1

yi
∂

∂yi
−

m∑
i=p+1

yi
∂

∂yi
.

For closed orbits we must distinguish the following four cases in establishing the
standard forms. Assume γ ∈ B such that ind(γ) = p.

Case 1. — Suppose that TX|γ is orientable and that γ is untwist. In this case, γ is said
to be of standard form, if there is a system of coordinates (t, y1, . . . , ym−1) ∈ S1×Dm−1

on a tubular neighborhood Uγ of γ such that γ is represented by (t, 0) ∈ S1 × Dm−1

and

V =
∂

∂t
+

p∑
i=1

yi
∂

∂yi
−

m−1∑
i=p+1

yi
∂

∂yi
.

Case 2. — Suppose that TX|γ is orientable and that γ is twist. In this case, γ is said
to be of standard form, if Uγ and V can be obtained from Case 1 by the identification

(t, x1, . . . , xm−1) ∼ (t+ 1/2,−x1, x2, . . . , xp,−xp+1, xp+2, . . . , xm−1).

Case 3. — Suppose that TX|γ is not orientable and that γ is untwist. In this case,
γ is said to be of standard form, if Uγ and V can be obtained from Case 1 by the
identification

(t, x1, . . . , xm−1) ∼ (t+ 1/2, x1, · · · , xp,−xp+1, xp+1, . . . , xm−1).
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Case 4. — Suppose that TX|γ is not orientable and that γ is twist. In this case,
γ is said to be of standard form, if Uγ and V can be obtained from Case 1 by the
identification

(t, x1, . . . , xm−1) ∼ (t+ 1/2,−x1, x2, · · · , xm−1).

Note that in [Fra79, §1] the author assumed that X is orientable, so only the first two
cases appear.

The following three propositions are [Fra79, Prop. 1.6, Th. 2.2, Prop. 5.1]. Their
proofs can be generalized to the non orientable case with some evident modifications.
We omit the details.

Proposition 2.6. — For any Morse-Smale vector field V , there is a smooth family of
Morse-Smale vector fields (V`)06`61 such that V0 = V and that the critical elements
of V1 are all of standard forms and are precisely the same as the critical elements
of V . Moreover, V0 and V1 are topologically conjugated, i.e., there is a homeomorphism
carrying the orbits of V0 to those of V1 and preserving their orientations.

Remark 2.7. — The second part of Proposition 2.6 is a consequence of the Structural
stability of the Morse-Smale flow [Pal68, PS70].

Remark 2.8. — Following the proof of [Fra79, Prop. 1.6] given by Franks, we can
choose the family (V`)06`61 such that the critical elements are preserved under the
deformation. However, in the proof of our main result Theorem 0.2 given in Section 3,
we need only choose a family such that all the set of the fixed points of V` are in a
small neighbourhood of the set of the fixed points of V .

The relation between the Morse-Smale flow and the Morse function is summarized
in the following two propositions. The first one is due to Smale [Sma61, Th.B].

Proposition 2.9. — If V is a Morse-Smale vector field whose flow has fixed points in
standard form and no closed orbits, then V is a negative gradient of a certain Morse
function with respect to some Riemannian metric.

To state the following proposition, let us introduce some notation. For x, y ∈ A

such that ind(y) = ind(x)− 1, then W u
x ∩W s

y consists of a finite set Γ(x, y) = {a•} of
integral curves of V such that a−∞ = x and a∞ = y along whichW u

x andW s
y intersect

transversally. Let us fix an orientation on each W u
x with x ∈ A. Define n(a) = ±1 as

in [BZ92, (1.28)], whose definition does not require the manifold to be orientable.

Proposition 2.10. — For some small neighborhood U =
⋃
γ∈B Uγ of closed orbits⋃

γ∈B γ, there is a Morse function f on X whose gradient vector field ∇f with respect
to a certain Riemannian metric is Morse-Smale, such that

– on X r U , we have

(2.6) −∇f = V,

– on each Uγ , the Morse function f has only two critical points xγ , x′γ of index
ind(γ) + 1 and ind(γ) respectively.
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Also, Γ(xγ , x
′
γ) consists of two integral curves aγ , a′γ (see Figure 2.1) such that their

composition aγ ◦ (a′γ)−1 and the closed orbit γ lie in the same freely homotopy class
of loops on X and that(3)

n(aγ)n(a′γ) = −∆(γ).

γ ∈ B

xγ

x′γ

aγ a′γ

Figure 2.1. A closed orbit and integral curves

Remark 2.11. — We recall the essential step in the construction of the gradient ∇f
given by Franks [Fra82, Prop. 8.5]. For simplicity, assume that there is only one closed
orbit γ and it is of index p and in standard form of Case 1. For δ > 0 small enough,
let ρ ∈ C∞c (Dm−1, [0, 1]) be a cutoff function, which is equal to 1 on |y| < δ and to 0

on |y| > 2δ. Put

V1 =


(
(1− ρ) + ρ sin(2πt)

) ∂
∂t

+

p∑
i=1

yi
∂

∂yi
−

m−1∑
i=p+1

yi
∂

∂yi
, in Uγ ,

V, outside Uγ .
It is easy to see that the nonwandering set of V1 in Uγ consists of two points
(1, 0), (1/2, 0) ∈ S1 × Dm−1. Then, by a small perturbation on V1, we get a Morse-
Smale gradient vector field −∇f which has the desired transversality and other
properties.

We remark that by the above construction, we can find a family of vector fields
(Vε)06ε61 connecting V and −∇f such that near {1/4} × Dm−1, for any ε ∈ [0, 1],
Vε does not vanish. Similar remark holds for γ in standard forms of Cases 2–4. In Sec-
tion 3.5, we will use this fact to simplify the proof of our main theorem.

2.4. Smale filtration and Milnor metric. — Following [Fra82, Def. 9.10], let

(2.7) ∅ = X0 ⊂ X1 ⊂ · · · ⊂ XN = X

be a Smale filtration onX associated with V . Note that eachXp ⊂ X is a submanifold
with boundary, and can be constructed by the sublevel set of a smooth Lyapunov
function. Also, we have

(3)This requires a choice of the orientations on the unstable manifolds of xγ , x′γ . Such choice is
irrelevant.
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– on each ∂Xp, V does not vanish and points toward the inside of Xp;
– there is only one critical element c ∈ A

∐
B contained in Xp+1 rXp and

{c} =
⋂
t∈R

φt(X
p+1 rXp).

Let (F,∇F ) be a flat vector bundle on X induced by the representation ρ. Let
H•(X,F ) be the cohomology of the sheaf of locally constant sections of F . Put

(2.8) λ = detH•(X,F ).

We use the notation in Section 1.3. By (1.10), we get an isomorphism

(2.9) σV :
N−1⊗
p=0

detH•(Xp+1, Xp, F ) ' λ.

By Proposition 1.3, up to a sign, the morphism σV does not depend on the way that
the cohomologies are fused.

By [Fra82, Th. 9.11] (see also [SM96, §2]), if the critical element c ∈ Xp+1 rXp is
a fixed point, then

(2.10) Hq(Xp+1, Xp, F ) =

{
Fc, q = ind(c),

0, otherwise,

and if the critical element c ∈ Xp+1 rXp is a closed orbit, then

(2.11) Hq(Xp+1, Xp, F ) =

{
Hq−ind(c)

(
c, o(Eu

c )⊗ F |c
)
, q − ind(c) = 0 or 1,

0, otherwise,

where o(Eu
c ) is the orientation line bundle of Eu

c along the closed orbit c.
We equip detH•(γ, o(Eu

γ ) ⊗ F |γ) with the metric ‖·‖2detH•(γ,o(Eu
γ)⊗F |γ) defined

in (1.5). Let gF be a Hermitian metric on F . By (2.9)–(2.11), the restriction gF |A
and the metric ‖·‖2detH•(γ,o(Eu

γ)⊗F |γ) induce a metric ‖·‖M,2
λ,V on λ. By Proposition 1.3,

this metric does not depend on the way that the cohomologies are fused.

Definition 2.12. — The metric ‖·‖M,2
λ,V on λ is called the Milnor metric associated

with V .

Remark 2.13. — If V = −∇f is a negative gradient of a Morse function f , then ‖·‖M,2
λ,V

coincides with the one constructed by Bismut-Zhang [BZ92, Def. 1.9]. In fact, there
is a small difference with Bismut-Zhang’s construction, where they used a filtration
[BZ92, (1.37)] induced by sublevel sets of a nice Morse function. Using Proposition 1.3,
we can deduce that the two constructions coincide.

Remark 2.14. — For two topologically conjugated Morse-Smale vector fields whose
critical elements coincide, we can choose the same Smale filtration. From our con-
struction, the corresponding Milnor metrics coincide.

Remark 2.15. — The Milnor metric for general Morse-Smale flow does not depend
on the Smale filtration (2.7). We will not give a direct proof since it is a consequence
of our main Theorem 0.2.
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Let us restate and prove Proposition 0.1.

Proposition 2.16. — If V does not have any fixed points, and if none of ∆(γ) is
an eigenvalue of ρ(γ), then H•(X,F ) = 0, and the norm of the canonical section
1 ∈ C = detH•(X,F ) is given by

(2.12) ‖1‖Mλ,V = |Rρ(0)|−1.

Proof. — For γ ∈ B, the holonomy of o(Eu
γ ) ⊗ F |γ along γ is ∆(γ)ρ(γ). By our

assumption,

(2.13) H•(γ, o(Eu
γ )⊗ Fγ) = 0.

By (1.7), (2.10), (2.11), and (2.13), we can deduce that H•(X,F ) = 0. By (1.6), (2.5),
and (2.9), we get (2.12). �

2.5. A comparison formula for Milnor metrics. — In this section, we assume that
all the critical elements of V are in standard forms, and that f is chosen as in Propo-
sition 2.10.

Let det τ(a′γ) ∈ detFx′γ ⊗ (detFxγ )−1 be the canonical element induced by the
parallel transport with respect to the flat connection along the integral curve a′γ (see
Figure 2.1). Let ‖·‖2detFx′γ

⊗(detFxγ )−1 be the metric on detFx′γ ⊗ (detFxγ )−1 induced

by gFxγ and gFx′γ .

Proposition 2.17. — The following identity holds,

(2.14) log
(
‖·‖M,2

λ,−∇f/‖·‖
M,2
λ,V

)
=
∑
γ∈B

(−1)ind(γ) log
∥∥det τ(a′γ)

∥∥2

detFx′γ
⊗(detFxγ )−1 .

Proof. — We refine the filtration (2.7) by the new critical points of f . By Propositions
1.3 and 2.10, and by (2.9), the following diagram commutes

(2.15)

⊗
x∈A

(
detFx

)(−1)ind(x) ⊗
γ∈B

{
detFx′γ ⊗ (detFxγ )−1

}(−1)ind(γ)

��

σ−∇f
// λ

��⊗
x∈A

(
detFx

)(−1)ind(x)⊗
γ∈B

{
detH•(γ, o(Eu

γ )⊗ F |γ)
}(−1)ind(γ) σV // λ

where the first vertical arrow is induced by (1.4) and the second vertical arrow is
a multiplication by ±1. The Milnor metric ‖·‖M,2

λ,−∇f is obtained from the metric
gF |A∪{xγ ,x′γ :γ∈B} via σ−∇f . By (2.15), we get (2.14). �

3. An extension of Bismut-Zhang’s theorem to Morse-Smale flow

This section is organized as follows. In Sections 3.1-3.4, following [BZ92], we recall
the constructions of the Berezin integral, the Mathai-Quillen current, and the Ray-
Singer metric. In Section 3.5, we restate and prove our main theorem.
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3.1. Berezin integral. — Let E be a real Euclidean space of dimension n with the
scalar product 〈, 〉, and let W be a real vector space of finite dimension. We use the
supersymmetric formalism of Quillen [Qui85]. Denote by ⊗̂ the tensor product of
super algebras.

Suppose temporarily that E is oriented and that e1, . . . , en is an oriented orthonor-
mal basis of E. Let e1, . . . , en be the corresponding dual basis of E∗. We define

∫ B
to be the linear map from Λ•(W ∗) ⊗̂ Λ•(E∗) into Λ•(W ∗), such that if α ∈ Λ•(W ∗),
β ∈ Λ•(E∗), ∫ B

αβ = 0, if deg β < n,∫ B

αe1 ∧ · · · ∧ en =
(−1)n(n+1)/2

πn/2
α.

More generally, if o(E) is the orientation line of E, then
∫ B defines a linear map from

Λ•(W ∗) ⊗̂ Λ•(E∗) into Λ•(W ∗) ⊗̂ o(E), which is called a Berezin integral.
Let A ∈ Endanti(E) be an antisymmetric endomorphism of E. We identify A with

(3.1) Ȧ =
1

2

∑
16i,j6n

〈ei, Aej〉ei ∧ ej ∈ Λ2
(E∗).

By definition, the Pfaffian Pf[A] ∈ o(E) of A is given by

Pf[A/2π] =

∫ B

exp(−Ȧ/2).

Clearly, Pf[A] vanishes if n is odd.

3.2. Mathai-Quillen formalism. — Recall that X is a connected closed smooth
manifold of dimension m. Let E be a Euclidean vector bundle of rank n on X with a
Euclidean metric gE and a metric connection ∇E . Let

RE = (∇E)2 ∈ Ω2(X,Endanti(E))

be its curvature. Denote by o(E) the orientation line bundle of E. The Euler form of
(E,∇E) is given by

e(E,∇E) = Pf[RE/2π] ∈ Ωn(X, o(E)).

Clearly, e(E,∇E) = 0, if n is odd.
Let E be the total space of E, and let π : E → X be the natural projection. We will

use the formalism of the Berezin integral developed in Section 3.1 with W = TE . If ω
is a smooth section of Λ•(T ∗E )⊗ π∗Λ•(E∗) over E , then

∫ B
ω is a smooth section of

Λ•(T ∗E )⊗ π∗o(E) over E .
Let TV E ⊂ TE be the vertical subbundle of TE , and let THE ⊂ TE be the

horizontal subbundle of TE with respect to ∇E , so that

(3.2) TE = THE ⊕ TV E .
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By the identification TV E ' π∗E, the vertical projection with respect to the split-
ting (3.2) induces a section PE ∈ C∞(E , T ∗E ⊗ π∗E). Using the metric gE , we iden-
tify PE with ṖE ∈ C∞(E , T ∗E ⊗ π∗E∗). Let Y ∈ C∞(E , π∗E) be the tautological
section. Write Ŷ the corresponding section in C∞(E , π∗E∗) induced by gE . Recall
that ṘE ∈ C∞(X,Λ2

(T ∗X)⊗ Λ2
(E∗)) is defined in (3.1).

Definition 3.1. — For T > 0, set

AT =
1

2
π∗ṘE +

√
T ṖE + T |Y |2 ∈ C∞

(
E ,Λ•(T ∗E )⊗ π∗Λ•(E∗)

)
.

Let (αT )T>0 and (βT )T>0 be families of forms on E defined by

(3.3)
αT =

∫ B

exp(−AT ) ∈ Ωn(E , π∗o(E)),

βT =

∫ B Ŷ

2
√
T

exp(−AT ) ∈ Ωn−1(E , π∗o(E)).

Clearly,
α0 = π∗e(E,∇E).

Let us recall [BZ92, Th. 3.4, 3.5, & 3.7].

Theorem 3.2. — For T > 0, the form αT is closed whose cohomology class does not
depend on T . For T > 0, αT represents the Thom class of E so that π∗αT = 1, and
we have

∂αT
∂T

= −dβT .

We identify X as a submanifold of E by the zero section. The normal bundle to X
in E is exactly E and the conormal bundle is E∗. Let δX be the current on E defined
by the integration on X. If µ is a smooth compactly supported form on E with values
in π∗o(TX), then ∫

E

µδX =

∫
X

µ.

For a current v on E , denote by WF(v) ⊂ T ∗E its wave front set [Hör90, §8.1].

Theorem 3.3. — Let K ⊂ E be a compact subset of E . There is CK > 0 such that
for any µ ∈ Ω•(E , π∗o(TX)) whose support is contained in K and for any T > 1, we
have

(3.4)
∣∣∣∣∫

E

µ(αT − δX)

∣∣∣∣ 6 CK√
T
‖µ‖C1 ,

∣∣∣∣∫
E

µβT

∣∣∣∣ 6 CK
T 3/2

‖µ‖C1 ,

where ‖·‖C1 denotes the C1-norm.

In view of (3.3) and (3.4),

ψ(E,∇E) =

∫ ∞
0

βT dT

is a well-defined current of degree n− 1 on E with values in π∗o(E).
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Theorem 3.4. — The current ψ(E,∇E) is locally integrable such that

WF
(
ψ(E,∇E)

)
⊂ E∗.

The following identity of currents on E holds,

dψ(E,∇E) = π∗e(E,∇E)− δX .

Definition 3.5. — The current ψ(E,∇E) is called the Mathai-Quillen current.

Remark 3.6. — The restriction of ψ(E,∇E) to the sphere bundle of E was first
constructed in Mathai-Quillen [MQ86, §7]. If E = TX, this restriction coincides with
the transgressed Euler class defined by Chern [Che45].

Assume now n 6 m. Let s ∈ C∞(X,E) be a smooth section of E. Set

(3.5) X ′ = {x ∈ X : s(x) = 0}.

Suppose that over X ′, the differential of s has maximal rank. By transversality, X ′
is a smooth submanifold of X of dimension m− n. Let NX′/X be the normal bundle
to X ′ in X. Using [Hör90, Th. 8.2.4], Bismut and Zhang have shown the following
proposition in [BZ92, Rem. 3.8].

Proposition 3.7. — The pull-back currents s∗ψ(E,∇E), s∗δX on X are well-defined
and satisfy

(3.6) WF(s∗ψ(E,∇E)) ⊂ N∗X′/X , WF(s∗δX) ⊂ N∗X′/X .

The following identity of currents on X holds,

(3.7) d(s∗ψ(E,∇E)) = e(E,∇E)− s∗δX .

Remark 3.8. — If U ∈ C∞(X,TX) is a vector field on X which has only isolated
non degenerated zeros, i.e., in a neighbourhood of a zero x of U there is a system of
coordinates y = (y1, . . . , ym) and a matrix A with detA 6= 0 such that x is represented
by y = 0 and

U(y) = Ay + O(|y|2).

By Proposition 3.7, U∗ψ(TX,∇TX) is a well defined current. Moreover, if εx =

sgn det(A) is the Poincaré-Hopf index(4) at x, then U∗δX is a Radon measure on X
defined for µ ∈ C∞(X) by

(3.8)
∫
X

µ U∗δX =
∑

x: zero of U
εx µ(x).

(4)If U is Morse-Smale, then (−1)mεx = (−1)ind(x). See the discussion after (2.2) about the sign
(−1)m.
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3.3. Ray-Singer metric. — We use the notation in Section 2. Recall that (F,∇F ) is
a flat vector bundle on X. Let (Ω•(X,F ), dX) be the de Rham complex of smooth
forms on X with values in F . By de Rham’s theory, its cohomology is H•(X,F ).

Take metrics gTX and gF on TX and F . Let 〈, 〉Λ•(T∗X)⊗F be the induced metric
on Λ•(T ∗X) ⊗ F . Let dvX ∈ Ωm(X, o(TX)) be the Riemannian volume form on X.
For s1, s2 ∈ Ω•(X,F ), set

(3.9) 〈s1, s2〉Ω•(X,F ) =

∫
x∈X
〈s1(x), s2(x)〉Λ•(T∗X)⊗F dvX .

Then (3.9) defines an L2-metric on Ω•(X,F ).
Let dX∗ be the formal adjoint of dX with respect to the L2-metric 〈·, ·〉Ω•(X,F ). Put

�X = dXdX∗ + dX∗dX .

Then �X is a formally self-adjoint second order elliptic differential operator acting
on Ω•(X,F ). By Hodge theory, we have

(3.10) ker�X ' H•(X,F ).

By (2.8) and (3.10), the restriction of the L2-metric 〈·, ·〉Ω•(X,F ) to ker�X induces a
metric | · |RS,2

λ on λ.
Let (ker�X)⊥ be the orthogonal space to ker�X in Ω•(X,F ). Then �X acts

as an invertible operator on (ker�X)⊥. Let (�X)−1 be the inverse of �X acting on
(ker�X)⊥. Let NΛ•(T∗X) be the number operator on Λ•(T ∗X), which is multiplication
by p on Λp(T ∗X). For s ∈ C such that Re(s) > m/2, set

ζ(s) = −Tr[(−1)N
Λ•(T∗X)

NΛ•(T∗X)(�X)−s].

By a result of Seeley [See67] or by [BZ92, Th. 7.10], ζ(s) extends to a meromorphic
function of s ∈ C, which is holomorphic at s = 0.

Definition 3.9. — The Ray-Singer metric ‖·‖RS,2
λ on λ is defined by

‖·‖RS,2
λ = | · |RS,2

λ exp
(
ζ ′(0)

)
.

Let ∇TX be the Levi-Civita connection on (TX, gTX). Let ψ(TX,∇TX) be the
Mathai-Quillen current. By (2.1) and by Proposition 3.7, for any Morse-Smale vector
field V , the pull-back V ∗ψ(TX,∇TX) is a well-defined current of degree m− 1 on X
with values in o(TX). Set

θ(F, gF ) = Tr[(gF )−1∇F gF ] ∈ Ω1(X).

Then, θ(F, gF ) is a closed 1-form and its cohomology class θ(F ) = [θ(F, gF )] ∈ H1(X)

does not depend on the metric gF . Up to a normalization, the class θ(F ) coincides
with the first Kamber-Tondeur class [KT74].
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The main result of Bismut-Zhang [BZ92, Th. 0.2] is the following.

Theorem 3.10. — Suppose that f is a Morse function, whose gradient ∇f with respect
to some Riemannian metric is Morse-Smale. The following identity holds,

log
(
‖·‖RS,2

λ /‖·‖M,2
λ,−∇f

)
= −

∫
X

θ(F, gF )(∇f)∗ψ(TX,∇TX).

3.4. A variation formula for certain characteristic form. — Let us follow [BZ92,
§VI.a) and VI.b)]. Let (U`)06`61 be a smooth family of vector fields on X, such that
each U` has only isolated non degenerated zeros. By Proposition 3.7 and Remark 3.8,
the integral ∫

X

θ(F, gF )U∗` ψ(TX,∇TX)

is well-defined. Let us study its variation with respect to ` ∈ [0, 1].
Let q : [0, 1] × X → X be the obvious projection. Consider a smooth section

U ∈ C∞([0, 1]×X, q∗(TX)) defined by

U : (`, x) ∈ [0, 1]×X −→ U`(x) ∈ TxX.

By the consideration after (3.5), the zero set of U is a manifold of dimension 1.
Therefore, if x1,0, . . . , xN,0 are the zeros of U0, we can parametrize the zeros of U`
by x1,`, . . . , xN,` such that all the maps ` ∈ [0, 1] → xi,` ∈ X are smooth. Also,
the Poincaré-Hopf index of U` at xi,` does not depend on ` and will be denoted by
εi ∈ {±1}. The following proposition is a generalization of [BZ92, Prop. 6.4]. Since we
will use this proposition several times in Section 3.5, let us give a detailed proof.

Proposition 3.11. — The following identity holds:
(3.11)∫

X

θ(F, gF )
(
U∗1ψ(TX,∇TX)− U∗0ψ(TX,∇TX)

)
=

N∑
i=1

εi

∫ 1

0

θ(F, gF )(ẋi,`)d`.

Proof. — Let us follow the proof of [BZ92, Prop. 6.1, Prop. 6.4]. Equip the pull-back
vector bundle q∗(TX) over [0, 1]×X with the pull-back metric and the pullback metric
connection ∇q∗(TX). Let ψ(q∗(TX),∇q∗(TX)) be the corresponding Mathai-Quillen
current. By Proposition 3.7, U∗ψ(q∗(TX),∇q∗(TX)) and U∗δ[0,1]×X are well-defined
currents such that

(3.12) d[0,1]×X(U∗ψ(q∗(TX),∇q
∗(TX))) = e(q∗(TX),∇q

∗(TX))− U∗δ[0,1]×X .

By our construction,

(3.13) e(q∗(TX),∇q
∗(TX)) = q∗e(TX,∇TX).

Since θ(F, gF ) is a closed 1-form on X, by (3.12) and (3.13), we have

d[0,1]×X(q∗θ(F, gF ) ∧ U∗ψ(q∗(TX),∇q
∗(TX))) = q∗θ(F, gF ) ∧ U∗δ[0,1]×X .

Integrating the above formula over [0, 1]×X, by the Stokes formula, we get (3.11). �

J.É.P. — M., 2021, tome 8



604 S. Shen & J. Yu

3.5. Proof of the main result. — We restate our main result Theorem 0.2, which
is an extension of Theorem 3.10.

Theorem 3.12. — Suppose that V is a Morse-Smale vector field. The following iden-
tity holds,

log
(
‖·‖RS,2

λ /‖·‖M,2
λ,V

)
= −

∫
X

θ(F, gF )(−V )∗ψ(TX,∇TX).

Proof. — Take (V`)06`61 as in Proposition 2.6. By Remark 2.14, we have

(3.14) ‖·‖M,2
λ,V = ‖·‖M,2

λ,V1
.

Since the critical elements of V and V1 coincide, the fixed points of V` form smooth
loops on X. By Remark 2.8, we can assume that the fixed points of V` are in a
small neighbourhood of the fixed points set of V . In particular, the above loops are
contractible. By Proposition 3.11 and by the closedness of θ(F, gF ), we have

(3.15)
∫
X

θ(F, gF )(−V )∗ψ(TX,∇TX) =

∫
X

θ(F, gF )(−V1)∗ψ(TX,∇TX).

By (3.14) and (3.15), it is enough to show our theorem for the Morse-Smale vector
field V whose critical elements are all of standard forms.

Take f as in Proposition 2.10. By Proposition 2.17 and Theorem 3.10, we have

(3.16) log
(
‖·‖RS,2

λ /‖·‖M,2
λ,V

)
= −

∫
X

θ(F, gF )(∇f)∗ψ(TX,∇TX)

+
∑
γ∈B

(−1)ind(γ) log
∥∥det τ(a′γ)

∥∥2

detFx′γ
⊗(detFxγ )−1 .

By (3.16), it remains to show

(3.17)
∫
X

θ(F, gF )(∇f)∗ψ(TX,∇TX)−
∫
X

θ(F, gF )(−V )∗ψ(TX,∇TX)

=
∑
γ∈B

(−1)ind(γ) log
∥∥det τ(a′γ)

∥∥2

detFx′γ
⊗(detFxγ )−1 .

We assume that all the closed orbits are in standard form of Case 1. Cases 2–4 can
be dealt similarly.

Following [BZ92, §IV.c)], choose a smooth triangulation K of X such that A ∩
Km−1 = ∅, and such that on Uγ ' S1 × Dm−1 the triangulation is given by the
m-simplex σmγ = (S1 − {1/4})× Dm−1 and (m− 1)-simplex σm−1

γ = {1/4} × Dm−1.
On each simplex σ ∈ Km rKm−1 of maximal degree, choose a primitive W0,σ ∈

C∞(σ) of θ(F, gF ), such that on σ we have

dW0,σ = θ(F, gF ).

Let W0 be the locally integrable current on X, such that for each σ ∈ Km rKm−1

we have
W0|σ = W0,σ.
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By our construction of K, for γ ∈ B, the two points xγ , x′γ , and the integral curve a′γ
are in the same simplex σmγ ∈ Km, so that

(3.18) W0(x′γ)−W0(xγ) = log
∥∥det τ(a′γ)

∥∥2

detFx′γ
⊗(detFxγ )−1 .

Set

(3.19) W1 = θ(F, gF )− dW0.

Then W1 is a closed current of degree 1 on X such that Supp(W1) ⊂ Km−1. By (3.6)
and by A ∩ Km−1 = ∅, (−V )∗ψ(TX,∇TX) is smooth in the neighbourhood of the
support of W1, so that

W1 ∧ (−V )∗ψ(TX,∇TX)

is a well-defined current on X. By (3.7), (3.8), and (3.19), we have

(3.20) −
∫
X

θ(F, gF )(−V )∗ψ(TX,∇TX)

=

∫
X

W0 e(TX,∇TX)−
∑
x∈A

(−1)ind(x)W0(x)−
∫
X

W1 ∧ (−V )∗ψ(TX,∇TX).

Similar when −V is replaced by ∇f , we get

(3.21) −
∫
X

θ(F, gF )(∇f)∗ψ(TX,∇TX)

=

∫
X

W0 e(TX,∇TX)−
∑
x∈A

(−1)ind(x)W0(x)

+
∑
γ∈B

(−1)ind(γ)(W0(xγ)−W0(x′γ))−
∫
X

W1 ∧ (−V )∗ψ(TX,∇TX).

By (3.18), (3.20), and (3.21), we see that (3.17) is equivalent to

(3.22)
∫
X

W1 ∧ (∇f)∗ψ(TX,∇TX) =

∫
X

W1 ∧ (−V )∗ψ(TX,∇TX).

By (2.6), on any simplex in Km−1 other than σm−1
γ , we have ∇f = −V . By Remark

2.11, near σm−1
γ , ∇f and −V can be connected by a family of vector fields without

zero. Using the fact that Supp(W1) ⊂ Km−1, and by a version of Proposition 3.11
where θ(F, gF ) is replaced by the closed current W1, we get (3.22). The proof of our
theorem is completed. �
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