[Représentations unipotentes supercuspidales : L-paquets et degrés formels]
Soit
On peut considérer cela comme une correspondance de Langlands locale pour toutes les représentations unipotentes supercuspidales. Nous comptons les L-paquets résultants en termes de données déduites du diagramme de Dynkin affine de
Let
This can be regarded as a local Langlands correspondence for all supercuspidal unipotent representations. We count the ensuing L-packets, in terms of data from the affine Dynkin diagram of
Accepté le :
Publié le :
Keywords: Reductive
Mots-clés : Groupes réductifs
Yongqi Feng 1 ; Eric Opdam 2 ; Maarten Solleveld 3

@article{JEP_2020__7__1133_0, author = {Yongqi Feng and Eric Opdam and Maarten Solleveld}, title = {Supercuspidal unipotent representations: {L-packets} and formal degrees}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1133--1193}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.138}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.138/} }
TY - JOUR AU - Yongqi Feng AU - Eric Opdam AU - Maarten Solleveld TI - Supercuspidal unipotent representations: L-packets and formal degrees JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 1133 EP - 1193 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.138/ DO - 10.5802/jep.138 LA - en ID - JEP_2020__7__1133_0 ER -
%0 Journal Article %A Yongqi Feng %A Eric Opdam %A Maarten Solleveld %T Supercuspidal unipotent representations: L-packets and formal degrees %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 1133-1193 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.138/ %R 10.5802/jep.138 %G en %F JEP_2020__7__1133_0
Yongqi Feng; Eric Opdam; Maarten Solleveld. Supercuspidal unipotent representations: L-packets and formal degrees. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 1133-1193. doi : 10.5802/jep.138. https://jep.centre-mersenne.org/articles/10.5802/jep.138/
[ABPS17] - “Conjectures about
[AMS18] - “Generalizations of the Springer correspondence and cuspidal Langlands parameters”, Manuscripta Math. 157 (2018) no. 1-2, p. 121-192 | DOI | MR | Zbl
[Bor79] - “Automorphic
[DR09] - “Depth-zero supercuspidal
[Fen19] - “A note on the spectral transfer morphism for affine Hecke algebras”, J. Lie Theory 29 (2019) no. 4, p. 901-926 | MR | Zbl
[FO20] - “On a uniqueness property of cuspidal unipotent representations”, Adv. Math. (2020), to appear | DOI
[GG99] - “Haar measure and the Artin conductor”, Trans. Amer. Math. Soc. 351 (1999) no. 4, p. 1691-1704 | DOI | MR | Zbl
[GM16] - “Reductive groups and the Steinberg map”, 2016 | arXiv | Zbl
[GR10] - “Arithmetic invariants of discrete Langlands parameters”, Duke Math. J. 154 (2010) no. 3, p. 431-508 | DOI | MR | Zbl
[Gro97] - “On the motive of a reductive group”, Invent. Math. 130 (1997) no. 2, p. 287-313 | DOI | MR | Zbl
[Hai14] - “The stable Bernstein center and test functions for Shimura varieties”, in Automorphic forms and Galois representations. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 415, Cambridge Univ. Press, Cambridge, 2014, p. 118-186 | DOI | MR | Zbl
[HII08] - “Formal degrees and adjoint
[Kac90] - Infinite-dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1990 | DOI | Zbl
[Kot84] - “Stable trace formula: cuspidal tempered terms”, Duke Math. J. 51 (1984) no. 3, p. 611-650 | DOI | MR | Zbl
[Kot97] - “Isocrystals with additional structure. II”, Compositio Math. 109 (1997) no. 3, p. 255-339 | DOI | MR | Zbl
[Lus78] - Representations of finite Chevalley groups, CBMS Regional Conf. Series in Math., vol. 39, American Mathematical Society, Providence, RI, 1978 | MR | Zbl
[Lus84] - “Intersection cohomology complexes on a reductive group”, Invent. Math. 75 (1984) no. 2, p. 205-272 | DOI | MR | Zbl
[Lus95] - “Classification of unipotent representations of simple
[Lus02] - “Classification of unipotent representations of simple
[Mor96] - “Tamely ramified supercuspidal representations”, Ann. Sci. École Norm. Sup. (4) 29 (1996) no. 5, p. 639-667 | DOI | Numdam | MR | Zbl
[Opd16] - “Spectral transfer morphisms for unipotent affine Hecke algebras”, Selecta Math. (N.S.) 22 (2016) no. 4, p. 2143-2207 | DOI | MR | Zbl
[PR08] - “Twisted loop groups and their affine flag varieties”, Adv. Math. 219 (2008) no. 1, p. 118-198, with an appendix by T. Haines and M. Rapoport | DOI | MR | Zbl
[Pra82] - “Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits”, Bull. Soc. math. France 110 (1982) no. 2, p. 197-202 | DOI | Numdam | MR | Zbl
[Ree94] - “On the Iwahori-spherical discrete series for
[Ree00] - “Formal degrees and
[Ree10] - “Torsion automorphisms of simple Lie algebras”, Enseign. Math. (2) 56 (2010) no. 1-2, p. 3-47 | DOI | MR | Zbl
[Ser79] - Local fields, Graduate Texts in Math., vol. 67, Springer-Verlag, New York-Berlin, 1979 | Zbl
[Sol18] - “A local Langlands correspondence for unipotent representations”, 2018 | arXiv | Zbl
[Spr09] - Linear algebraic groups, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009 | Zbl
[Ste68] - Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., vol. 80, American Mathematical Society, Providence, RI, 1968 | MR | Zbl
[Tat79] - “Number theoretic background”, in Automorphic forms, representations and
[Thǎ11] - “On Galois cohomology and weak approximation of connected reductive groups over fields of positive characteristic”, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011) no. 10, p. 203-208 | DOI | MR | Zbl
Cité par Sources :