Consider an integer and real numbers and . Using ideas of Moser, Salamon proved that individual Diophantine tori persist for Hamiltonian systems which are of class . Under the stronger assumption that the system is a perturbation of an analytic integrable system, Pöschel proved the persistence of a set of positive measure of Diophantine tori. We improve the latter result by showing it is sufficient for the perturbation to be of class and the integrable part to be of class . The main novelty consists in showing that one can control the Lipschitz regularity, with respect to frequency parameters, of the invariant torus, without controlling the Lipschitz regularity of the quasi-periodic dynamics on the invariant torus.
Soient un entier et des réels et . En utilisant des idées de Moser, Salamon a prouvé que les tores diophantiens individuels persistent pour les systèmes hamiltoniens de classe . Sous l’hypothèse plus forte que le système est une perturbation de classe d’un système analytique intégrable, Pöschel a prouvé la persistance d’un ensemble de mesure positive de tores diophantiens. Nous améliorons le dernier résultat en montrant qu’il suffit que la perturbation soit de classe et que la partie intégrable soit de classe . La principale nouveauté consiste à montrer que l’on peut contrôler la régularité Lipschitz par rapport aux fréquences des tores invariants sans contrôler la régularité Lipschitz de la dynamique quasi-périodique sur chaque tore.
Accepted:
Published online:
DOI: 10.5802/jep.137
Keywords: Hamiltonian systems, KAM theory
Mot clés : Systèmes hamiltoniens, théorie KAM
Abed Bounemoura 1
@article{JEP_2020__7__1113_0, author = {Abed Bounemoura}, title = {Positive measure of {KAM} tori for finitely~differentiable {Hamiltonians}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1113--1132}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.137}, zbl = {1206.37029}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.137/} }
TY - JOUR AU - Abed Bounemoura TI - Positive measure of KAM tori for finitely differentiable Hamiltonians JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 1113 EP - 1132 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.137/ DO - 10.5802/jep.137 LA - en ID - JEP_2020__7__1113_0 ER -
%0 Journal Article %A Abed Bounemoura %T Positive measure of KAM tori for finitely differentiable Hamiltonians %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 1113-1132 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.137/ %R 10.5802/jep.137 %G en %F JEP_2020__7__1113_0
Abed Bounemoura. Positive measure of KAM tori for finitely differentiable Hamiltonians. Journal de l’École polytechnique — Mathématiques, Volume 7 (2020), pp. 1113-1132. doi : 10.5802/jep.137. https://jep.centre-mersenne.org/articles/10.5802/jep.137/
[Alb07] - “On the existence of invariant tori in nearly-integrable Hamiltonian systems with finitely differentiable perturbations”, Regul. Chaotic Dyn. 12 (2007) no. 3, p. 281-320 | DOI | MR | Zbl
[Arn63] - “Proof of a theorem of A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations”, Russian Math. Surveys 18 (1963) no. 5, p. 9-36 | DOI
[BF19] - “KAM, -Gevrey regularity and the -Bruno-Rüssmann condition”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 19 (2019) no. 4, p. 1225-1279 | Zbl
[CW13] - “Destruction of Lagrangian torus for positive definite Hamiltonian systems”, Geom. Funct. Anal. 23 (2013) no. 3, p. 848-866 | DOI | MR | Zbl
[Her86] - Sur les courbes invariantes par les difféomorphismes de l’anneau, Astérisque, vol. 144, Société Mathématique de France, 1986 | Zbl
[Kol54] - “On the preservation of conditionally periodic motions for a small change in Hamilton’s function”, Dokl. Akad. Nauk SSSR 98 (1954), p. 527-530
[Laz73] - “Existence of caustics for the billiard problem in a convex domain”, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), p. 186-216 | MR | Zbl
[Mos62] - “On invariant curves of area-preserving mappings of an annulus”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1962), p. 1-20 | MR | Zbl
[Mos70] - “On the construction of almost periodic solutions for ordinary differential equations”, in Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), Univ. of Tokyo Press, Tokyo, 1970, p. 60-67
[Pop04] - “KAM theorem for Gevrey Hamiltonians”, Ergodic Theory Dynam. Systems 24 (2004) no. 5, p. 1753-1786 | DOI | MR | Zbl
[Pö80] - Über invariante tori in differenzierbaren Hamiltonschen systemen, Bonn. Math. Schr., vol. 120, Univ. Bonn, Mathematisches Institut, 1980 | Zbl
[Pö82] - “Integrability of Hamiltonian systems on Cantor sets”, Comm. Pure Appl. Math. 35 (1982) no. 5, p. 653-696 | DOI | MR | Zbl
[Pö01] - “A lecture on the classical KAM theory”, in Smooth ergodic theory and its applications (Seattle, WA, 1999) (A. Katok & al., eds.), Proc. Symp. Pure Math., vol. 69, American Mathematical Society, Providence, RI, 2001, p. 707-732 | DOI
[Rü01] - “Invariant tori in non-degenerate nearly integrable Hamiltonian systems”, Regul. Chaotic Dyn. 6 (2001) no. 2, p. 119-204 | DOI | MR | Zbl
[Sal04] - “The Kolmogorov-Arnold-Moser Theorem”, Math. Phys. Electr. J. 10 (2004), p. 1-37 | MR | Zbl
[Zeh75] - “Generalized implicit function theorems with applications to some small divisor problems. I”, Comm. Pure Appl. Math. 28 (1975), p. 91-140 | DOI | MR | Zbl
Cited by Sources: