On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity
[Sur les semi-groupes de Jacobi ergodiques et non locaux : théorie spectrale, convergence vers l’équilibre et contractivité]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 331-378.

Dans cet article, nous introduisons et étudions des opérateurs de Jacobi non locaux, qui généralisent les opérateurs de Jacobi classiques (locaux). Nous montrons que ces opérateurs s’étendent aux générateurs de semi-groupes de Markov ergodiques avec des mesures de probabilité invariantes uniques et étudions leurs propriétés spectrales et de convergence. En particulier, nous dérivons un développement en série du semi-groupe en termes de polynômes explicitement définis, qui généralisent les polynômes orthogonaux de Jacobi classiques. De plus, nous donnons une caractérisation complète du spectre du générateur et du semi-groupe non auto-adjoint. Nous montrons que la convergence de la variance du semi-groupe est hypocoercive avec des constantes explicites, ce qui fournit une généralisation naturelle de l’estimation donnée par le trou spectral. Après un temps de préchauffage aléatoire, le semi-groupe décroît également de manière exponentielle en entropie et est à la fois hypercontractif et ultracontractif. Nos preuves s’articulent autour du développement d’identités de commutation, appelées relations d’entrelacement, entre opérateurs et semi-groupes de Jacobi locaux et non locaux, les objets locaux servant de points de référence pour le transfert de propriétés du cas local au cas non local.

In this paper, we introduce and study non-local Jacobi operators, which generalize the classical (local) Jacobi operators. We show that these operators extend to generators of ergodic Markov semigroups with unique invariant probability measures and study their spectral and convergence properties. In particular, we derive a series expansion of the semigroup in terms of explicitly defined polynomials, which generalize the classical Jacobi orthogonal polynomials. In addition, we give a complete characterization of the spectrum of the non-self-adjoint generator and semigroup. We show that the variance decay of the semigroup is hypocoercive with explicit constants, which provides a natural generalization of the spectral gap estimate. After a random warm-up time, the semigroup also decays exponentially in entropy and is both hypercontractive and ultracontractive. Our proofs hinge on the development of commutation identities, known as intertwining relations, between local and non-local Jacobi operators and semigroups, with the local objects serving as reference points for transferring properties from the local to the non-local case.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.148
Classification : 37A30, 47D06, 47G20, 60J75
Keywords: Markov semigroups, spectral theory, non-self-adjoint operators, convergence to equilibrium, hypercontractivity, ultracontractivity, heat kernel estimates
Mot clés : Semi-groupes de Markov, théorie spectrale, opérateurs non auto-adjoints, convergence vers l’équilibre, hypercontractivité, ultracontractivité, estimations du noyau de la chaleur

Patrick Cheridito 1 ; Pierre Patie 2 ; Anna Srapionyan 3 ; Aditya Vaidyanathan 3

1 Department of Mathematics, ETH Zurich Rämistrasse 101, 8092 Zurich, Switzerland
2 School of Operations Research and Information Engineering, Cornell University Ithaca, NY 14853, USA
3 Center for Applied Mathematics, Cornell University Ithaca, NY 14853, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2021__8__331_0,
     author = {Patrick Cheridito and Pierre Patie and Anna Srapionyan and Aditya Vaidyanathan},
     title = {On non-local ergodic {Jacobi} semigroups: spectral theory, convergence-to-equilibrium and contractivity},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {331--378},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.148},
     mrnumber = {4218161},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.148/}
}
TY  - JOUR
AU  - Patrick Cheridito
AU  - Pierre Patie
AU  - Anna Srapionyan
AU  - Aditya Vaidyanathan
TI  - On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 331
EP  - 378
VL  - 8
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.148/
DO  - 10.5802/jep.148
LA  - en
ID  - JEP_2021__8__331_0
ER  - 
%0 Journal Article
%A Patrick Cheridito
%A Pierre Patie
%A Anna Srapionyan
%A Aditya Vaidyanathan
%T On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 331-378
%V 8
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.148/
%R 10.5802/jep.148
%G en
%F JEP_2021__8__331_0
Patrick Cheridito; Pierre Patie; Anna Srapionyan; Aditya Vaidyanathan. On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 331-378. doi : 10.5802/jep.148. https://jep.centre-mersenne.org/articles/10.5802/jep.148/

[1] F. Achleitner, A. Arnold & E. A. Carlen - “On multi-dimensional hypocoercive BGK models”, Kinet. and Relat. Mod. 11 (2018) no. 4, p. 953-1009 | DOI | MR | Zbl

[2] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto & G. Scheffer - Sur les inégalités de Sobolev logarithmiques, Panoramas & Synthèses, vol. 10, Société Mathématique de France, Paris, 2000 | Zbl

[3] D. Bakry - “Remarques sur les semigroupes de Jacobi”, in Hommage à P. A. Meyer et J. Neveu, Astérisque, vol. 236, Société Mathématique de France, Paris, 1996, p. 23-39 | Numdam | Zbl

[4] D. Bakry - “Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée”, in Séminaire de Probabilités, XXI, Lect. Notes in Math., vol. 1247, Springer, Berlin, 1987, p. 137-172 | DOI | Numdam | Zbl

[5] D. Bakry, I. Gentil & M. Ledoux - Analysis and geometry of Markov diffusion operators, Grundlehren Math. Wiss., vol. 348, Springer, Cham, 2014 | DOI | MR | Zbl

[6] F. Baudoin - “Bakry-Émery meet Villani”, J. Funct. Anal. 273 (2017) no. 7, p. 2275-2291 | DOI | MR | Zbl

[7] C. Berg & A. J. Durán - “A transformation from Hausdorff to Stieltjes moment sequences”, Ark. Mat. 42 (2004) no. 2, p. 239-257 | DOI | MR | Zbl

[8] J. Bertoin - “Subordinators: examples and applications”, in Lectures on probability theory and statistics (Saint-Flour, 1997), Lect. Notes in Math., vol. 1717, Springer, Berlin, 1999, p. 1-91 | DOI | MR | Zbl

[9] K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song & Z. Vondraček - Potential analysis of stable processes and its extensions, Lect. Notes in Math., vol. 1980, Springer-Verlag, Berlin, 2009 | DOI | MR

[10] A. Borodin & G. Olshanski - “Markov dynamics on the Thoma cone: a model of time-dependent determinantal processes with infinitely many particles”, Electron. J. Probab. 18 (2013), article ID 75, 43 pages | DOI | MR | Zbl

[11] A. N. Borodin & P. Salminen - Handbook of Brownian motion—facts and formulae, Probability and its Applications, Birkhäuser Verlag, Basel, 2002 | DOI | Zbl

[12] B. Böttcher, R. Schilling & J. Wang - Lévy. III, Lect. Notes in Math., vol. 2099, Springer, Cham, 2013 | DOI | Zbl

[13] B. L. J. Braaksma - “Asymptotic expansions and analytic continuations for a class of Barnes-integrals”, Compositio Math. 15 (1964), p. 239-341 (1964) | MR | Zbl

[14] D. Chafaï - “Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities”, J. Math. Kyoto Univ. 44 (2004) no. 2, p. 325-363 | DOI | MR | Zbl

[15] M. Chazal, A. Kyprianou & P. Patie - “A transformation for Lévy processes with one-sided jumps with applications”, 2010 | arXiv

[16] O. Christensen - An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, 2016 | DOI | Zbl

[17] C. Cuchiero, M. Larsson & S. Svaluto-Ferro - “Polynomial jump-diffusions on the unit simplex”, Ann. Appl. Probab. 28 (2018) no. 4, p. 2451-2500 | DOI | MR | Zbl

[18] G. Da Prato - An introduction to infinite-dimensional analysis, Universitext, Springer-Verlag, Berlin, 2006 | DOI | Zbl

[19] F. Delbaen & H. Shirakawa - “An Interest Rate Model with Upper and Lower Bounds”, Asia-Pacific Financial Markets 9 (2002) no. 3, p. 191-209 | DOI | Zbl

[20] N. Demni & M. Zani - “Large deviations for statistics of the Jacobi process”, Stochastic Process. Appl. 119 (2009) no. 2, p. 518-533 | DOI | MR | Zbl

[21] J. Dolbeault, C. Mouhot & C. Schmeiser - “Hypocoercivity for linear kinetic equations conserving mass”, Trans. Amer. Math. Soc. 367 (2015) no. 6, p. 3807-3828 | DOI | MR | Zbl

[22] B. K. Driver - “Analysis tools with applications” (2003), http://www.math.ucsd.edu/~bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf

[23] E. B. Dynkin - Markov processes. Vols. I, II, Grundlehren Math. Wiss., vol. 121; 122, Academic Press Inc., New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965 | Zbl

[24] K.-J. Engel & R. Nagel - One-parameter semigroups for linear evolution equations, Graduate Texts in Math., vol. 194, Springer-Verlag, New York, 2000 | MR | Zbl

[25] S. N. Ethier & T. G. Kurtz - Markov processes, Wiley Series in Proba. and Math. Stat., John Wiley & Sons, Inc., New York, 1986 | DOI

[26] É. Fontenas - “Sur les minorations des constantes de Sobolev et de Sobolev logarithmiques pour les opérateurs de Jacobi et de Laguerre”, in Séminaire de Probabilités, XXXII, Lect. Notes in Math., vol. 1686, Springer, Berlin, 1998, p. 14-29 | DOI | Numdam | MR | Zbl

[27] C. Gourieroux & J. Jasiak - “Multivariate Jacobi process with application to smooth transitions”, J. Econometrics 131 (2006) no. 1-2, p. 475-505 | DOI | MR | Zbl

[28] R. C. Griffiths, P. A. Jenkins & D. Spanó - “Wright-Fisher diffusion bridges”, Theoret. Population Biol. 122 (2018), p. 67-77 | DOI | Zbl

[29] R. C. Griffiths & D. Spanó - “Diffusion processes and coalescent trees”, in Probability and mathematical genetics, London Math. Soc. Lecture Note Ser., vol. 378, Cambridge Univ. Press, Cambridge, 2010, p. 358-379 | DOI | MR | Zbl

[30] L. Gross - “Logarithmic Sobolev inequalities”, Amer. J. Math. 97 (1975) no. 4, p. 1061-1083 | DOI | MR

[31] T. Huillet - “On Wright-Fisher diffusion and its relatives”, J. Stat. Mech. Theory Exp. (2007) no. 11, article ID P11006, 30 pages | Zbl

[32] M. E. H. Ismail - Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Math. and its Appl., vol. 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[33] A. E. Kyprianou - Fluctuations of Lévy processes with applications, Universitext, Springer, Heidelberg, 2014 | DOI | Zbl

[34] L. Miclo & P. Patie - “On a gateway between continuous and discrete Bessel and Laguerre processes”, Ann. H. Lebesgue 2 (2019), p. 59-98 | DOI | MR | Zbl

[35] L. Miclo & P. Patie - “On interweaving relations”, J. Funct. Anal. 280 (2021) no. 3, p. 108816, 53 | DOI | MR | Zbl

[36] S. Mischler & C. Mouhot - “Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation”, Arch. Rational Mech. Anal. 221 (2016) no. 2, p. 677-723 | DOI | MR | Zbl

[37] O. P. Misra & J. L. Lavoine - Transform analysis of generalized functions, North-Holland Math. Studies, vol. 119, North-Holland Publishing Co., Amsterdam, 1986 | MR | Zbl

[38] S. Pal - “Wright-Fisher diffusion with negative mutation rates”, Ann. Probab. 41 (2013) no. 2, p. 503-526 | DOI | MR | Zbl

[39] P. Patie - “A refined factorization of the exponential law”, Bernoulli 17 (2011) no. 2, p. 814-826 | DOI | MR | Zbl

[40] P. Patie & M. Savov - “Bernstein-gamma functions and exponential functionals of Lévy processes”, Electron. J. Probab. 23 (2018), article ID 75, 101 pages | DOI | Zbl

[41] P. Patie & M. Savov - Spectral expansion of non-self-adjoint generalized Laguerre semigroups, Mem. Amer. Math. Soc., American Mathematical Society, Providence, RI, 2019, to appear

[42] P. Patie, M. Savov & Y. Zhao - “Intertwining, excursion theory and Krein theory of strings for non-self-adjoint Markov semigroups”, Ann. Probab. 47 (2019) no. 5, p. 3231-3277 | DOI | MR | Zbl

[43] P. Patie & A. Vaidyanathan - “A spectral theoretical approach for hypocoercivity applied to some degenerate hypoelliptic, and non-local operators”, Kinet. and Relat. Mod. 13 (2020) no. 3, p. 479-506 | DOI | MR | Zbl

[44] A. Pazy - Semigroups of linear operators and applications to partial differential equations, Applied Math. Sciences, vol. 44, Springer-Verlag, New York, 1983 | DOI | MR | Zbl

[45] J. M. Pearson - “Best constants in Sobolev inequalities for ultraspherical polynomials”, Arch. Rational Mech. Anal. 116 (1992) no. 4, p. 361-374 | DOI | MR | Zbl

[46] L. C. G. Rogers & J. W. Pitman - “Markov functions”, Ann. Probab. 9 (1981) no. 4, p. 573-582 | DOI | MR | Zbl

[47] W. Rudin - Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973 | Zbl

[48] K.-i. Sato - Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Math., vol. 68, Cambridge University Press, Cambridge, 1999 | Zbl

[49] R. L. Schilling, R. Song & Z. Vondraček - Bernstein functions, De Gruyter Studies in Math., vol. 37, Walter de Gruyter & Co., Berlin, 2012 | DOI | MR | Zbl

[50] G. Szegő - Orthogonal polynomials, American Math. Soc., Colloquium Publ., vol. XXIII, American Mathematical Society, Providence, RI, 1975 | Zbl

[51] C. Villani - Hypocoercivity, Mem. Amer. Math. Soc., vol. 202, no. 950, American Mathematical Society, Providence, RI, 2009 | DOI

Cité par Sources :