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SUPERCUSPIDAL UNIPOTENT REPRESENTATIONS:
L-PACKETS AND FORMAL DEGREES

BY YonGor Fexg, Eric Oppam & MAARTEN SOLLEVELD

Asstract. — Let K be a non-archimedean local field and let G be a connected reductive K-
group which splits over an unramified extension of K. We investigate supercuspidal unipotent
representations of the group G(K). We establish a bijection between the set of irreducible
G(K)-representations of this kind and the set of cuspidal enhanced L-parameters for G(K),
which are trivial on the inertia subgroup of the Weil group of K. The bijection is characterized
by a few simple equivariance properties and a comparison of formal degrees of representations
with adjoint y-factors of L-parameters.

This can be regarded as a local Langlands correspondence for all supercuspidal unipotent
representations. We count the ensuing L-packets, in terms of data from the affine Dynkin
diagram of G. Finally, we prove that our bijection satisfies the conjecture of Hiraga, Ichino and
Ikeda about the formal degrees of the representations.

Reésumic (Représentations unipotentes supercuspidales : L-paquets et degrés formels)

Soit K un corps local non archimédien et soit G un K-groupe connexe, réductif et deployé sur
une extension non ramifiée de K. Nous étudions des représentations unipotentes supercuspidales
du groupe G(K). Nous établissons une bijection entre I’ensemble de telles G (K )-représentations
irréductibles et ’ensemble des L-parametres étendus pour G(K), qui sont triviaux sur le sous-
groupe d’inertie du groupe de Weil de K. Le bijection est caractérisée par quelques propriétés
simples et une comparaison des degrés formels des représentations avec des facteurs v adjoints
des L-parameétres.

On peut considérer cela comme une correspondance de Langlands locale pour toutes les
représentations unipotentes supercuspidales. Nous comptons les L-paquets résultants en termes
de données déduites du diagramme de Dynkin affine de G. Finalement, nous prouvons que
notre bijection satisfait & la conjecture de Hiraga, Ichino et Ikeda sur les degrés formels des
représentations.
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INTRODUCTION

Let K be a non-archimedean local field and let G be a connected reductive
K-group. Roughly speaking, a representation of the reductive p-adic group G(K)
is unipotent if it arises from a unipotent representation of a finite reductive group
associated to a parahoric subgroup of G(XK). Among all (irreducible) smooth
G (K)-representations, this is a very convenient class, which can be studied well
with classification, parabolic induction and Hecke algebra techniques. The work of
Lusztig [Lus95, Lus02] and Morris [Mor96] goes a long way towards a local Langlands
correspondence for such representations, when G is simple and adjoint.

In this paper we focus on supercuspidal unipotent G(K)-representations. For this
to work well, we assume throughout that G splits over an unramified extension of K.
Our main goal is a local Langlands correspondence for such representations, with as
many nice properties as possible. We will derive that from the following result, which
says that one can determine the L-parameters of supercuspidal unipotent representa-
tions of a simple algebraic group by comparing formal degrees and adjoint ~y-factors.

Denote the Weil group of K by W and let Frob € W i be a geometric Frobenius
element. A Langlands parameter is called unramified if it is trivial on the inertia
subgroup of W (so that it is determined by the image of Frob and by one unipotent
element).

Turorem 1. Consider a simple K-group G which splits over an unramified exten-
sion. For each irreducible supercuspidal unipotent G(K)-representation m, there exists
a discrete unramified local Langlands parameter A € ®(G(K)) such that

(0.1) fdeg(m) = Cry(X) for some Cr € Q%

as rational functions in qx with Q-coefficients. (Here qx denotes the cardinality of
the residue field of K, and one makes the terms of (0.1) into functions of qx by
simultaneously considering unramified extensions of the field K.) Furthermore:
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SUPERCUSPIDAL UNIPOTENT REPRESENTATIONS 135

« A is essentially unique, in the sense that its image in the collection ®(Gg.(K))
of L-parameters for the simply connected cover of G(K) is unique.

o When G is adjoint, the map m — X agrees with a parametrization of supercuspidal
unipotent representations obtained in [Mor96, Lus95, Lus02].

The credits for Theorem 1 belong to several authors. The larger part of it, namely
all cases with classical groups, was proved in [FO20, Th.4.6.1]. Quite generally,
whenever G is adjoint, [Opd16, Th.4.11] shows that the Langlands parameters from
[Lus95, Lus02] satisty (0.1). Hence the L-parameters from [FO20] coincide with those
found by Lusztig [Lus95, Lus02]. A little before that, Morris [Mor96, §5-6] already
associated L-parameters to supercuspidal unipotent representations of inner forms of
split simple groups. We note that the parametrizations from [Mor96] and [Lus95] are
presented in combinatorial fashion and do not involve formal degrees. Instead, they
are motivated (and nearly determined) by considerations with character sheaves and
cuspidal local systems on unipotent orbits [Lus84]. For that reason, the L-parameters
from [Mor96] and [Lus95] agree. Then [FO20, Opd16] show that these parametriza-
tions can be characterized uniquely by the equality (0.1).

For split exceptional groups the formal degrees in Theorem 1 were computed in
[Ree94, §7] and [Ree00, §10-13], and it was shown that they determine essentially
unique Langlands parameters. Next (0.1) was proved in [HII08, §3.4]. The essential
uniqueness in the cases of the non-split inner forms of Eg and E7 is easy by the
extremely small number of instances [Opd16, §4.4]. Hence the Langlands parameters
determined by formal degrees agree with those from [Mor96, Lus95] for inner forms
of exceptional split groups. For outer forms of exceptional groups all this follows from
the explicit computations in [Fenl9, §4.4] and a comparison with [Lus02].

We will make the above parametrization of supercuspidal unipotent representations
more precise and generalize it to connected reductive K-groups. Let Irt (G (K)) cusp,unip
be the collection of irreducible supercuspidal unipotent representations of G(K), mod-
ulo isomorphism. Let ®(G(K))cusp be the set of cuspidal enhanced L-parameters for
G(K), considered modulo conjugation by the dual group GY. We denote its subset of
unramified parameters by @y, (G(K))cusp- (See Section 1 for the definitions of these
and related objects.) Our main result can be summarized as follows:

Turorem 2. — Let G be a connected reductive K -group which splits over an unram-
ified extension. There exists a bijection

II‘I'(G(K))cusp,unip — (I)HY(G(K))CUSP

T — (Ar, px)

with the properties:

(1) When G is semisimple, the formal degree of w equals the adjoint v-factor of Ay,
up to a rational factor which depends only on pr.

(2) Equivariance with respect to tensoring by weakly unramified characters.

(3) Equivariance with respect to W g -automorphisms of the root datum.
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136 Y. Fenc, E. Oppam & M. SOLLEVELD

(4) Compatibility with almost direct products of reductive groups.

(5) Let Z(G)s be the mazimal K-split central torus of G and let H be the derived
group of G/Z(G)s. When Z(G)s(K) acts trivially on w, we can regard ™ as a repre-
sentation of (G/Z(G)s)(K) and restrict to a representation 7 of H(K). Then Ay
has image in the Langlands L-group of G/Z(G)s and the canonical map

(G/Z(G)s)" x Wg — HY x Wk

sends Ax t0 Apy -
(6) The map in (5) provides a bijection between the intersection of Irr(G(K))cusp,unip
with the L-packet of A and the intersection of Irt(H(K))cusp,unip With the L-packet

of Ay -

For a given 7 the properties (1), (2), (4) and (5) determine A, uniquely, modulo
tensoring by weakly unramified characters of (G/Z(G)s)(K).

Here a character of a group like G(K) is called weakly unramified if its kernel
contains all parahoric subgroups of G(K). Property (3) is important for the general-
ization of such a correspondence to all unipotent representations of reductive p-adic
groups, which is carried out in [Sol18].

The bijection exhibited in Theorem 2 is of course a good candidate for a local
Langlands correspondence (LLC) for supercuspidal unipotent representations, and we
will treat it as such. The second bullet of Theorem 1 says that comparing formal de-
grees and adjoint vy-factors completely characterizes the L-parameters of supercuspidal
unipotent representations of simple adjoint K-groups exhibited by Lusztig and Mor-
ris. In fact the method with formal degrees from [Ree00, FO20, Fen19] provides a little
more information, which we use to fix a few arbitrary choices in [Mor96, Lus95, Lus02].
In particular our LLC is determined already by formal degrees of supercuspidal unipo-
tent representations in combination with the functoriality properties (2) and (4).

We point out that our correspondence is constructive. Indeed, for inner twists of
simple adjoint unramified groups the enhanced L-parameters (Ar, p) can already be
found in [Mor96]. For simple adjoint groups that split over an unramified extension
the elements A, (Frob) are known explicitly from [Lus95, Lus02], while the unipotent
class from A is given in [Ree00, FO20, Fen19]. The enhancements p, are not uniquely
determined, but there are only very few possibilities and those are given by the clas-
sification of cuspidal local systems on simple complex groups in [Lus84]. Further, our
methods to generalize from simple adjoint to reductive groups are constructive, so
that for any given supercuspidal unipotent representation one can in principle write
down the enhanced L-parameter.

When G is semisimple we obtain finer results than Theorem 2, summarized in The-
orem 2.2. In that setting we explicitly describe the number of cuspidal enhancements
of A and the number of supercuspidal representations in the L-packet of A\, with
combinatorial data coming from the affine Dynkin diagrams of G and G".

JE.P.— M., 2020, tome 7
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Strengthening and complementing Theorem 2, we will prove a conjecture by Hiraga,
Ichino and Ikeda (cf. [HII08, Conj. 1.4]) for unitary supercuspidal unipotent represen-
tations G(K). It relates formal degrees and adjoint ~y-factors more precisely than
Theorem 1.

Fix an additive character 1) : K — C* of order 0 and endow K with the Haar
measure that gives the ring of integers volume 1. Using these data, we normalize the
Haar measure on G(K) as in [HII08]. The adjoint v-factor v(s, Ado A, ) involves the
adjoint representation Ad of “G on Lie((G/Z(G),)"). Then y(\) from Theorem 1
equals v(0, Ad o A, v). We will prove:

Turorem 3. — Let G be a connected reductive K -group which splits over an unrami-
fied extension. Let w € Irr(G(K))cusp,unip b€ unitary and let (Ar, pr) be the enhanced
L-parameter assigned to it by Theorem 2. Then

fdeg(ﬂ) — dlm(pﬂ) |’Y(07Ad © A‘n’aw” .
|Zc/z(c).)v (Al

Theorem 3 shows in particular that all supercuspidal members of one unipotent
L-packet have the same formal degree (up to some rational factor), as expected in the
local Langlands program.

Let us discuss the contents of the paper and the proofs of the main results in
more detail. In Section 1 we fix the notations and we recall some facts about reduc-
tive groups, enhanced Langlands parameters and cuspidal unipotent representations.
Let  be the fundamental group of G, interpreted as a group of automorphisms of the
affine Dynkin diagram of G. We denote the action of Frob € W on G by 6, so that
the group of weakly unramified characters of G(K) can be expressed as Z(G")w
and as the dual group (2%)* of Q. In Section 2 we make Theorem 2 more precise
for semisimple K-groups, counting the involved objects in terms of subquotients of
the finite abelian group (Q9)*. A large part of the paper is dedicated to proving
Theorem 2.2, in bottom-up fashion.

In Sections 3-11 we consider simple adjoint groups case-by-case. The majority
of our claims can be derived quickly from [Mor96, §5—6] and the tables [Lus95, §7]
and [Lus02, §11], which contain a lot of information about the parametrization of
Irr(G(K)) cusp,unip from Theorem 1. A simple group of type Eg, Fy or G2 is both
simply connected and adjoint, so §2 is trivial. Then Theorem 2.2 is contained entirely
in [Lus95], and we need not spend any space on it. For other simple adjoint groups
we compute several data that cannot be found in the works of Morris and Lusztig.

The main novelty in Sections 3-11 is the equivariance of the LLC with respect
to W g-automorphisms of the root datum (part (3) of Theorem 2), that was not
discussed in the sources on which we rely here. In some remarks we already take
a look at certain non-adjoint simple groups. This concerns cases where we can only
check Theorem 2 by direct calculations. In Section 12 we explain in detail which parts
of Sections 3—-11 are needed where, and we complete the proof of the main theorem
for adjoint groups.

JE.P.— M., 2020, tome 7



1138 Y. Fenc, E. Oppam & M. SOLLEVELD

In Sections 13 and 14 we generalize Theorem 2.2 from adjoint semisimple to
all semisimple groups. In particular, we investigate what happens when an ad-
joint K-group G,q is replaced by a covering group G. It is quite easy to see how
Irr(G(K))cusp,unip behaves. Namely, several unipotent cuspidal representations of
G.q(K) coalesce upon pullback to G(K), and then decompose as a direct sum of
a few irreducible unipotent cuspidal representations of G(K). With some technical
work, we prove that the same behaviour (both qualitatively and quantitatively)
occurs for enhanced L-parameters.

The proof of the main theorem for reductive K-groups (Section 15) can roughly be
divided into two parts. First we deal with the case where the connected center of G
is anisotropic. We reduce to the derived group of G, which is semisimple, and use
the already established results for semisimple groups. To deal with general connected
reductive groups, we note that the connected center is an almost direct product of
its maximal split and maximal anisotropic subtori. Applying Hilbert’s theorem 90 to
the maximal split torus, we obtain a corresponding decomposition of the group of
K-rational points. This enables us to reduce to the cases of tori (well-known) and of
reductive K-groups with anisotropic connected center.

We attack the HII conjecture in Section 16. For simple adjoint groups, the second
author already proved Theorem 3 in [Opd16]. Starting from that and using the proof
of Theorem 1, we extend Theorem 3 to all reductive K-groups that split over an
unramified extension.

Finally, in the appendix we explore the behaviour of L-parameters and adjoint
~-factors under Weil restriction. Whereas L-functions are always preserved, it turns
out that adjoint y-factors sometimes change under Weil restriction. Nevertheless, we
can use these computations to prove that the HII conjectures are always stable under
restriction of scalars. That is, if L /K is a finite separable extension of non-archimedean
local fields and the HII conjectures hold for a reductive L-group, then they also hold
for the reductive K-group obtained by restriction of scalars (and conversely).

Acknowledgements. — We thank the referees for their helpful comments and careful
reading.

1. PrRELIMINARIES

Throughout this paper we let K be a non-archimedean local field with finite residue
field § of cardinality ¢x = |§|. We fix a separable closure K of K and we let K,,, C K
be the maximal unramified extension of K. The residue field § of K, is an algebraic
closure of §. There are isomorphisms of Galois groups Gal(K,,/K) ~ Gal(g/J) ~ Z.
The geometric Frobenius element Frob, whose inverse induces the automorphism
x + 195 for any x € F, is a topological generator of Gal(F/J). Let Ix = Gal(K/Ky)
be the inertia subgroup of Gal(K,/K) and let W be the Weil group of K. We fix a
lift of Frob in Gal(K,/K), so that W = Ik x (Frob).

Unless otherwise stated, G denotes an unramified connected reductive linear al-
gebraic group over K. By unramified we mean that G is a quasi-split group defined
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SUPERCUSPIDAL UNIPOTENT REPRESENTATIONS 113()

over K and that G splits over K. The group G(K,,) of Ky-points of G is often
denoted by G = G(Ky;). Let Z(G) be the center of G, and write Gaq = G/Z(G)
for the adjoint group of G.

We fix a Borel K-subgroup B and maximally split maximal K-torus S C B which
splits over K. We denote by @ the finite order automorphism of X, (S) corresponding
to the action of Frob on S = S(K,;). Let R be the coroot system of (G, S) and define
the abelian group

Q= X.(S)/ZR".
Let GY be the complex dual group of G. Then Z(GY) can be identified with
Irr(2) = Q*, and Q is naturally isomorphic to the group X*(Z(GY)) of algebraic
characters of Z(G"). In particular
Q= X*(2(GY)), = X*(2(G")"),
0f = X*(2(G"))" = X*(Z(G")s).
The isomorphism classes of inner twists of G over K are naturally parametrized by
the elements of the continuous Galois cohomology group

Hcl(K7 Gad) = Hcl(F7 Gad)7

(1.1)

where F' denotes the automorphism of G,q := Gq(Kyr) by which Frob acts on Gaq.
A cocycle in Z}(F,G,q) is determined by the image u € Gaq of F. The K-rational
structure of G corresponding to such a u € G,q is given by the action of the inner
twist Fy, := Ad(u) o F' € Aut(G) of the K-automorphism F' on G. We will denote this
K-rational form of G by G%, and the corresponding group of K-points by G,

The cohomology class w € H}(F,G,.q) of the cocycle is represented by the
F-twisted conjugacy class of u. Let 2,9 be the fundamental group of G,q4. By a
theorem of Kottwitz [Kot84, Th&ll] and by (1.1) there is a natural isomorphism

(1.2) HY(F,Gaa) = HX(F, Qaa) = (Raa)o = X*(Z2(Gaa”)?).
This works out to mapping w to u € (Qaq)e. For each class w € HL(F,Gaq) we fix an
inner twist F, of F representing w, and we denote this representative by F,,. Then
GY(K) = G*~.

Let Gy be the kernel of the Kottwitz homomorphism G — X*(Z(G")) [Kot97, PRO0S].
This map is W g-equivariant and yields a short exact sequence

1— G -G — X"(Z(GV)! = — 1.
We say that a character x of GF* is weakly unramified if y is trivial on Gf « . and we

denote by X, (GF«) the abelian group of weakly unramified characters. Since G is
unramified there are natural isomorphisms [Hail4, §3.3.1]

(1.3) Irr(GF /GTY) = X (GFY) = (Q0)" = Z(GY),.

This can be regarded as a special case of the local Langlands correspondence. The
identity components of the groups in (1.3) are isomorphic to the group of unramified
characters of GF« (which is trivial whenever G is semisimple).
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140 Y. Fenc, E. Oppam & M. SOLLEVELD

Let “G = GY x Wk be the L-group of G. Recall that a L-parameter for

G¥(K) = GF+ is a group homomorphism
A WK X SLQ((C) — GV x WK
satisfying certain requirements [Bor79]. We say that A is unramified if A(w) = (1, w)
for every w € Ik and we say that A is discrete if the image of XA is not contained in
the L-group of any proper Levi subgroup of G¥*. We denote the set of G"-conjugacy
classes of L-parameters (resp. unramified L-parameters and discrete L-parameters)
for G by ®(GF«) (resp. @, (GF+) and ®2(GF+)). The group Z(G") acts naturally
on the set of L-parameters, by
(1.4) (zA) (Frob"w, z) = (2A(Frob))" A(w, )
for z € Z(GY), n € Z, w € Ix and x € SLy(C). This descends to an action of
Z(GY)g = () = ()

on ®(GFw).

For any A € ®(G**) the centralizer Ay := Zgv (im \) satisfies

ANNZ(GY)=Z(*G) = Z(GY)?,

and Ay/Z(G")? is finite if and only if \ is discrete. Let .oy be the component group
of the full pre-image of
(1.5) AN/Z(GY)? = A\ Z(GY)/Z(GY) € GV g
in the simply connected covering (G")s. of the derived group of GV. Equivalently, .27\
can also be described as the component group of
(1.6) Z&v (A) ={g € GV 1 gAg™! = \b for some b € B (Wg, Z(G¥))}.

Here B (W, Z(GY)) denotes the group of 1-coboundaries for group cohomology,
that is, the set of maps Wx — Z(G") of the form w + zw(z71) for some z € Z(G").

An enhancement of A is an irreducible representation p of «7\. The group G acts
on the set of enhanced L-parameters by

g- (A p)=(9Ag™  po Ad(g™1)).
We write
®.(LG) = {(\,p) : X is an L-parameter for G(K), p € Irr(.e5))}/G".

Fix a complex character ¢ of the center Z(GYs) of GYs whose restriction to
Z(FGaq) = Z(GV4)? corresponds to w via the Kottwitz isomorphism. If w is given
as an element of Q.4 (not just in (Q.4)s), then there is a preferred way to define
a character of Z(GV.), namely via the Kottwitz isomorphism of the K-split form
of G. In particular w = 1 corresponds to the trivial character.

Let Irr(«, () be the set of irreducible representations of @7, whose restriction to
Z(GV.) is a multiple of ¢. The set of enhanced L-parameters for G is

(1.7) P, (GF) .= {xp) e o, (FG):pe Irr(y, ) }-

JE.P.— M., 2020, tome ;
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We note that the existence of a p € Irr(#, () is equivalent to A being relevant [Bor79,
§8.2.ii] for the inner twist G* of the quasi-split K-group G [ABPS17, Prop. 1.6].

Let Z&v_ (MWk)) be the inverse image of Zgv (A(Wg))/Z(GY)W¥ in GY. The
unipotent element Uy = )\(1, ((1J %)) € GY can also be regarded as an element of the
unipotent variety of G, and then

(1.8) =T (ZZé;vsc(/\(WK))(uA))'

We say that p is a cuspidal representation of 7\, or that (X, p) is a cuspidal (en-
hanced) L-parameter for G¥« if (uy, p) is a cuspidal pair for Z&._(A(Wk)) [AMS18,
Def. 6.9]. Equivalently, p determines a Z¢&v (MW k))-equivariant cuspidal local sys-
tem on the conjugacy class of wy. This is only possible if A is discrete (but not every
discrete L-parameter admits cuspidal enhancements). We refer to [Lus84] for more
information about cuspidal local systems, and in particular their classification for
every simple complex group. We denote the set of GY-conjugacy classes of cuspidal
enhanced L-parameters for Gf» by ®(GF+)qysp.
The (Q%)*-action (1.4) extends to enhanced L-parameters by

(L9) 2(p) = (2Ap) 2 € (), (M) € D(G™).

The extended action preserves both discreteness and cuspidality.

Let Irr(G¥«) be the set of irreducible smooth G¥«-representations on complex
vector spaces. The group (29)* acts on Irr(GF+) via (1.3) and tensoring with weakly
unramified characters. It is expected that under the local Langlands correspondence
(LLC) this corresponds precisely to the action (1.9) of (2%)* on ®.(G*“). In other
words, the conjectural LLC is (Q%)*-equivariant.

Furthermore, the LLC should behave well with respect to direct products. Suppose
that G“ is the almost direct product of K-subgroups G; and Gs. Along the quotient
map

q:G1 x Gy — GY
one can pull back any representation 7m of G“(K) to a representation m o g of
G1(K) x Ga(K). Since ¢ need not be surjective on K-rational points, this operation
may destroy irreducibility. Assume that 7 is irreducible and that m; ® 7o is any
irreducible constituent of w o q. Then the image of the L-parameter A, of 7 under
the map
¢’ (GY) — G x G¥

should be the L-parameter Ay, X Ay, of m ®ma. In this case 7, _ is naturally a subgroup
of @y x ), . Wesay that a LLC (for some class of representations) is compatible
with almost direct products if, when (A, pr) denotes the enhanced L-parameter of 7
and G¥ = G1Gy is an almost direct product of reductive K-groups,

(1.10) ey X Amy = ¢ (Ar) and (pr, @ pr, )|z, contains py.

We also want the LLC to be equivariant with respect to automorphisms of the root
datum, in a sense which we explain now. Let

Z(G,S) = (X"(S),R, X.(S),R",A)
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be the based root datum of G, where A is the basis determined by the Borel subgroup
B C G. Since S and B are defined over K, the Weil group Wy acts on this based
root datum.

When G is semisimple, any automorphism of Z(G,S) is completely determined
by its action on the basis A. Then we call it an automorphism of the Dynkin diagram
of (G,S), or just a diagram automorphism of G. When G is simple and not of
type Dy, the collection of such diagram automorphisms is very small: it forms a group
of order 1 (type Ay, By, Cp, E7, Es, F4, G or a half-spin group) or 2 (type A, Dy, Fg
with n > 1, except half-spin groups).

Suppose that 7 is an automorphism of Z(G,S) which commutes with the action
of Wg. Via the choice of a pinning of G¥ (that is, the choice of a nontrivial element
in every root subgroup for a simple root), 7 acts on G and “G. Then it also acts on
enhanced L-parameters, by

7-(\p)=(ToXpor ).

Then 7 also acts on ®.(Y*G). The action of 7 on GV is uniquely determined up to
inner automorphisms, so the action on <I>6(LG) is canonical. Considering w € Q.q
as an element of Irr(Z(GY)), we can define 7(w) = w o 7. Then 7 maps enhanced
L-parameters relevant for GF~« to enhanced L-parameters relevant for GF.

From [Spr09, Lem. 16.3.8] we see that the automorphism 7 of Z(G, S) can be lifted
to a K,-automorphism of G,q. That uses only the diagram automorphism induced
by 7. As 7 also gives an automorphism of S, it determines an automorphism of S
stabilizing Z(G). The proof of [Spr09, Lem. 16.3.8] also works for G, when we omit the
condition that the connected center must be fixed and instead use the automorphism
of Z(G)®° determined by 7. Then 7 lifts to a Kj~automorphism 7x_ of G which

. stabilizes S and B,
« is unique up to conjugation by elements of S,q(Kyy), where S,q = S/Z(G).

Further, 7 determines a permutation of the affine Dynkin diagram of (G, S). This
in turn gives rise to a permutation of the set of vertices of a standard alcove in the
Bruhat—Tits building of (G, Ky,;). For every such vertex v, we can require in addition
that 7k, maps the G-stabilizer G, to G(,). Since 2,4 acts faithfully on this standard
alcove and the image of S — G,q contains the kernel of S,q — Q.q [Opdl16, §2.1],
this determines 7x,. € Autg, (G) up conjugation by elements of G; N S.

Let u € Gaq represent w, so that

(1.11) Gfe=GF ={ge G:Ad(u)o F(g) = g}.
By the functoriality of the Kottwitz isomorphism 7x_(u) represents 7(w). For g€ GF:
(1.12) Ad(7k,, (v) o F o7k, (9) = Tk,, © Ad(u) 0 F(g) = 7k, (9);

so 7k, (g) € GFxu ™ Thus we obtain an isomorphism of K-groups

T GY — GT@),
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Since 7k, was unique up to G1 NS, Tk is unique up to conjugation by elements of
S(K) N Gy. (Not merely up to S.q(K') because 7x(Gy) = Gr().) In particular, for
every representation 7 of GF~(«) we obtain a representation mo7x of G, well-defined
up to isomorphism.

Equivariance with respect to W g-automorphisms of the root datum means: if
(Ax, pr) is the enhanced L-parameter of 7 then

(1.13) (7 - Am, pr 07~ 1) is the enhanced L-parameter of 7 o 7y,

for all 7 € Aut(Z(G,S)) which commute with Wx. When G is semisimple, we also
call this equivariance with respect to diagram automorphisms.

We note that it suffices to check this for automorphisms of Z(G,S) which fix
w € Q4. Indeed, if we know all those cases, then we can get equivariance with
respect to diagram automorphisms by defining the LLC for other groups G«
LLC for Gf» and a 7 with 7(w) = w'.

We define a parahoric subgroup of G to be the stabilizer in G; of a facet (say f)
of the Bruhat-Tits building of (G, K,;), and we typically denote it by P. Then P
fixes f pointwise. If § is F,,-stable, it determines a facet of the Bruhat-Tits build-
ing of (G*, K), and P> is the associated parahoric subgroup of G¥«. All parahoric
subgroups of G« arise in this way.

Let P, be the pro-unipotent radical of P, that is, the kernel of the reduction map

via the

from P to the associated reductive group P over §. Then PLv is the pro-unipotent
radical of P«  and the quotient

(1.14) pFe /pfo = PFo = P

is a connected reductive group over §. Unipotent representations of finite reductive
groups like (1.14) were classified in [Lus78, §3]. We call an irreducible representation
of PF unipotent (resp. cuspidal) if it arises by inflation from an irreducible unipotent
(resp. cuspidal) representation of P

An irreducible representation 7 of G is called unipotent if there exists a para-
horic subgroup P« such that the restriction of 7 to P*» contains a unipotent repre-
sentation of P, We denote the set of irreducible unipotent G*«-representations by
Irr(GF ) yip.-

In this paper we are mostly interested in supercuspidal G~ -representations, which
form a collection denoted Irr(G¥«) ,sp. Among these, the supercuspidal unipotent rep-
resentations form a subset Irr(GF “)eusp,unip Which was described quite explicitly in
[Mor96, Lus95]. Every such G¥«-representation arises from a cuspidal unipotent rep-
resentation ¢ of a maximal parahoric subgroup P~ . For a given finite reductive group
there are only few cuspidal unipotent representations, and the number of them does
not change when (1.14) is replaced by an isogenous §-group. From the classification
one sees that, when P is simple, any cuspidal unipotent representation (o, V,,) of B
is stabilized by every algebraic automorphism of B
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By [Opd16] there is a natural isomorphism
(1.15) Ngr, (PFe) /PFe 2= QO F,

where the right hand side denotes the stabilizer of P in the abelian group Q¢. Morris
shows in [Mor96, Prop.4.6] that, when G is adjoint, any unipotent o € Irr(Pf)
can be extended to a representation of the normalizer of P in GF. When G is
semisimple, the group Qf embeds naturally in Q.4%. Then Ngr, (PF>) /P Z(GF«)
can be identified with a subgroup of NG,fg (ng)/ﬂj’fiu, and in that way o can be
extended to a representation of Ngr, (Pf~), on the same vector space. (The same
conclusion holds when G is reductive, we will show that in Section 15.)
We fix one such extension, say oV. By (1.15), at least when G is semisimple:

. Ngr, (PT@) . N
(1.16) indp5) (0) =D, cory x®0™.
When Z(G*) is not compact, (1.16) remains true if the right hand side is replaced
by a direct integral over (29F)*. Furthermore it is known from [Mor96, Lus95] that
every representation indgj;w (PFW)(X ® o!V) is irreducible and supercuspidal. Hence
(when Qf is finite)

. Fy . Fu
(1.17) indgr. (0) = B eqory MY, @ro)(x @ ™).

Every element of Irr(G* “)unip,cusp arises in this way, from a pair (P,o) which is
unique up to G*f«-conjugation. We denote the packet of irreducible supercuspidal
unipotent GF«-representations associated to the conjugacy class of (P, o) via (1.16)
and (1.17) by Irr(GF “)p,0]- In other words, these are precisely the irreducible quo-
tients of indﬂcfg (¢). The group (Q%F)* acts simply transitively on Irr(G*)pp ., by
tensoring with weakly unramified characters. The choice of ¢V determines an equi-
variant bijection

(1.18) (QOF) — In(GT)pop 0 x> ind§ s ey (x @ ™),

We normalize the Haar measure on G as in [GG99, HII08]. Recall that the formal

degree of indgg (o) equals dim(c)/vol(PF«). When (29)* is finite, (1.17) implies that

B dim(o)
|Q0:F| vol(PF«)

We will make ample use of Lusztig’s arithmetic diagrams 1/J [Lus95, §7]. This means

that | is the affine Dynkin diagram of G (including the action of W), and that J is a

‘W g-stable subset of |. This provides a convenient way to parametrize parahoric sub-
groups of G up to conjugacy. The W g-action on | boils down to that of the Frobenius

(1.19) fdeg(m) for any 7 € Irr(GF“)[RU].

element, and the maximal Frob-stable subsets J C | correspond to maximal parahoric
subgroups of G¥«. Recall that only those parahorics can give rise to supercuspidal
unipotent G«-representations.

The above entails that Irr(GF “)eusp,unip depends only on some combinatorial data
attached to G and F,: the affine Dynkin diagram |, the Lie types of the parahoric
subgroups of G associated to the subsets of |, the group Q¢ and its action on I.
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2. STATEMENT OF MAIN THEOREM FOR SEMISIMPLE GROUPS

Consider a semisimple unramified K-group G with data P,o as in (1.17). Theo-
rem 1 and compatibility with direct products of simple groups determine a map

(21) II‘I‘(GFw)cusp,unip — (Qe)*\q)rzlr(GFw)’

such that the image of Irr(G*)p ) is an orbit (Q27)*\ where \ satisfies the require-
ment (0.1) about formal degrees and adjoint y-factors.

In this section we count the number of enhancements of L-parameters in (2.1),
and we find explicit formulas for the numbers of supercuspidal representations in the
associated L-packets. To this end we define four numbers:

. a is the number of X' € ®2 (G¥«~) which admit a GF“-relevant cuspidal enhance-
ment and for each K-simple factor G; of G satisfy

’Y(O, AdGIv o )\/u 1/)) = ’7(07 Ade o >\a d})

for some ¢; € Q* (as rational functions of gx);

« b is the number of G*“-relevant cuspidal enhancements of \;

. ' is defined as |Q%?| times the number of GFv-conjugacy classes of F -stable
maximal parahoric subgroups P’ C G for which there exists a 0’ € IrTcusp, unip (PF*)
such that the components o;, o) corresponding to any K-simple factor G; of G satisfy

Fy . Fo
fdeg(indg{m o) = ¢ fdeg(lndgfw o)
for some ¢, € Q* (as rational functions of gr);

« b’ is the number of cuspidal unipotent representations o’ of FFW such that
deg(o’) = deg(o).

Lemma 2.1. — When G is adjoint, simple and K-split, the above numbers a,b,a’, b’
agree with those introduced (under the same names) in [Lus95, 6.8].

Proof. — Our b’ is defined just as that of Lusztig.
Under these conditions on G, all P’ as above are conjugate to P, so a’ = |QF?
From [Lus95, 1.20] we see that Q¢ equals Q" over there, so the two versions of a’

agree.

With b Lusztig counts pairs (¢,.%#) consisting of a unipotent conjugacy class in ¢
in Zgv(A(Frob)) and a cuspidal local system .# on %, such that Z(G") acts on &
according to the character defined by G via the Kottwitz isomorphism (1.2). The
set of such (€, %) is naturally in bijection with the set of extensions of A|lw, to a
GFe-relevant cuspidal L-parameter [AMS18]. To equate Lusztig’s b to ours, we need
to show the following. Given G* and s = A(Frob), there exists at most one unipotent
class in Zgv (s) supporting a G «-relevant cuspidal local system.

Recall from [Ste68, §8.2] that Zgv (s) is a connected reductive complex group (be-
cause G is simply connected). For the existence of cuspidal local system on unipotent
classes Zgv(s) has to be semisimple, so the semisimple element s = A(Frob) must
have finite order and must correspond to a single node in the affine Dynkin diagram
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of G [Reel0, §2.4]. As GY is simple, this implies that Zgv (s) has at most two simple
factors.

For every complex simple group which is not a (half-)spin group, there exists at
most one unipotent class supporting a cuspidal local system, whereas for (half-)spin
groups there are at most two such unipotent classes [Lus84]. (There are two precisely
when the vector space to which the spin group is associated has as dimension a
square triangular number bigger than 1.) It follows that the required uniqueness holds
whenever GV does not have Lie type B,, or D,,. The GF~-relevance of the cuspidal
local system (i.e., the Z(G")-character w) imposes another condition, limiting the
number of possibilities even further. Going through all the cases [Mor96, §5.4-5.5,
§6.7-6.11], or equivalently [Lus95, §7.38-7.53], one can see that in fact the uniqueness
of unipotent classes holds for all simple adjoint G. Alternatively, this can derived
from Theorem 1.

This uniqueness of unipotent classes also means that our a just counts the number
of possibilities for )‘|WF’ or equivalently for s = A(Frob). The geometric diagram in
[Lus95, §7] determines a unique node v(s) of the affine Dynkin diagram I of GV,
and hence completely determines the image of s in GY,q. Then the possibilities for
s € GY modulo conjugacy are parametrized by the orbit of v(s) in I under the group 2
for G.q, see [Reel0, §2.2] and [Lus95, §2]. Since GV is simple, this coincides with the
orbit of v(s) under the group of all automorphisms of I. The cardinality of the latter
orbit is used as the definition of a in [Lus95], so it agrees with our a. O

Assume for the moment that G is simple (but not necessarily split or adjoint).
Then s§ = A(Frob) € G0 has finite order, and s determines a vertex v(s) in the
fundamental domain for the Weyl group W (GY,S")? acting on SY. The order n,
of v(s) is indicated by the label in the corresponding Kac diagram [Kac90, Reel0].
We can also realize v(s) as a node in Lusztig’s geometric diagrams [Lus95, §7]. They
are denoted as “I /J”, where I is a basis of the affine root system of the complex
group (GY)?. The complement of .J in I is one node, the one corresponding to v(s).
We point out that v(s) determines a unique GV-conjugacy class in GY,q6. Thus the
geometric diagram J determines the conjugacy class of s8 up to Z(GY).

In first approximation, the semisimple group G is a product of simple groups, and
thus the above yields a description of the possibilities for A(Frob) = s, v(s) € G aq
and ng = ord(v(s)).

In the setting of (2.1), let (%)% be the isotropy group of A in (2¢)*. We define

g =[] 107 : Q7)1 and ¢ = [0,/ Qf /P

We say that 7 € Irr(G¥)p ,) and A satisfy (0.1) with respect to a K-simple factor G;
of G if, in the notations from page 1145, there exists a ¢; € Q* such that

(2.2) fdeg(indSr. 0;) = ¢;7(0, Adgy o A, )

as rational functions of ¢x. Now we are ready to state our main result.
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Turorem 2.2. Let G be an unramified semisimple K -group.

(1) There exists an (Q°)*-equivariant bijection between Irr(GF*)cuspunip and
P, (G “eusp, Which is equivariant with respect to diagram automorphisms, compati-
ble with almost direct products and matches formal degrees with adjoint y-factors as
in (0.1).

(2) The set of L-parameters associated in part (1) to Irr(G¥)p .1 is canonically
determined.

Now we fix a F,-stable parahoric subgroup P C G and a cuspidal unipotent represen-
tation o of P> Let A€ ®2 (G¥+) be an L-parameter associated to [P« o] via part (1).

(3) The (Q9)*-stabilizer of any 7 € Irr(GF ) ynip cusp and of any (A, p) € P (GF) cusp
which satisfies (0.1) with respect to any K-simple factor of G is (27 /QF9)*. In par-
ticular g = [(Q9)% : (Q%/QF9)*] € N.

(4) b’ = ¢(ns), where ¢ denotes Euler’s totient function. In particular, ¢(ns) is
identically equal to 1 for groups isogenous to classical groups.

(5) We have ab = a’b’, which is equal to the total number of supercuspidal unipotent
representations w satisfying (0.1) with respect to any K-simple factor of G, for this \.
Furthermore a = [(Q9)* : (Q9)%], a’ = ¢/ |QF?|, and thus b = gg'$(ns).

(6) The number of (Q2°)*-orbits on the set of m € Irr(GF)ynip cusp satisfying (0.1)
is g'¢(ns). These orbits can be parametrized by G« -conjugacy classes of pairs (P, o),
or (on the Galois side) by cuspidal enhancements of A modulo (9)%.

In (1.18) we saw that Irr(G')[p ,) can be parametrized with the group (9F)*.
By (1.3) that is a quotient of Z(G"Y)g, and via (1.4) it acts naturally on the set of
involved L-parameters. Thus part (2) can also be formulated as: the L-parameter of
any 7 € Irr(G")p o] is canonically determined up to the action of (Q%)* = Z(G")y.

In the upcoming nine sections we will collect the data that are needed to establish
Theorem 2.2 for simple adjoint groups and cannot readily be found in the literature
yet. In particular this concerns the behaviour under diagram automorphisms of reduc-
tive p-adic groups. The actual proof for adjoint groups is written down in Section 12.

3 IN\IER FORMS OF PROJECTIVE LINEAR GROUPS

We consider G = PGL,, of adjoint type A, 1. Then G¥ = SL,,(C), Q* = Z(G") =
Z/nZ and Q = Irr(Z(GY)).

Cuspidal unipotent representations of G« can exist only if J C /T,:l is empty and
w € Q has order n. Then G¥« is an anisotropic form of PGL,,(K), so isomorphic to
D*/K* where D is a division algebra of dimension n? over Z(D) = K.

The parahoric P+ is the unique maximal compact subgroup of G« so QF = Q
and a = |QF| = n. The cuspidal unipotent representations of G are precisely its
weakly unramified characters. There are n of them, naturally parametrized by Z(G")
via the LLC. Hence a’b’ = n and b’ = 1.

The associated Langlands parameter A sends Frob to an element of Z(G"), while uy
is a regular unipotent element of GY. Hence o7\ = Z(G"), which supports exactly
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one cuspidal local system relevant for G, namely w € /. In particular b = 1. The
group (Q%)* = Z(G") acts simply transitively on @y, (GF)cusp, 50 a = n and

()5 =1 = (@°/9°%)"

Let 7 be the unique nontrivial automorphism of A, _;. It acts on G and G by the
inverse transpose map, composed with conjugation by a suitable matrix M. Conse-
quently 7(\,w) is equivalent with (A=7,w™!). On the p-adic side 7 sends g € GF~
to Mg~ TM~! € GFo-1. Thus 7 sends a weakly unramified character x of G** to
X! € Ir(GFo-1). If (x, GF») corresponds to (\,w), then (x~!, GFo=1) corresponds
to (A™T,w™!). This says that the LLC is 7-equivariant in this case.

4. PROJECTIVE UNITARY GROUPS

Take G = PU,, of adjoint type 24,,_;, with G¥ = SL,(C). Now 6 = 7 is the
unique nontrivial diagram automorphism of A,_;. When n is odd, the groups Q,
Qp, (29)? and (Q9)* are all trivial. When n is even,

Q0 = {1,z 22}, Qp=Q/02
() = 2(G")’ ={1,-1}, (2°)" = Z(G")/Z(G")?

and all these groups have order 2. When n is even, the nontrivial element of Q7 acts

e~

on 24,,_1 by a rotation of order 2.

When n is not divisible by four, there is a canonical way to choose the w € Q
defining the inner twist, namely w € Q°. When n is divisible by four, the non-quasi-
split inner twist G~ cannot be written with a 6-fixed w. For that group we just pick
one w € O~ Q2. Then the diagram automorphism 7 sends G« to G¥v-1, a different
group which counts as the same inner twist. So equivariance with respect to diagram
automorphisms is %natic, unless n is congruent to 2 modulo 4.

The subset J C 24,,_; has to consist of two (possibly empty) F,,-stable subdiagrams
2A, and 2A;, with s +t+2=n (or s+ 1 = n if t = 0 and n is even). The analysis
depends on whether or not s equals ¢, so we distinguish those two possibilities.

The case J = 2A %A, Wi[—/\li #+t. — When n is odd, no parahoric subgroup associated
to another subset of 24,,_; gives rise to a cuspidal unipotent representation with the
same formal degree as that coming from J. When n is even, the parahoric subgroup
associated to J/ = ws does have such a cuspidal unipotent representation, and
the subsets J, J’ of 24,,_; form one orbit for QY. This leads to a’ = |Q%F| = 1.

The group G*+ has only one cuspidal unipotent representation with the given
formal degree, so that one is certainly fixed by 7.

The cuspidal enhancements of A are naturally in bijection with the cuspidal local
systems supported on unipotent classes in Zgy,, (c)(A(Frob)). The centralizer of the
semisimple element A(Frob) = yf € LG in SL,(C) is the classical group associated

to the bilinear form given by y times the antidiagonal matrix with entries 1 on the
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antidiagonal. This implies an isomorphism
(4.1) ZsL, (c) (A(Frob)) = Spy, (C) x SO,(C),

where the Lie type depends on the index of the bilinear form and can be read off
from [Lus02, §11.2-11.3]. The unipotent element uy is given in [FO20, 4.7.(i)]: it has
Jordan blocks 2,4,6,... and 1,3,5,....

To get <7\, we have to add Z(SL,(C)) to (4.1), and then to take the centralizer of
A(SLy(C)). The inclusion of Z(SL,(C)) does not make a difference, because in (1.7)
we already fixed the restriction of representations of @7, to that group. Since both
Sps,(C) and SO,(C) admit at most one cuspidal pair (u,p) [Lus84, §10], A has at
most one cuspidal enhancement. In other words, b = 1.

o When n is odd, Theorem 1 produces a unique L-parameter.

o« When n is even, Theorem 1 gives one or two L-parameters. The action of
(Q9)* =2 Z(GY)/Z(G")? on L-parameters is by multiplying A(Frob) with an element
of Z(GY). An element zI,, € Z(G")~ Z(G")? can be written as (1—6)(z'/2U), where
U €GL,(C)? has determinant 2~/ = —1. When (4.1) contains a nontrivial special
orthogonal group, we can choose U in Zgy,, (c)(A(Frob)), which shows that z(Frob)
is conjugate to A(Frob) within (4.1). By [Lus02, §11.3], this condition on (4.1) is
equivalent to s # ¢ (and n even), which we already assumed here. With Theorem 1
it follows that in that case there is only one L-parameter with the required adjoint
~-factor. Notice that here

Q%P = (%) =(Q%); and a=b=1=a' =b".

Revark. — When n is even, some groups isogenous to G = PU,, have trivial Qf,
for instance H = SU,,. In other words, the image of Hf* — GF~ does not con-
tain representatives for the nontrivial element of Q°. For s # t, the pullback of the
GFe-representation 7 associated to J = 24,24, to HF* decomposes as a direct sum
of two irreducible representations, associated to J and to J' = 24, 2A,. Since J and J'
are stable under 7, 7 stabilizes both these H-representations.

The isotropy group of \ as a L-parameter Ay for H“ is bigger than for GF«,
for zAm = Ag and elements of SL,(C) which send A to zA also stabilize Agr. From
the above we see that one such new element in the isotropy group is z'/2U, where
U € 0,(C) \S0,(C) and p =n — 2q € 2Z~. Thus (4.1) becomes

(4.2) ZsL,(c) (A (Frob)) = Spy, (C) x Op(C).

The group 47\, can be obtained from (4.2) in the same way as described after (4.1).
The group (4.2) has precisely two cuspidal pairs, which should be matched with
the two direct summands of the pullback of 7. Note that the action of 7 on (4.1) is
(up to some inner automorphism) the unique nontrivial diagram automorphism of that
group. In Sp,,(C) x O,(C) that diagram automorphism becomes inner, which implies
that 7 fixes both cuspidal pairs for this group. In particular, the aforementioned
matching of these with H-representation is automatically T-equivariant.
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The case J = 2AAg (with 2s + 2 = n). Now QF = Qf is nontrivial and
a’ = 2. There are two cuspidal unipotent representations containing o, parametrized
by the two extensions 01,02 of o to Ngr, (Pf). Then o1(g) = —o2(g) for all
g € Ngr, (PFe) ( PFw.

Consider the action of 7 = 6 on G. We may take it to be the action of F', only
without the Frobenius automorphism of K, /K. It stabilizes G~ unless n is divisible
by four and G*« is not quasi-split (a case we need not consider, for there equivariance
with respect to diagram automorphisms is automatic). Then (1.12) shows that the
action of 7 on G reduces to the action of this Frobenius automorphism on the
matrix coefficients.

Since Ngr., (PF«) < Pf~ contains 7-fixed elements (they are easy to find knowing
the explicit form of 7), 7 fixes 01 and oy. Thus 7 fixes both cuspidal unipotent
representations under consideration.

The Jordan blocks of uy are again given in [FO20, 4.7.(i)]. The same reasoning as
in the case J = 24,24, with s # ¢ shows that the L-parameters A and z\ are not
equivalent and that Zgr, (c)(A(Frob)) = Sp,,(C) admits just one cuspidal pair. Hence
b=1, (295 =1 and (Q%)% = (QY/Q%F)*. As b’ = 1, we conclude that

a=ba=|Q)\N=2=|QF =a' =2a'b".

We can take for y = A\(Frob)#~! the diagonal matrix with alternating 1 and —1 on the
diagonal. Considering the eigenvalues of y and 6(y), it is clear that O(A(Frob)) = 6(y)0
and zA(Frob) = zy# are not conjugate. So 7 fixes both these L-parameters.

We checked that the diagram automorphism 7 = 6 fixes all L-parameters under
consideration in this section. Every such L-parameter has only one cuspidal enhance-
ment. Hence 7 fixes everything on the Galois side, which means that our LLC is
T-equivariant for the representations in this section.

5. ODD ORTHOGONAL GROUPS

Here G =S02,,11 =PSO2,11, of type B,,. Now G¥=Sp,,,(C) and |Q%|=|Q|=2.
From [Mor96, §5.3] or [Lus95, §7] we see that J = D,B; and hence

Q0F — Q% if s >0,
1 ifs=0.

Further Lusztig’s geometric diagram J has two (possibly empty) components of
type Cy,.. Then

ZGV (/\(FI’Ob)) = Sp2n+ ((C) X Sp2n, (C)ﬂ
and this determines A(Frob)) up to Z(G"). The L-parameter A is described in [Mor96,

§5.3, §6.6] and [FO20, 4.7(ii)]: the unipotent class in Sp,,,, (C) has Jordan blocks of
sizes 2,4,6 ..., which forces n4 to be a triangular number. One observes that

(Qé))i — {(Qe)* lf ny =n—,
1 ifny #n_.
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By [Lus95, 7.54-7.56] b = b’ = 1 and s = 0 is equivalent to ny = n_. We conclude
that

ab=a = [(Q%)}| = [(2%/Q°F)"| =a' = a'b.

6. SYMPLECTIC GROUPS

We consider G = PSp,,,, the adjoint group of type C,,. The group Q = QF has two
elements and

(2%)* = Z(Spiny,1(C)) = {1,-1}.
The subset J C 5; can be of three kinds.

The case J = CsCy with s # t. Here Q%F = 1, s0 w = 1 and a’ = 1. By [Lus95,
7.48-7.50] b = b’ = 1 and the geometric diagram is of type D,B, with p > 0. More
precisely, [Mor96, §5.4] says that

Zav (A(Frob)) = (Spiny, (C) x Spiny, ,(C))/((—1,-1)).
The unipotent class from A is given in [FO20, 4.7(iii)]: it has Jordan blocks of sizes
1,3,...,2N, —1and 1,3,...,2N, — 1, where Ng = 2p and Ng = 2q + 1. This shows
that (Q%)5 = (Q%)* = (Q9/Q%F)* and a = 1.

The case J = C5Cs (with 2s = n). — Now Q%F = QP a’ = 2 and w can be both
elements of . The geometric diagram has type B, and one checks that (Q%)% = 1.
(This corrects [Lus95, §7.50].)

The group Zgv(A(Frob)) is just GY = Spiny,,;(C). By [Lus84, §14] it has (at
most) one cuspidal pair on which Z(G") acts as w, so b = 1. Thus

ab=a=2=2a" =a'b.

The case J = C42A,C, with t > 0. — Here w must be nontrivial. Now Q%F = Qf and
b’ =1, s0 a’ = a’b’ = 2. Also, (27/Q9F)* is automatically contained in ().

By [Lus95, §7.51-7.53] the geometric diagram is of type D,B, with p,q > 0. The
L-parameters are given explicitly in [Mor96, §6.7] and [FO20, 4.7(v)]. The group (£29)*
stabilizes A and a = 1. Here

Zav (A(Frob)) = (Spin,, (C) x Spiny, ;(C))/((—1,-1)).
The unipotent element u) has two factors, both with Jordan blocks of the types
1,5,9,... or 3,7,11,.... Its conjugacy class only admits cuspidal local systems on
which both —1 € Spin,,(C) and —1 € Spiny,,;(C) act nontrivially. From [Lus84,
§14] we know that there are precisely two such cuspidal local systems, differing only
by the action of Z(Spin,,(C)). Hence b = 2.

Let us also look at the action of (27)% on this pair of enhancements of A. For this we
need to exhibit a g € GY such that gA(Frob)g~! = —1- X(Frob). For that we can look
at the GY-centralizer of the image v(s) of s = A(Frob) in G /{1, -1} = SO2,,4+1(C).
As

ZSO27L+1(C) (U(S)) = S(OQIJ((C) X 02q+1(c))7
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we find
Zgv (v(s)) = S(Ping,(C) x Pingg11(C)) /{(—1,-1)).

The required g must lie in Zgv (v(s)) \ Zgv (s), so its image in Piny,(C) does not lie
in Spin,,,(C). Therefore conjugation by g is an outer automorphism of Zgv (A(Frob)).
Every outer automorphism of Spin,, (C) acts nontrivially on the center of that group
(but fixes —1), and hence exchanges the two cuspidal local systems supported by the
unipotent class from A. Thus (Qe)j acts transitively on the set of relevant cuspidal
enhancements of .

7. INNER FORMS OF EVEN ORTHOGONAL GROUPS
We consider G = PSOas,,, of adjoint type D,,. Then G¥ = Spin,,,(C) and

(Z/27)* n even,
7/47 n odd.

Let 7 be the standard diagram automorphism of D,, of order 2. Then (2*)™ = {1, -1}
is the kernel of the projection Spin,,,(C) — SO3,(C). Apart from that Q* contains
elements € and —e. In the associated Clifford algebra, € is the product of the elements
of the standard basis of C2".

We write Q = Irr(Q*) = {1,n, p,np}, where n is fixed by 7 and n(—1) = 1. Fur-
thermore we decree that p(e) # 1. So p has order 2 if n is even and order 4 if n is
odd, while 7 interchanges p and np. The action of  x {1,7} on the affine Dynkin

Q" = Z(Spiny, (C)) = {

diagram lf)vn can be pictured as

T f>—o—o—<> p (n odd)
S E—
n §H> p (n even) i>—0—0+><

To check T-equivariance, the following elementary lemma is useful.

Lemva 7.1. — Let n be even and let X be a set with a simply transitive Q*-action.
Suppose that {1,7} acts on X, Q*-equivariantly in the sense that T(Ax) = 7(\)7(x)
forallx € X, A € Q. Then X 2 Q* as Q* x {1, 7}-spaces.

Proof. — First we show that 7 fixes a point of X. Take any # € X and consider
7(x) € X. If 7(z) = z, we are done. When 7(z) = —z, the element ez is fixed by T,
for

T(ex) =7(e)7(x) = — - —x = ex.
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Suppose that 7(z) = ex. We compute

x=71(ex) =71(e)T(x) = —€ - €x,
so g2 = —1. But Q* = (Z/2Z)? since n is even, so we have a contradiction. For similar
reasons 7(x) = —ex is impossible.

Thus X always contains a 7-fixed point, say xo. Then the map
QF — X A— Axg

is an isomorphism of Q* x {1, 7}-spaces. a

For the group PSOs,, there are five different kinds of subsets J of 5; which can
support cuspidal unipotent representations.

The case J = D,,. — Here QF =1 and a’ = 1. We must have w = 1, for otherwise P
cannot be F,-stable. There are four ways to embed J in ﬁn, and they are all associate
under 2.

By [Lus95, §7.40] the geometric diagram has type D,D,,, so n is even. The element
s = A(Frob) is a lift of the diagonal matrix I,, & —I,, € SO2,(C) in Spin,, (C). It
follows that (2)} =1 and

(7.1) Zav(s) = (Spin,, (C) x Spin,, (C)) /((—1, 1))

By [FO20, 4.7.iv], uy has Jordan blocks of sizes 1,3,...,2y/n — 1, in both almost
direct factors Spin,,(C). The group (7.1) has (at most) one cuspidal pair on which
Z(GY)actsas 1,soa=1and b= 1.

Remark. — Let us rename PSOs,, as G.q4, and investigate what happens when it is
replaced by an isogenous group (G, which in particular can be the simply connected
cover Gg. = Spin,,,. In this remark we will endow objects associated to G,q with a
subscript ad.

As Q¢ = 1, the four elements of 2,4 - J define four non-conjugate F,-stable para-
horic subgroups of GL«. Hence the pullback of the unique 7 € Irr(Gf&“ )[p,o] from above
to GE~ decomposes as a direct sum of four irreducible representations, parametrized
by the four elements of Q.q - (P, o) or, equivalently, by the four Q.q4-associates of P.
We note that the diagram automorphism 7 fixes two of these (IP,o) and exchanges
the other two.

For G = SOy, we find two direct summands of 7, parametrized by {P, pP} and
both 7-stable. For G a half-spin group of rank n, 7 also becomes a direct sum of two
irreducible representations upon pulling back to G*«. Then they are parametrized
by {P,nP}. The diagram automorphism 7 exchanges these two half-spin groups, so it
does not extend to an automorphism of the (absolute) root datum of such a group.

On the Galois side, the above (MAag,pad) determines a single L-parameter g
for GE. The centralizer of A (Frob) is larger than that of \,q(Frob):

(7.2) ZG,." (Ase(Frob)) = (w)S(Pin, (C) x Pin, (C)) /((—1,—-1)),
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where w € Spin,,, (C) is a lift of (_(}n ) € SO2,(C). Since G is K-split, it suffices
to consider enhancements of A\ that are trivial on Z(G"). The component group
of A for GF« is identified as

ZGaav Nse) [ Z(Gaa”) = (w) x S((Z/22)" x (Z/22)") | Z(SO2,(C))
D Za,,v (Maa)/Z(Gaa") 2 S((Z/22)") x S((Z/2Z)") | Z(SO2,(C)),

where w now has order two and a capital S indicates the subgroup of elements that can
be realized by an element of a Spin group (not just in a Pin group). The component
group for \,q as a L-parameter A for G = SOg,, lies in between the above two:

(7.3) ZG..vN/Z(Gaa") = S((Z/QZ)” X (Z/QZ)")/Z(SOgn((C)).
It is known that p,q is the unique alternating character of <7, and of
Zay,(Xad)/Z(Goa)-

It can be extended in two ways to an enhancement p of A\, a representation of (7.3).
Since 7 fixes (7.3) pointwise, it also fixes p. In particular we can match these two p’s
with the set {P, 7P} (from the p-adic side for G = SOy,) in a T-equivariant way.

Both these extensions p are symmetric with respect to the two almost direct factors,
so they are stabilized by w. With Clifford theory it follows that p,q can be extended
in precisely four ways to a representation of Zg_,v(Asc)/Z(Gaa”), and hence to a
psc € Irr(e7y_). These four extensions differ only by characters of

(7.4) ZG.av (Nse)/ZG,qv (Naa) = (Z/22)%.
The group (7.4) is isomorphic to Q;, by mapping z € %, to a g € Zg, v (Asc) With
gAad(Frob)g™! = 2X,q(Frob).

By Lemma 7.1 the set of enhancements ps. of As is Q% x {1, 7}-equivariantly in
bijection with the Q-orbit of P.

For G a half-spin group of rank n and \.q considered as a L-parameter A for G,
Za.,.v(A) is an index two subgroup of Zg,,v(Xad), which contains Zg,,v(Ase) and
differs from (7.5). So paq can be extended in two ways to an enhancement p of this A.
We note that 7 maps (), p) to an enhanced L-parameter for the other half-spin group
of rank n.

The case ) = Dy Dy with s,t > 2 and s # t. Here QF = {1,7} and the F,-stability
of P forces w € {1,n}. In particular a’ =2 and b’ = 1.

Now [Ngr., (PF«) : Pv] = 2 and there are precisely two extensions of o from P« to
Ngr., (PF«). They differ by a sign on Ngr, (PF«) \ PFw. Since 7 stabilizes J and P«
Ngr., (PF)\PF contains elements of the form x(wx ), where x € X, (S) represents 7.
Taking x = ey, we see that Ngr, (PF~) N Pf> has 7-fixed elements. Hence 7 stabilizes
both extensions of o to Ngr., (PF).

The two Langlands parameters built from J and the unipotent class associated
to o [Mor96, §5.5, §6.9] differ by an element of Q*. From [Lus95, §7.38-7.39] we see
that the geometric diagram has type D,D, with p # ¢. The element A(Frob) is a
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lift of —1I, & I, to Spin,, (C). It is conjugate to —A(Frob) € Spin,, (C) by a lift of
—1® I2,—2® —1 to g € GY. As A(Frob) is not conjugate to eA(Frob), we obtain

A= 1{1,-1} = (@) = (/Q")".
The unipotent class from A [FO20, 4.7.(iv)], in the group
(75) Zav (A(Frob)) = (Sping, (C) x Sping,(€) /{(~1,~1)),

has Jordan blocks 1,3,...,2N,—1and 1,3,...,2N, —1, where N2 = 2p and N7 = 2q.
It only supports a (unique) cuspidal local system if n = p + ¢ is even. Then Z(G")
acts as 1 if n is divisible by 4 and as n if n = 2 modulo 4. So a = 2 and b = 1.
As 7 fixes the above A(Frob), it stabilizes both the L-parameters, and then also their
enhancements. In particular the LLC is 7-equivariant in this case.

Remark. — Again we work out what changes if we replace G by Gg. = Spin,,,. Any
S Irr(GF “eusp,unip as above decomposes a direct sum of irreducibles upon pulling
back to GE~. These are parametrized by {P, pP}, the set of GE~-conjugacy classes of
parahoric subgroups of G’ which are G*«-conjugate to P. Since 7 stabilizes P, it fixes
all four elements of Irr(GL~) under consideration.

Regarding A as a L-parameter . for G

sc

Zv (Ase(Frob)) = S(Ping,(C) x Pingy(C)) /((—1,—1)).

we get

This group admits two cuspidal pairs (uy, psc) on which Z(G") acts as 1 or 1. Notice
that 7 fixes some elements of Zgv (Asc) \ Zgv (A), for example a lift of Iop,_1 & —I2 @
I54—1 to Spiny,, (C). Hence 7 fixes all enhanced L-parameters for GE= involved here.

The case J = Dy Dy (with 2s = n). — Since the finite reductive groups of type D1, Do
and D3 do not admit cuspidal unipotent representations, we have s > 4. Then QF = Q,
so a’ = 4 and b’ = 1. By [Lus95, §7.41-7.42] or [Mor96, §5.5, §6.9] the geometric
diagram has type D, and w € {1,n}. (The tables [Lus95, §7.44-7.45] cannot appear
here, because of parity problems.) For A(Frob) we can take the unit element so Q} =
1= (Q/QF)*. Then Zgv (A(Frob)) = Spin,,, (C), which has precisely one cuspidal pair
on which Z(G") acts as 1 or . We find a =4 and b = 1. As usual the Jordan blocks
of uy [FO20, 4.7.(iv)] must follow the pattern 1,3,5...

The Q*-orbit of A forms a set X as in Lemma 7.1. The four extensions of ¢ from
P¥e to Ngr., (PF«) also form a set X’ as in Lemma 7.1, and we may identify it with
Irr(G")(p 5. Now Lemma 7.1 yields a Q* x {1, 7}-equivariant bijection X +— X',
which fulfills all the conditions we impose on the LLC.

The case J = 2A,. The involvement of the diagram automorphism of A, implies
that w = p or w = np. These two are interchanged by 7. This points to an easy recipe
to make the LLC 7-equivariant in this case: construct it in some Q*-equivariant way
for w = p, and then define if for w = np by imposing 7-equivariance.

There are four ways to embed J in lf)\;, two of them are F,-stable and the other
two are F,,-stable. We have Qf = {1,w}, so a’ =2 and b’ = 1.
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According to [Lus95, §7.46] and [Mor96, §6.10], just as in the case J = D,,, n is
even and the geometric diagram has type D, /2D, /2. As over there, 2} = Q" and
a = 1. The group Zgv (A(Frob)) is as in (7.1). It admits two cuspidal pairs on which
Z(GY) acts as w (so b = 2). Let the unipotent element u be as in [FO20, 4.7.(vi)], so
with Jordan blocks following the patterns 1,5,9,... or 3,7,11,....

Assume that w = p. In terms of Spin,, (C)?, the cuspidal pairs are of the form
(u X u, p1 ® p2), where p; and py differ only by the nontrivial diagram automorphism
of Spin,,, (C).

A lift g € Spiny,(C) of I,,_1 ® —Iy ® I,,_1 € SOy, (C) satisfies gA(Frob)g~! =
—A(Frob). Such a g acts by outer automorphisms on both almost direct factors of
(7.1), so it exchanges (u X u, p1 ® p2) and (u X u, p2 @ p1). Thus Q* acts transitively
on the enhancements L-parameters for this case.

The element w from (7.2) satisfies wA(Frob)w=! = eX(Frob). Since n is even,
conjugation by w exchanges the two almost direct factors of (7.1), but nothing more.
That operation exchanges (u X u, p1 ® p2) and (u X u, p2o @ p1). Thus € and —1 € Q* act
in the same (nontrivial) way on the set of enhancements of A. Then —e¢ fixes stabilizes
both these enhancements. As n is even and w = p, (Q/QF)* = {1, —¢} is precisely the
isotropy group all of enhanced L-parameters under consideration here.

For w = np we would get the cuspidal pairs (u X u, p; ® p;), and we would find that
Q* acts transitively on them, with isotropy group {1,e} = (2/QF)*.

The case ) = Dy ?Ag Dy with s,t > 1. Here 2t+s = n—1. As for J = 2A,, w € {p,np}
and T-equivariance of the LLC is automatic in this case. We have QF = Q, so a’ = 4
and b’ = 1.

By [Mor96, §6.11] and [Lus95, §7.44-7.45] the geometric diagram has type D,D,
with p > ¢ > 0 and p + ¢ = n. The unipotent class from A is given in [FO20, 4.7.(vi)]
and has the same shape as in the previous case. The image of A(Frob) in SO, (C) is
Igp D —ng or —Izp D ng.

When ¢ = 0, the four possibilities for A(Frob) are non-conjugate and central in G,
so a = 4. The given unipotent class in G¥ = Spin,,, (C) supports just one cuspidal local
system on which Z(G") acts as w, so b = 1. We also note that Q5 =1 = (Q/QF)*.

When ¢ > 0, A(Frob) and eA(Frob) € Spin,,(C) are not conjugate, but
g\(Frob)g~! = —\(Frob) is achieved by taking for g a lift of —1 @ Iy, o ® —1.
Hence

= 1{1 -1 2(Q/Q7) = 1.

The group Zgv (A(Frob)) is given by (7.5). The unipotent class and w impose that we
only look at cuspidal pairs on which —1 € Z(GY) acts nontrivially. Like in the case
J = 24, there are four of them, two relevant for Gf» and two relevant for G, Let
p1, p2 denote cuspidal enhancements for Spin,,, (C) with different central characters,
nontrivial on —1, and m € {p,q}. Then the enhancements for w = p are p; ® pa
and p2 ® p1, and the enhancements for w = np are p; ® p;. The same analysis as in the
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case J = 24, shows that Q} acts simply transitively on the GFe-relevant enhancements
of \.

The exceptional automorphisms of Dy. — All the diagram automorphisms of order 2
are conjugate to 7, so equivariance of the LLC with respect to those follows in the
same way as equivariance with respect to 7.

Let 71 and 75 = 72 be the order 3 diagram automorphisms of D,. The subset
J = D{?A,D; with s > 0 cannot appear here, as s + 1 needs to be of the form
b(b+ 1)/2 to support a cuspidal unipotent representation. Therefore we must have
J = DD, with s+t = 4. The finite reductive groups of type D1, Dy and D3 (these are
actually of type A) do not admit cuspidal unipotent representations, so only the case
J = D, remains. There a = b = a’ = b’ = 1, so it involves only one representation
of G~ and only one enhanced L-parameter, and these must be fixed by 7, and 7.

8. OUTER FORMS OF EVEN ORTHOGONAL GROUPS

Let us look at G = PSOj,,, the quasi-split adjoint group of type 2D,,. Then
GV = Spin,,,(C) and in G the Frobenius elements act nontrivially, by the stan-
dard automorphism 6 = 7 of D,, of order 2. For this G we have

Qf = {1,n}, (Q%)* = Z(Spiny, (C))/{1, -1} = {L,2}
and the inner twists are parametrized by Qp = Q/{1,7n} = {1,7p}.

The case J = Dg 2D, with s > 0,t > 1. — By [Lus02, §11.4] w has to be 1 (which is
equivalent to u € {6, 0n} in Lusztig’s notation). Here Q%F = QY soa’ =2 and b’ = 1.

Let E/K be the quadratic unramified field extension over which the quasi-split
group G¥« splits, and let Frob be the associated field automorphism. From (1.11) we
see that

G = {g € G(E) : 6 o Frob(g) = g},

where Frob acts on the coefficients of g as a matrix. In particular the action of 7 =6
on G reduces to the action of the field automorphism Frob.

There are precisely two extensions of ¢ from P> to Ngr, (Pf~). Since 7 stabilizes P
and commutes with 7, one can find 7-fixed elements in Ngr, (PF~) P (see the case
G = PSOg,,, J = D, D, and a = 2). This entails that 7 stabilizes both extensions of o
to Ngr, (]P))

From [Lus02, §11.4] we see that the geometric diagram has type B, B, with p # ¢
and p+ ¢+ 1 = n. We can represent the image of A\(Frob) in O, (C) by the diagonal
matrix —Izp1 @ Iog41. One finds

(8.1) Zgv (A(Frob)) = (Spin2p+1(C) X Spin2q+1((C))/<(—1, —1)).
One checks that eA(Frob) is not GY-conjugate to A(Frob), so
Q9 = (QY/Q%F)* =1 and a=2.

One can obtain 27 from (8.1) by intersecting with the centralizer of A(SLs(C)) and
adding Z(G"). But since GF is quasi-split, we may ignore the addition of the center
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and just look at cuspidal pairs for (8.1) on which Z(G")? acts trivially. According to
[FO20, 4.7.(iv)], uy has Jordan blocks in the pattern 1,3,5,... One sees quickly from
the classification in [Lus84] that the class of u) admits a unique cuspidal local system
which is equivariant for (8.1), so b = 1.

Since A(Frob)#~! can be chosen in (G")? [Reel0], T fixes both enhanced L-para-
meters under consideration. We conclude that the LLC is T-equivariant in this case.

The case J = 2D;. Here Q%F = {1}, s0 w =1, a’ = 1 and b’ = 1. The description
of A from s > 0 remains valid, only now p = ¢q. Let w € GY be a lift of (701” Ig) €
S04, (C). Picking suitable representatives, we can achieve that

w(Frob)w ™! = e\(Frob).

Thus (Q%)* fixes the equivalence class of A, a = 1 and (Q9)% = (Q9/Q%F)*. In the
same way as above one sees that b = 1. This case involves a unique object on both
sides of the LLC, and the LLC matches them in an obviously T-equivariant way.

Remark. — Let Gy = Spinj,, be the simply connected cover of G. When we pull
back a GFw-representation coming from (P,o) as above to GLv, it decomposes as
a direct sum of two irreducible representations, one associated to (P,o) and one to
(nP,n*o). The diagram automorphism 7 stabilizes P and P, so it fixes both these
representations of G,

On the Galois side, we can consider A as a L-parameter A\ for GI=. Tts stabilizer

is larger than (8.1):

(82)  Zav(Me(Frob)) = (w)(Spingy,, (€) x Sping,.1(C)) /{(~1,~1)).

The unipotent class from A supports two cuspidal local systems which are equivari-
ant under (8.2). The diagram automorphism 7 induces an inner automorphism of
(8.1) and (8.2) (namely, conjugation by A(Frob)#), so it stabilizes both these cuspidal
enhancements of \g.

The case J = 2(DyAsDy) witht > 0. — By [Lus02, 11.5] w = p € Qp (or u = pf in
Lusztig’s notation). Notice that 7(p) = np, so 7 does not preserve the group G*%.
Also, 7 maps enhanced L-parameters on which Z(G") acts according to p to enhanced
L-parameters on which Z(G") acts as np. Consequently equivariance with respect to
diagram automorphisms is automatic in this case. We have Q%F = Q% = {1,7} and
[Ngr. (P): P]=a' = 2.

The element A(Frob) and its GY-centralizer are as in (8.1), only with different
conditions on p and ¢. In particular a = 2 as above. The unipotent class from X is given
in [FO20, 4.7.(vi)]: its Jordan blocks come in the patterns 1,5,9,... or 3,7,11,... For
this class, only cuspidal @7\-representations of dimension > 1 have to be considered.
The classification of cuspidal local systems for spin groups in [Lus84, §14] shows that
(8.1) admits precisely one on which Z(GV) acts as p, so b = 1.
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The case J = ZAS.AJ As in the previous case we take w = p. There are four ways to
embed this J in 2D,,, all conjugate under Q¢ x {1,0}. When n is even, none of these
is F,,-stable, so n has to be odd. Then two of these P’s are F,-stable and Q%F = {1}.
Hence Ngr, (PFv) = PFe and a’ = 1.

The element A\(Frob) and its GY-centralizer are still as in (8.1), but with p = q.
Just as above for J = 2Dy, one finds (Q%)5 = (Q9/Q%F)* and a = 1. The analysis of
enhancements of A\ from the case J = 2D,24,%D, remains valid, so b = 1.

Remark. — Let us consider the pullback of one of the above GF«“-representations to
GEe Tt decomposes as a sum of two irreducibles, parametrized by (P, o) and (nP,n*0).
Notice that 7 does not stabilize these two parahoric subgroups of G, rather, it sends
them to F),,-stable parahoric subgroups. Just as in the remark to the case J = D,?D,,
one can show that for GL~ the L-parameter A admits two relevant enhancements.
Both are fixed by 7, except for the action of Z(G") on the enhancements, which 7
changes from p to np.

The exceptional group of type *Dy. — Here 0 is a diagram automorphism of Dy of
order 3. We have G" = Sping(C), Z(G")? = {1} and QY = {1}. In particular there is
a unique inner twist, the quasi-split adjoint group of type 3D4.N

According [Lus02, 11.10-11.11] only the subset J = 3D, of 3D, supports cuspidal
unipotent representations. More precisely, the associated parahoric subgroup P has
two cuspidal unipotent representations with different formal degree [Fenl9, §4.4.1],
so b’ =1 for both. As Q9 = {1}, Ngr, (PFv) = P and a’ = 1. As (Q9)* = {1}, also
a=1.

From the geometric diagrams in [Lus02, 11.10-11.11] and [Reel0, §4.4] we see that
Zgv (A(Frob)) is either Spin,(C) or Go(C), while [Fenl9, §4.4.1] tells us how these
must be matched with the two relevant supercuspidal representations. Both these
complex groups admit a unique cuspidal pair, so b = 1. Thus, given the formal degree
we find exactly one cuspidal unipotent representation of G and exactly one cuspidal
enhanced L-parameter. In particular these are fixed by any diagram automorphism
of D4, making the LLC for these representations equivariant with respect to diagram
automorphisms.

9. INNER FORMS OF Fjg

Let G be the split adjoint group of type Eg. Then GY also has type Eg and
O =Z(G")x=7/3Z.

We write Q = Irr(Q*) = {1,(,¢?} and we let 7 be the nontrivial diagram automor-
phism of Fg. There are two possibilities for J C Eg.

The case ) = Eg. — Here QF = {1} and hence w = 1. From [Lus95, 7.22] we deduce
that a=a’ =1and b = b’ = 2 and hence Q} = Q*. Let 0, and o, be the two cuspidal
unipotent representations of P¥«. Since Q* has order 3 and ab = a’b’ = 2, Q* fixes the
GFv-representations induced from o; and o9, and fixes both enhanced L-parameters
with the appropriate adjoint ~-factor.
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According to [Lus78, Th.3.23] the representation oy can be realized as the
eigenspace, for the eigenvalue e?*73¢3 of a Frobenius element F' acting on the top
{-adic cohomology of a variety X,,. Here w is an element of the Weyl group of Ejg
which stabilizes the subsystem of type AsAsAs. The action of # on the o, comes
from its action on X, the variety of Borel subgroups B of FEg(F,) such that B
and F(B) are in relative position w. For the particular w used here, X, is 0-stable.
Since Fjg is split, F' acts on it by a field automorphism applied to the coefficients.
The induced action on X,, commutes with the f-action, because F' and # commute
as automorphisms of the Dynkin diagram of Fg. In particular 6 stabilizes every
eigenspace for F', and 6 stabilizes both o1 and os.

We work out the observations from [Mor96, §5.9] about the semisimple element
s = AFrob) € FG. It corresponds to the central node v(s) of Eg. By [Ste68] its
centralizer in the simply connected group Eg(C) is a complex connected group of
type As As As. The root lattice of A; A As has index 3 in the root lattice of Fg, so
Zgv(s) has center of order 3|Q2*| = 9. Hence Zgv (s) is the quotient of the simply
connected group SL3(C)? by a central subgroup C' of order 3, such that the projection
of C on any of the 3 factors SL3(C) is nontrivial. Consequently

(9.1) @\ =2 (7.)37)3)C.

Since w = 1, we only have to look at enhancements of A which are trivial on Z(GY)
and we may replace Zgv(s) by

Zav(s)/Z(GY) = SL3(C)?/CZ(GY).

The center of the latter group has order 3, and it is generated by the image v(s)
of 5. The group SL3(C)? has 2® = 8 cuspidal pairs, corresponding to the characters
of Z(SL3(C)3) = (Z/3Z)? which are nontrivial on each of the 3 factors. Dividing out
CZ(GVY) leaves only 2 of these characters. Since 7 fixes v(s), it stabilizes sZ(G") and
fixes both cuspidal enhancements of A. Thus our LLC for these objects is f-equivariant.

RevARK. Let us investigate what happens when G is replaced by its simply con-
nected cover Gg. and X is regarded as a L-parameter A\ for Gfg. The centralizer
of Asc(Frob) in GV is bigger than that of s. From [Reel0, Prop. 2.1] we get a precise
description, namely Zgv (s) x {1, w,w?}, where the Weyl group element w cyclically
permutes the factors of A3 AsA5. In GY we have w(s) = sz with z € Z(GY) ~ {1}, so

A JZ(GY) = (s) x (w) = (Z/3L)".

In particular both the cuspidal representations p of ) can be extended in 3 ways to
characters of @7, _. As p is 7-stable the diagram automorphism group (7) acts on the
set of extensions of p to 7. There are 3 such extensions and 7 has order 2, so it
fixes (at least) one extension, say ps.. From the actions on the root systems we see
that 7(w) = w?. If y is a nontrivial character of (w), then py. ® x is another extension
of p and

T(Pse @ X) = psc @ X°-
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Thus 7 permutes the other two extensions of p. Notice that this 3-element set of
extensions is, as a (7)-space, isomorphic to the set of standard parahoric subgroups
of G which are G¥~-conjugate to P.

The case J = 3Dy. — Here QF = Q and w € Q has order 3. The parahoric subgroup
PP has two cuspidal unipotent representations, say o1 and o9, with different formal
degrees. From Lusztig’s tables we get b=b" =1 and a =a’ =3, so Q} = {1}.

The diagram automorphism 7 stabilizes Irr(G* “)[p,o,], because it preserves formal
degrees. Using [Fenl9, §4.4.1] we match the geometric diagrams [Lus95, 7.20 & 7.21]
with [P,01] and [P, 02]. As these two diagrams differ, 7 stabilizes the triple of (en-
hanced) L-parameters associated to [P, o;] (for ¢ = 1,2). As 7 has order 2, it fixes
at least one element of Irr(G* “)p,0:]> Say m;. The group Q* acts simply transitively
on Irr(GF “)p,s,] and 7 acts nontrivially on Q*, so ; is the unique 7-fixed element of
II‘I‘(GF‘“)[p)Ui].

By the same argument, 7 fixes exactly one the three enhanced L-parameters as-
sociated to [P, o;], say (A, p;). Decreeing that m; corresponds to (X, p;), we obtain
a Q* % (7)-equivariant bijection between Irr(G*«)p ., and the associated triple in
(I)(GFW)Cusp-

10. Tue outer ForMS OF Ejg

Now 7 = @ is the nontrivial diagram automorphism of Eg. The groups 9, Qq, (Q29)*
and (%) are all trivial. In particular G is necessarily quasi-split.

From [Lus02] we see that only J = 2Es supports cuspidal unipotent representations.
The group P has one self-dual cuspidal unipotent representation o, for which
a=2a =b=0"b =1 We see from [Fenl9, §4.4.2] that Zgv(A(Frob)) = F,(C),
which has just one unipotent class supporting a cuspidal local system. The associated
GFe-representation and its enhanced L-parameter are determined uniquely by the
geometric diagram [Lus02, 11.7], so the objects are fixed by 7.

Also, P~ has two other cuspidal unipotent representations o; and os. For o
and o2 we have a = a’ =1 and b = b’ = 2 [Lus02, 11.6]. The same reasoning as for
the inner forms of Eg with J = Fg, relying on [Lus78], shows that 7 stabilizes both o;.

By [Fen19, §4.4.2] A(Frob) = s6, where s € (G")? is associated to the central node
of the affine Dynkin diagram of GV. The orders of # and of the image of s in GY 4
(2 and 3, respectively) are coprime, so

Zav (A(Frob)) = (G¥)’ N Zav (s) = (SLs(C)3/C)’ = SLy(C)2/C"

for suitable central subgroups C,C’ of order 3. Thus the component group of the L-
parameter A associated to o1, 09 is obtained from (9.1) by taking O-invariants. That
removes Z(GY) from (9.1), but then the very definition of <7y says that we have to
include the center again. It follows that

o\ = Z(G) x (s) = (Z/37)>.
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In (1.7) we already fixed the Z(GY)-character of every relevant representation of @7
(namely, the trivial central character), so it suffices to consider the representations of
the subgroup generated by s. Its irreducible cuspidal representations are precisely the
two nontrivial characters. Since (s) is fixed entirely by 6, so are these two enhance-
ments of \. We conclude that also in this case the LLC is #-equivariant.

11. Groups oF L1k TvyrE E7

Let G be the split adjoint group of type E7. Then GV also has type F7 and |Q] = 2.
From [Mor96, §5.9, §6.13] and [Lus95, 7.12-7.14] it is known that two subsets of the

affine Dynkin diagram FE7; are relevant for our purposes.

The case J = Eg. — This J only gives rise to supercuspidal unipotent representations
of G« if w is nontrivial. The associated parahoric subgroup satisfies QF = Q. In
[Lus95, 7.12 and 7.13] a = a’ = 2 and b = b’ € {1,2}. In view of Theorem 1, Q*
in each case permutes the two involved L-parameters . Hence (/QF)* = {1} is
precisely the stabilizer of A and any of its Gf~-relevant enhancements.

The case ) = E7. — By [Lus95, 7.14Ja=a' =1,b=b" =2, 0 =1l and w =1, so
the group GF« is split. In particular every relevant representation of 7 is trivial on
Z(GY). The group %, /Z(G") is isomorphic to Z/47Z [Ree00, p.34] and is generated
by the element A(Frob), which has order four in the derived group of G [Reel0].
The nontrivial element of Q* = Z(G") sends A(Frob) to a different but conjugate
element of GY. Suppose that g € G" achieves this conjugation. Then conjugation
by g stabilizes A(Frob)Z(GY), so it fixes @\ /Z(G") pointwise. Hence the action of Q*
on the enhancements of \ is trivial, and (/QF)* stabilizes them all.

12. ADIOINT UNRAMIFIED GROUPS

First we wrap up our findings for unramified simple adjoint groups, then we prove
Theorem 2.2 for all unramified adjoint groups.

Prorosition 12.1. Theorem 2.2 holds for all unramified simple adjoint K -groups G.

Proof. — In view of Lemma A.4 and Proposition A.7, the objects in Theorem 2.2
are unaffected by restriction of scalars for reductive groups. Hence we may assume
that G is absolutely simple. We start with the Langlands parameters for supercuspidal
unipotent representations from [Mor96, Lus95, Lus02], where all free choices are made
compatibly with Theorem 1. In some of the cases a completely canonical A\ can be
found by closer inspection, for instance see Section 3.

On the p-adic side the subgroup (2¢/Q%F)* of (Q29)* acts trivially, and the quotient
group (QF)* acts simply transitively on Irr(G¥)p o, see (1.18) (based on [Lus95]).
A bijection from (2°F)* to Irr(G"™)p ;) can be determined by fixing an extension
of o to Ngr., (PFv).

All possibilities for (P,o) up to conjugacy can be found in [Mor96, §5-6] and
[Lus95, §7] (for inner forms of split groups) and [Lus02, §11] (for outer forms of split
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groups). These lists show that the G'“-conjugacy class of P is uniquely determined
by A. Hence the (929)*-orbits on the set of solutions 7 of (0.1) are parametrized
by the cuspidal unipotent P¥“-representations with the same formal degree as ¢. In
particular there are b’ such orbits.

For inner forms of split groups the numbers a, b, a’, b’ and the equality ab = a’b’
are known from [Lus95, §7]. For outer forms we have exhibited these numbers in
Sections 4, 8 and 10. That b’ = 1 for classical groups is known from [Lus78]. The
equality b’ = ¢(ns) can be seen from [Lus95, §7] and [Lus02, §11].

In the adjoint case all parahorics admitting cuspidal unipotent representations
with the same formal degree are conjugate, so a’ = |Q%F|. By (1.1), (Q%)* is naturally
isomorphic with Z(G")y. By Theorem 1 Z(G") acts transitively on the set of A’s
with the same adjoint v-factor, and that descends to a transitive action of (27)*.
Therefore (29)*/(029)% acts simply transitively on the set of such A, and a is as
claimed in Theorem 2.2.(5). In the previous sections we checked that (Q°)% always
contains (92/Q0F)*.

This entails that we can find a bijection as in part (1), which is (Q%)*-equivariant
as far as m and \ are concerned, but maybe not on the relevant enhancements of .
Notice that by Theorem 1 our method determines A uniquely up to (29)* (given 7).

A priori it is possible that (2¢/Q%F)* acts nontrivially on some enhancements. To
rule that out we need another case-by-case check. There are only few cases with b > b/,
or equivalently (29)% 2 (29/Q%F)* namely [Lus95, 7.44, 7.46, 7.51 and 7.52]. In those
cases b’ = 1, and we checked in Sections 6 and 7 that (%)% acts transitively on the
set of GFe-relevant cuspidal enhancements of A, with isotropy group (0¢/Q%F)*.

In the other cases b = b’ and (29)% = (Q%/Q%F)*. Usually b = b’ = 1, then </, has
only one relevant cuspidal representation p and (27/Q%F)* is the stabilizer of (), p).
When b = b’ > 1, G must be an exceptional group. For Lie types Gy, Fy, Eg and 3Dy
the group (929)* is trivial, so there is nothing left to prove. For Lie types Eg and E;
see Sections 9, 10 and 11.

This shows part (3) and part (1) except the equivariance with respect to diagram
automorphisms. But the latter was already verified in the previous sections (notice
that in Sections 5 and 6 the Dynkin diagrams only admit the trivial automorphism).

Now only part (6) on the Galois side remains. By the earlier parts, there are
precisely b’ = ¢(ns) orbits under (27)*. Since all solutions A for (0.1) are in the
same (€27)*-orbit, the orbits on ®,,(GF*).ysp can be parametrized by enhancements
of one A. More precisely, such orbits are parametrized by any set of representatives
for the action of (29)% on the GF“-relevant enhancements of \. g

Prorosition 12.2. — Theorem 2.2 holds for all unramified adjoint K-groups G.

Proof. — Every adjoint linear algebraic group is a direct product of simple adjoint
groups. It is clear that everything in Theorem 2.2 (apart from diagram automor-
phisms) factors naturally over direct products of groups. Here the required compati-
bility with (almost) direct products, as in (1.10), says that the enhanced L-parameter
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of a m € Irr(GF “)eusp,unip 18 completely determined by what happens for the simple
factors of G. In particular, Proposition 12.1 establishes Theorem 2.2, except equivari-
ance with respect to diagram automorphisms, for all unramified adjoint groups which
are inner forms of a K-split group.

Consider an unramified adjoint K-group with simple factors G;:

(12.1) G=G; x - xGy.

Suppose that a diagram automorphism 7 maps Gi; to G3. Then G; and G, are
isomorphic, and 7 also maps Gy to Gy inside GY. Let I'; be the stabilizer of G; in
the group of diagram automorphisms of G.

Assume that the f-action on the set {Gq,..., Gy} is trivial. Then Theorem 2.2
for G follows directly from Proposition 12.1 for the G, except possibly for part (2).
But we can make the LLC from Theorem 2.2.(2) T-equivariant by first constructing it
for G1 in a I';-equivariant way, and then defining it for G by imposing T-equivariance.

When 6 acts nontrivially on the set of direct factors of G, the above enables us
to reduce to the case where the G; form one orbit under the group (f). Then clearly

d
GFv = Gf‘“. For a more precise formulation, let K4 be the unramified extension
of K of degree d. Then the K-group G* is the restriction of scalars, from K4 to K,
of the K(4)-group GY. Lemma A.4 says that there is a natural bijection

Fd
(12.2) B(GF) eusp — P(G1* ) cusp-

Proposition A.7 says that Theorem 2.2 for the K-group G is equivalent to Theorem 2.2
for the simple, adjoint K4 -group Gi, via (12.2). Now 6 has been replaced by 6,
which stabilizes G1, so we can apply the method from the case with trivial #-action
on the set of simple factors of G. O

13. SEMISIMPLE UNRAMIFIED GROUPS

Let G be a semisimple unramified K-group, and let G,q be its adjoint quotient.
We will compare the numbers a, b, a’ and b’ for G with those for G, 4, which we denote
by a subscript ad.

Let Tad, Aad, Pad, 0ad be as in (2.1), for G.q. From [Lus95, Lus02], Theorem 2.2 and
Lemma 2.1 we know that (QZ’d]P)* acts simply transitively on the set of 7,4 € Trr(GL%)
containing (Paq, oaq)- In other words, (Q22,)* acts transitively, and (2¢,/ QZ&P)* is the
stabilizer of m,q.

Let 7 € Irr(GF*)eusp unip be contained in the pullback of maq to GF«. It is known
[Lus78, §3] that unipotent cuspidal representations of a finite reductive group depend
on the Lie type of the group. So every (Paq,c.q) lifts uniquely to (P,o) and © €
Irr(GF “)p,0]- The packets of cuspidal unipotent representations of these parahoric
subgroups satisfy

(13.1) b’ =bl,.

When G,q is adjoint and simple, Theorem 1 and Lusztig’s classification show that
the formal degree (of 7,q) determines a unique conjugacy class of F,-stable parahoric
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subgroups of Gfd“ which gives rise to one or more supercuspidal unipotent represen-
tations with that formal degree. Via a factorization as in (12.1) this extends to all
unramified adjoint G,q.

This need not be true when G is not adjoint, but then still all such parahoric sub-
groups are associate by elements of Q. It follows that the number of G*~-conjugacy
classes of such parahoric subgroups is precisely [Q7,/Q57 : Q7 /QF] = ¢/. By (1.18)
the group (Q29F)* acts simply transitively on the set of irreducible G -representations
containing o. It follows that

(13.2) a' = [Q%Flg' = [0y - 0P g al,

and that a’b’ equals the number of supercuspidal unipotent G*«-representations which
on each K-simple factor G; give the same formal degree as 7 (see page 1145).
By Theorem 2.2.(3) for G,gq:

(13.3) (Q00)%., = (Q84/Ny,,)* for a subgroup Ny, C Q%

By Theorem 2.2.(5) N is naturally in bijection with the (Q9,)*-orbit of Aaq. In par-
ticular

(13.4) 3ad = [(%4)" Aaa| = [ N2

ad|'

Also, (de)jad has b,q elements and acts simply transitively on the set of Gfg—relevant
cuspidal enhancements of \.q.

Lemma 13.1. Let \ € 92

2 (GF%) be the projection of Maa via GY, — GY.

(1) (Q%)* acts transitively on the collection of X' € ®2 (GF“) which, for every
K-simple factor G; of G, have the same y-factor v(0, Adgy o X', 1) as A.

(2) The stabilizer of (the equivalence class of) \ equals (2°/9Q° N Ny,,)*, and it
contains (7 /Q0F)*.

(3) a =[Ny, NQYI.

Proof

(1) By Theorem 2.2 for Gaq, (2%3)* Xaa is precisely the collection of L-parameters
for Gfg with a given adjoint -factor. Consequently every lift of a GY-conjugate
of \ is GYy-conjugate to an element of (Q%;)*\aq, and (29)*\ is the collection of
L-parameters for G with the same adjoint vy-factor as .

(2) Since (di/QZaP)* stabilizes Aaq (by Theorem 2.2.(3) for G,q), its image
(Q/Q%F)* under (Q2,)* — (Q%)* stabilizes .

In GY some different elements of GY, become equal, namely ker(GY, — GY) =
(Qaa/)*. The image of ker(GY, — GY) in (Q9,)* is

(%4/Q°)" = ker ((Q4q)* — (2°)").
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Hence the stabilizer of A in (Q27)* is precisely the image in (2%)* of the (Q9,)*-stabilizer
of the orbit (Q%,/9%)*X\,a. That works out as
(22a/2) ()30 / (0a/Q7)" = ()3, / (Qa/2)* 0 (Ra)3.,)
= (a/Naua) "/ (a/QNaa)" = (Q°Nau /Naa)* = (2°/Q7 N Ny,,)"
(3) We saw in (13.3) that (N,,,)* acts simply transitively on (29,)* a4, so it also

acts transitively on (2%)*\. The stabilizer of X in this group is (Ny,,/Nx,, NQ)*, the
image of (Q.q/Q)* in (Ny,,)*. Then the quotient group

N;ad/(N/\ad/N/\ad N Q)* = (N/\ad N Q)* = (N)\ad N Qg)*

acts simply transitively on (Q27)*\. We deduce that a = [Ny , N QY. O

In the setting of Lemma 13.1, @/, contains /), as a normal subgroup. We want to

\2
sc?

compare these subgroups of GY., and the cuspidal local systems which they support.

Levma 13.2. — The group o/, is isomorphic to (2%, /Q°Ny_,)*.

Proof. — First we determine which lifts of A to a L-parameter for G%5 are GY,-conju-
gate. To be conjugate, they have to be related by elements of (di)}‘\ad = (9% /Nx..)"
To be lifts of the one and the same A, they may differ only by elements of

ker(GY, — GV) = (Qua/Q)*.

Therefore two lifts of A are conjugate if and only if they differ by an element of the
intersection

(Qa/Nana)™ N (22/2°)" = (2a/Q"Na,a)*

We write S\ = Zgy (im A\) = 7o (ZGZC (im )\)), where Gy, acts by conjugation, via the
natural map to the derived group of GY. The above implies

(13.5) S/ Snaa = (g /P Ny0)"
The more subtle component group &, contains Sy, with index
[2(Gie) : Z(GL)Yr] = (1 - 0)Z(GL.)l.
Similarly [« : Sy] = [Z(GY) : Z(GY)WF] and hence
(13.6) G\ g = O\ Sra- O

Next we compare the cuspidal enhancements of A and Aaq. Since <7\ contains <7,
as normal subgroup, it acts on 7, (by conjugation) and it acts on Irr(e,,). For
Pad € Irr(aty,, ), we let (@7)),,, be its stabilizer in o7).

Lemma 13.3. — Ewvery irreducible cuspidal representation p.q of <, extends to a
representation of (@) p,. -
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Proof. Recall from Theorem 2.2.(3) for G,q that the stabilizer of (Aag,pad) in
(Q8 ) is (di/QZfD)*. Under the isomorphism from Lemma 13.2 or (13.5), the stabi-
lizer of paq in @/, corresponds to

(13.7) (Q4/Q0Nx,)* N (8 /Q00)" = (Q0,/Q°0%))".

In the proof of Proposition 12.2 we checked that everything for .4 factors as a direct
product of objects associated to simple adjoint groups. In particular p,q is a tensor
product of cuspidal representations p; of groups % associated to L-parameters \;
for adjoint simple groups GZF «. Thus it suffices to show that every such p; extends
to a representation of (2%),,,. The action of @7\ on p; factors through the almost
direct factor of G which corresponds to Gf «. This enables us to reduce to the case
where G is almost simple, which we assume for the remainder of this proof.

Now we can proceed by classification, using [Lus95, §7]. By (13.7) and [AMS18,
Th. 1.2] we have to consider projective representations of (de/QGQZ&P)*. In almost
all cases this group is cyclic, because di is cyclic. Every 2-cocycle (with values
in C*) of a cyclic group is trivial, so then by [AMS18, Prop. 1.1.a] pa.q extends to a
representation of (@ ),,,-

The only exceptions are the inner twists of split groups of type Ds,, for those
09, = (Z/2Z)2. The group (de/Q‘gQZ&P)* can only be non-cyclic if G is simply
connected and QZ&P = 1, which forces P to be of type Ds,. For this case, see the
remark to J = D,, in Section 7. O

It requires more work to relate the numbers of G¥-relevant cuspidal enhancements
of A (i.e., b) and of A\uq (i.e., baq), in general their ratio is less than @) : @ _,].

Levva 13.4. — b= g’[sz cQ9FNy ] bag.

Proof. — Tt follows directly from [AMS18, Def. 6.9] that an irreducible .27)-represen-
tation is cuspidal if and only if its restriction to 7\, is a direct sum of cuspidal
representations. Such a situation can be analyzed with a version of Clifford theory
[AMS18, Th. 1.2]. Briefly, this method entails that first we exhibit the .27 -orbits of cus-
pidal representations in Irr(%,_,). In every such orbit we pick one representation p,q

and we determine its stabilizer (<)) By a choice of intertwining operators, p,q can

Pad *
be extended to a projective representation p,q of (2#),,,. Then the set of the irre-
ducible @7\ -representations that contain p,q is in bijection with the set of irreducible
representations (say 7) of a twisted group algebra of (@\),,,/#\,,. The bijection

sends T to
. o —
(13.8) md(&g)pad (T ® paa) € Irr(ey).
If paa can be extended to a (linear) representation of (@ ),,,, the aforementioned
twisted group algebra becomes simply the group algebra of (@#),,,/%\..- In that

simpler case, the desired number of cuspidal irreducible @/)-representations is the
sum, over the .7\-orbits of the appropriate 7, ,-representations, of the numbers

(13.9) D () paa / Draa) | = [(92) poa = Pl
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For this equality we use that /<7 , is abelian, which is immediate from Lem-
ma 13.2.

Let us make this explicit. By (13.7) (@ ),,, is the inverse image of (di/QGQzaP)*
in o, under (13.5). Notice that this does not depend on p.q, every other relevant
enhancement gives the same stabilizer. It follows that the quotient group

D) () pa = (/N (24/90000 )
= (QPQ0F /0N, )F = Q0 /0N, )"

Pad

(13.10)

acts freely on the collection of GF«-relevant cuspidal enhancements of \.q. Now we
can compute the number of .2\-orbits of such enhancements:

(13.11) baa [(Q0 /QPF Ny, )*| 7! = baq [P Ny, | |27

ad|

By Lemma 13.3 p,q can be extended to a representation paq of (#2),_, - It follows from

Pad *
(13.9) that every «/\-orbit of G¥“-relevant cuspidal enhancements of \,q accounts for

the same number of G«-relevant cuspidal enhancements of A, namely

84l 9941 1%F]|
13.12 0l /200y = 1Paal - _ [P =4.
By [AMS18, Th. 1.2] b is the product of (13.11) and (13.12). O
Levmva 13.5. Fiz a GF>-relevant cuspidal paq € Irr(27y,,). There exists a bijection
between:

. the set of p € Trr(&)\) that contain paq,
. the set of G -conjugacy classes of parahoric subgroups of G that are Gfg -con-
jugate to P,

which is equivariant for di / QZ&PQ(’ and with respect to diagram automorphisms.

Proof. — By (13.8) and Lemma 13.3 every p € Irr(7)) which contains p,q is of the
form

(13.13) p= ind”(i%)pad (W ® Pad)
for a unique
(13.14) w00 € 08 /00 00 = Ter ((92,/9070%)").

On the other hand, the group in (13.14) parametrizes the G “-conjugacy classes of
Gfg—conjugates of P. Decreeing that (13.13) corresponds to wPw™!, we obtain the
required bijection and the di / QZ&PQQ—equivariance.

Notice that the set of (standard) parahoric subgroups of G is the direct product
of the analogous sets for the almost direct simple factors of G. Together with the
explanation at the start of the proof of Lemma 13.3, this entails that for equivariance
with respect to diagram automorphisms it suffices to check the cases where G is
almost simple.

We only have to consider the Lie types A,,D, and FEg, for the others do not
admit nontrivial diagram automorphisms. Among these, we only have to look at the
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parahoric subgroups P with Q%F £ Qf or equivalently at the J that are not QF-
stable. That takes care of the inner forms of type A,, and of the outer forms of type
Eg. For the outer forms of type A, (J = 24,24;), the inner forms of D,, (J = D,, and
J = DyDy), the outer forms of D,, (J = 2D, and J = 2A,) and the inner forms of Eg
(J = Es) see the remarks in Sections 4, 7, 8 and 9. O

14. PROOF OF MAIN THEOREM FOR SEMISIMPLE GROUPS

Proposition 12.2 proves Theorem 2.2 for unramified adjoint groups. When we
replace an adjoint group by a group in the same isogeny class, several unipotent
cuspidal representations of Gfg coalesce and then decompose as a sum of ¢’ ir-
reducible unipotent cuspidal representations of Gfw. Similarly, several enhanced
L-parameters for Gfg coincide, and they can be further enhanced in ¢’ ways to
elements of @nr(GFW)Cusp.

From (1.18) we see that the Gfg—representations which contain m € Irr(GF)p o)
form precisely one orbit for (Q%,/Qf)*. The action of (Q2,)* on Irr(GE%)unip.cusp
reduces to an action of (2)* on Irr(GF“)ypnip cusp, and the stabilizers become

(Q°/904 NQ%)* = (@ /2.
A bijection
(14.1) (QPF)r = Q%) /(2 /QPF)* — e (GF*) p o)

can be specified by fixing an extension of ¢ from Pf to Ngr, (Pf«) [Opd16, §2]. In
particular Irr(G¥)p , forms exactly one (€2)*-orbit. Consequently the (7)*-orbits
on the set of solutions 7 of (0.1) are parametrized by the G'“-conjugacy classes of
(P, 0’) with fdeg(c’) = fdeg(c). There are g'b’ = ¢'é(ns) of those.

Recall that \ is the image of Ayq under G¥s. — GY. When G is simple, Theorem 1
says that (27)*) is the unique (929)*-orbit of L-parameters for G with for each
K-simple factor of G the same adjoint v-factor as A,q (up to a rational number).
It follows quickly from the definitions that adjoint ~-factors are multiplicative for
almost direct products of reductive groups, cf. [GR10, §3]. From (1.19) we see that
the formal degrees of supercuspidal unipotent representations are also multiplicative
for almost direct products, up to some rational numbers C, (which can be made
explicit, see [HII08, §1] and [Opd16, §4.6]). Hence the uniqueness of (29)*) in the
above sense also holds for semisimple G, provided we impose the compatibility with
almost direct products from (1.10). Together with (14.1) this proves Theorem 2.2.(2).

By Lemma 13.1 the A\,q which coalesce to A form precisely one orbit under
(Q9,/99 N N,,,)*. From the proof of Lemma 13.2 we see that the restriction of a
relevant cuspidal representation p of @7\ to 7\
of Aag in one (Q,/Q9N,_,)*-orbit.

From Lemma 13.1.(2) we know that the (7)*-stabilizer of (), p) is contained in
(Q9/Q% N N,,,)*, and from the proof of Lemma 13.4 we see that it must stabilize the
g\ -orbit of a paq € Irr(#),,,). By Theorem 2.2.(3) for G,q and by Lemma 13.2, the

contains precisely the enhancements

ad
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(Q9,)*-stabilizer of that orbit is
(14.2) (/) (/2 Ny

Hence the (97)*-stabilizer of that orbit is the image of (14.2) in (Q%)*, that is,
(Q9/Q9F)* From (13.12) we know that the different representations p of <7 associ-
ated to the orbit of p,q are parametrized by QF,/ QHQZAP. Elements of (2%)* exert no
influence on the last group, so (27/Q%F)* is precisely the stabilizer of (), p) in (29)*.
This proves Theorem 2.2.(3).

Part (4) can be observed from the adjoint case and (13.1). For Part (5), we note
by (13.1) and (13.2)

a’b’ g |Q%F
a,4ba B [o5
On the other hand, by Lemmas 13.1 and 13.4
ab [Nt 0214’ _ 1N N 10T [Nl _ 91977
andbad [Ny, |10 s QOF Ny [Nl 1901199F A Na | 1901

Thus Theorem 2.2.(5) for G,q implies that a’b’ = ab.
Now we can construct a LLC for Irr(GF: “ )unip,cusp- Lvery 7 in there corresponds to
a unique (di/QG)*—orbit in Irr(Gfg)unip’Cusp. Then Proposition 12.2 gives an orbit

(14.3) (Q81/9%)* (Nads Pad) C Prr(GES ) cusp-

By Lemma 13.1.(2) that determines a single A € ®,,,(Gf*) and from Lemma 13.2 we
get one .@7)\-orbit

(14.4) (Q04/Q° Ny ) paa C Trr(eh,, ).

But (14.3) does not yet determine a unique representation of 7y, in general several
extensions of p,q to p € Irr(&7)) are possible. By Lemma 13.5 we can match these p’s
with the GF-conjugacy classes of parahoric subgroups of G' that are Gfg—conjugate
to P, in a way which is equivariant for QZd and for diagram automorphisms. For
7 € Irr(GF “)p,s] We now choose the p which corresponds to the GFv-conjugacy class
of the P. Above we saw that 7 and (), p) have the same isotropy group in (29)*, so we
get a well-defined map from (2%)*7 to (29)*(), p). This map is equivariant for (%)*
and for all diagram automorphisms that stabilize the domain.

For all Gfv-representations in the Out(G)-orbit of (Q%)*r, we define the LLC
by imposing equivariance with respect to diagram automorphisms. If 7 is a diagram
automorphism of G with 7(w) # w, then for z € (Q9)* = X,(G™) we define the
enhanced L-parameter of 7*(z ® 7) € Irr(GF7)) cusp unip t0 be (T(2A), 7*p).

For another ' € Irr(G¥ ) ynip cusp We construct (N, p') € @y (GF)cygsp in the same
way. We only must take care that, if ' = A, we select a p’ that we did not use already.
Since a’b’ = ab, this procedure yields a bijection Irr(G)unip.cusp = Pur(GT)cusp-

As explained above, at the same time this determines bijections

II‘I‘(GFT(“’) )unip,cusp — P, (GFT(“)) )cusp
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for all diagram automorphisms 7 of G. The union of all these bijections is the LLC
for all the involved representations, and then it is equivariant with respect to diagram
automorphisms.

From parts (1) and (3) we get the number of (2%)*-orbits on the Galois side of
the LLC, namely ¢’'¢(ns), just as on the p-adic side. Since the L-parameters with the
same adjoint y-factor form just one (Q%)*-orbit, the orbits of enhanced L-parameters
can be parametrized by enhancements of A, just as in the adjoint case.

15 PROOF OF MAIN THEOREM FOR REDUCTIVE GROUPS

First we check that Theorem 2 is valid for any K-torus, ramified or unramified.
Of course, the local Langlands correspondence for K-tori is well-known, due to Lang-
lands.

Prorosition 15.1. — Let T be a K-torus and write T = T(Ky,).

(1) The unipotent representations of T(K) are precisely its weakly unramified char-
acters.

(2) The LLC for Irr(T(K))unip s injective, and has as image the collection of
L-parameters

A Wi x SLQ((C) — TV x Wk
such that AN(w,x) = (1,w) for all w € I,z € SLy(C).
(3) The map from (2) is equivariant for (" )robp and with respect to W -
automorphisms of the root datum.

The target in part (2) is the analogue of ®,,(GF«) for tori. As & = 1, we can
ignore enhancements here.

Proof

(1) The kernel T of the Kottwitz homomorphism [Kot97, §7]
T X*((TV)IK)

has finite index in the maximal bounded subgroup of T. By [PR08, App., Lem. 5],
Ty equals the unique parahoric subgroup of 7. Then T(K); = Tf™" is the unique
parahoric subgroup of T(K) = T¥™°P. The finite reductive quotient T is again
a torus, so its only cuspidal unipotent representation is the trivial representation.
Hence the unipotent T'(K)-representations are precisely the characters of T(K) that
are trivial on T(K);, that is, the weakly unramified characters.

(2) It is known (e.g. from [Hail4, §3.3.1]) that the LLC for tori puts Xy, (T(K))
in bijection with (Z(TY)™ )gep.

(3) From Z(TV) = Q* we see that

(15.1) Xoe(T(K)) 2 (Z(TY) 5 ) pvob = (@), = Q") Frob-

Now it is clear that the LLC for Irr(T(K))unip is equivariant under (15.1).
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Since the LLC for tori is natural, it is also equivariant with respect to all automor-
phisms of X*(T) that define automorphisms of T(K). These are precisely the auto-
morphisms of the root datum (X*(T), &, X.(T), o, &) that commute with Wg. O

Next we consider the case that G is an unramified reductive K-group such that
Z(G)°(K) is anisotropic. By [Pra82, Th. BTR], that happens if and only if Z(G¥«)
is compact. Equivalently, every unramified character of G« is trivial. We will divide
the proof of Theorem 2 for such groups over a sequence of lemmas.

Lemma 15.2. Suppose that Z(G)° is K-anisotropic, and let Qqe be the Q-group
for Gaer. Then Qger =Q°.

Proof. — By (1.1) Q4. = X*(Z(G")s/Z(G")°). Since Z(G)° is K-anisotropic, so is
G/Gger, and
0= X"(G/Guer)™" = X.(Z(GY)°)’.
This implies
(15.2) (1-0)Z(G")° =2Z(GY)°,
s0 Q0 = X*(Z(GV)g) = X*(Z(GY)g/Z(GY)°). O

Leyva 15.3. Suppose that Z(G)° is K-anisotropic. The inclusion Gggr — GFe
induces a bijection

Irr(GFw)cusnunip — Irr(Gggr)cuSP,unip-

Proof. — These two groups have the same affine Dynkin diagram |. For any proper
subset of |, the two associated parahoric subgroups, of G and of Gy, give rise to
connected reductive §-groups of the same Lie type. The collection of (cuspidal) unipo-
tent representations of a connected reductive group over a (fixed) finite field depends
only on the Lie type of the group [Lus78, Prop. 3.15]. Hence any cuspidal unipotent
s Irr(Ingr) extends in a unique way to a representation o’ of P*. More precisely,
both o and ¢’ factor via the canonical map to Pfg .

By Lemma 15.2 G~ and Gge“r also have the same Q°-group. From (1.15) we see that
(15.3) Ngr., (PFe) = Ngr, (Phs P,

After (1.15) we checked that there exists an extension oV of o to a representation of

F, . ’ . F., N . .
NGf:, (P*+). Since ¢ and ¢’ factor via P,y , 0" extends uniquely to a representation

of (15.3).
Now the classification of supercuspidal unipotent representations, as in (1.17) and
further, is the same for G and for G¥. The explicit form (1.18) shows that the

ensuing bijection is induced by Gggr — GFw. |
Levva 15.4. — Suppose that Z(G)° is K-anisotropic. The canonical map GY —

GY/Z(G")° induces a bijection ®p (GF>) — @, (GE).
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Proof. — Suppose that A\, X € ®,,(G") become equal in ®,.(G5=). Then there
exists a g € GV such that g\'g~! = \ as maps Wx x SLy(C) = GV /Z(GY)° x Wg.
In particular g\ (Frob)g~! = 23 \(Frob) for some 2; € Z(G")°. By (15.2) we can find
29 € Z(GY)° with 25 '0(22) = z1. Then
209\ (Frob)g ™ 251 = 2021 A(Frob)z5 ' = 22210(25 ) A(Frob) = A\(Frob).
Replace \' by the equivalent parameter A = z3g)\'g~'z;'. These parameters are
unramified, so \'|w, = Awy. But Msp,c) = N'|sw,(c) still only holds as maps
SL2(C) — G¥/Z(G")°. In any case, A(1, (1)) and X’(1,({ 1)) determine the same
unipotent class (in G¥ and in G¥/Z(G")°). Consequently, A and \"” are G¥-conjugate.
Conversely, consider a A € ®, (GE=). We may assume that A(Frob) = s0Z(GY)°

for some s € S¥. Then s6 and A(Frob) centralize the same subalgebra of

Lie(G") = Lie(G" ger) @ Lie(Z(GY)°).
As dX(sly(C)) is contained in
Lie((GV)Se) Lie(Zgv (s0)) = Lie(Zgv Frob)))
we can lift dA(sl(C)) to a homomorphism A : SLy(C) — Zgv(s0)°. Together with
A(Frob) := sf this defines a preimage of A in @y (GF«). O

Lemma 15.5. — Suppose that Z(G)° is K -anisotropic. Let X € ®,,(GF~) and let Ager
be its image in O (GL2). Then oy = ., .

Proof. — Recall the construction of 27, from (1.5) and (1.6). It says that 7\
component group of

Z(Gder) (Ader) = {9 € (Gaer)ie : 9Aderg™ " = Aderb for some b € B'(Wg, Z(Gaer)) }-

From Ggo” = GY/Z(GY)° we see that (Gger)y. = GVse. Since A is unramified,
the difference with Ager resides only in the image of the Frobenius element (see the
second half of the proof of Lemma 15.4). To centralize A\ge; means to centralize X\, up
to adjusting A(Frob) by an element of Z(GY)°. Together with (15.2) this implies that

Z(lGdcr):c()‘der) = {gEGVSC : gAg~ ' =\b for some be B} (W, Z(GV))} = Zévsc()\).

In particular

is the

der

M)\der (Z(lGder) ()‘der)) = To (Z(l;vsc ()\)) - M)\. |:|
Prorosition 15.6. Theorem 2 holds whenever Z(G)° is K-anisotropic.

Proof. — Lemmas 15.2, 15.3, 15.4, 15.5 and Theorem 2.2 prove parts (5) and (6) of
Theorem 2, as well as the unicity up to weakly unramified characters. The equivariance
properties (2) and (3) in Theorem 2 follow from the semisimple case, because the
isomorphisms in the aforementioned lemmas are natural.

Assume that G is the almost direct product of K-groups G; and Gs. Then

(15.4) Gaer = G1.derGo,der and Z(G)° = Z(G1)°Z(G2)°
are also almost direct products, and there are epimorphisms of K-groups

(155) Gl,der X Z(G1)O X G2,der X Z(GQ)O — Gder X Z(G)O — G.
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Notice that the connected centers of G; and G are K-anisotropic. By Lemma 15.3
Z(G)°(K), and the Z(G;)°(K) have unique irreducible unipotent representations,
namely the trivial representation of each of these groups. That and Theorem 1 show
that our instances of the LLC for G(K) and the G;(K) are compatible with the almost
direct products (15.4). For the same reason they are compatible with the second map
in (15.5). The composition of the maps in (15.5) factors via G; x Gg — G, so our
LLC is also compatible with that almost direct product.

Conversely, Lemma 15.3 and Theorem 2.2.(4) leave no choice for the LLC in this
case, it just has to be the same as for Irr(G¥..(K))cusp,unip- We already know from
Theorem 2.2 that for the latter the L-parameters are uniquely determined modulo
(929)* by properties (1), (2) and (4) in Theorem 2. Hence the same goes for the LCC
for Irr(G* (K) ) cusp, unip - O

Now G may be any unramified reductive K-group. Let Z(G%); be the maximal
K-split central torus of G¥. Recall that the K-torus Z(G*)® is the almost direct prod-
uct of Z(G¥), and a K-anisotropic torus Z(G%), [Spr09, Prop. 13.2.4]. These central
subgroups do not depend on w, so may denote them simply by Z(G), and Z(G),.

Levva 15.7. — Any cuspidal unipotent o € Irr(PF«) can be extended to Ngr. (PF«).

Proof
Recall that by Hilbert 90 the continuous Galois cohomology group H} (K, Z(G¥),)
is trivial. The long exact sequence in Galois cohomology yields a short exact sequence

(15.6) 1 — Z(G¥)4(K) — G¥(K) — (G¥/Z(G¥),)(K) — 1.
The restriction of o to P N Z(G¥)4(K) = Z(G)s(0k) is inflated from a unipotent

representation of Z(G)4(F), so it is a multiple of the trivial representation. Thus we
can extend o trivially across Z(G),(K), making it a representation of

PR Z(G)o(K)/Z(G)o(K) 2 P& o

By [Spr09, Prop. 13.2.2] the connected center of G¥/Z(G*), is K-anisotropic. From
Lemma 15.3 we know that o extends canonically to a representation of

F,, ~ F, w
N(GW/Z(GW)S)(K) (IP’GN/Z(GW)S) >~ Ngr. (P )/Z(G )s(K).
This can be regarded as the required extension of o. O

With a similar argument we can prove a part of Theorem 2 for reductive groups.
Every (cuspidal) unipotent representation of G¥(K) restricts to a unipotent char-
acter of Z(G*¥)s(K). From Proposition 15.1.(1) we know that those are precisely
the weakly unramified characters of Z(G*“)s(K). This torus is K-split, so all its
weakly unramified characters are in fact unramified. Since C* is divisible, every
X € Xnr(Z(G¥)s(K)) can be extended to an unramified character of G¥(K). Thus
every m € Irr(G¥(K))cusp,unip €ait be made trivial on Z(G*),(K) by an unramified
twist:

(15.7) m=x®n with xy € X,(G¥(K)) and 7’ € Irr(G¥ /Z(G*¥))(K).
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By the functoriality of the Kottwitz homomorphism, (15.6) induces a short exact
sequence

1— pr((G“’/Z(G‘*’)S)(K)) — X (G¥(K)) — X (Z(G¥)s(K)) — 1.
Thus we can reformulate the above as a bijection

(158 1r((G/2G)) D iy o Zser ey Yo (G 0))
— Irr(G¥(K))

cusp,unip’
On the Galois side of the LLC there is a short exact sequence

(15.9) 1—4G/Z2(G),) — G —LZ(G)y =Z(G)," x Wg — 1.

This induces maps between L-parameters for these groups. It also induces a short

exact sequence

(15.10)  1— Z((G/Z(G)s)"), — Z(G")g — (Z(G),"), = Z(G)s" — 1,

whose terms can be interpreted as the sets of weakly unramified characters of the
associated K-groups (or of their inner forms). As 2 (Z(G¥),) & Z(G¥)s”, (15.10)
and (15.9) show that the map

073(G¥(K)) — 27,(Z(G¥)s)
is surjective with fibres ®2 (G /Z(G%),). With (15.10) we obtain a bijection

(15.11) 2. ((G¥/2(G¥);)(K)) Z((G/Z?G)S)v)e Z(GY)y — ®2 (G¥(K)).

Lenwa 15.8. — BY(Wg, Z((G/Z(G),)¥)) = BY(Wk, Z(GY))
Proof. — Consider the short exact sequence of K-groups
1 — G4 Z(G¥)q — G¥ — T := G¥ /(G4 Z(G¥)a) — 1.

By [Spr09, Prop. 13.2.2] T is a K-split torus. In the short exact sequences of complex
groups
1— (G/Z(G),)" — GY —— Z(G)," —— 1,

1 TV G’ — (G4 Z(G)a) — 1,
the Lie algebra of TV maps isomorphically to the Lie algebra of Z(G)s". Hence
G'=TY(G/Z(G),)" and Z(GY)=T"Z((G/Z(G))").
The last equation entails that every element b € B'(W g, Z(G")) is of the form
b(w) = tzwz" "t 'w™  for some t € TV, z € Z((G/Z(G),)").
As TV is fixed by Wg and central in GY, b(w) = zwz lw~!. This says that

be B' (Wk, Z((G/Z(G),)")). O
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Proof of Theorem 2. — Both for G¥(K) and for (G*/Z(G*),)(K) the component
groups of L-parameters are computed in the simply connected cover of

GYder = (G/Z(G)S)vder’

see (1.5). By Lemma 15.8 and (1.6) the group ) for A € ®((G¥/Z(G¥),)(K))
is the same as the component group for A as L-parameter for G¥(K). Any z €
Z(G")p is made from central elements of G, so &7, for G¥(K) equals &7\ for G¥(K),
and then also for (G*/Z(G*),)(K). This says that (15.11) extends to a bijection
between the spaces of enhanced L-parameters. Recall from (1.8) that cuspidality of
the enhancements is defined via the group Z(lcw)vsc()\(W k)), which is the same for

G¥(K) as for (G¥/Z(G*),)(K). Hence (15.11) extends to a bijection

15.12) 9, ((G*¥/Z(G¥)s)(K)) . X Z(GY)g — P, (GY(K))cusp-
(1312) @un((G/2(G)) (K)o | Z(G )~ Dl G (e
As G¥/Z(GY¥); has K-anisotropic center, we already know Theorem 2 for that group
from Proposition 15.6. Using that and comparing (15.12) with (15.8), we obtain a
bijection

(15.13) Irr(G¥(K)) — @ (G (K))cusp-

By construction (15.13) satisfies parts (2), (5) and (6) of Theorem 2, while part (1)
does not apply. What happens for Z(G¥)s(K) in (15.8) and (15.12) is completely
determined by the LLC for tori, so any non-canonical choices left in (15.13) come
from (G*/Z(G*),)(K). By Theorem 2 for the latter group, the only free choices are
twists by weakly unramified characters of that group.

Concerning part (3), let 7 be a W g-automorphism of the absolute root datum of
(G, S). From Theorem 2 for ((G*/Z(G%),)(K) we know that (15.13) is T-equivariant
on the subset Irr((G¥/Z(G*),) (K))Cusp’unip. We also know, from (1.3), that the LLC
for X, (G¥(K)) is T-equivariant. In view of (15.8) and (15.12), this implies that
(15.13) is also T-equivariant.

We note that the LLC for unipotent characters of tori is compatible with almost
direct products, that follows readily from Proposition 15.1. Consider G as the almost
direct product of Z(G¥), and G%,,.Z(G¥),, where Z(G*), denotes the maximal
K-anisotropic subtorus of Z(G¥)°. Let 7 € Irr(G¥(K))cuspunip With enhanced
L-parameter (Ar, pr). In terms of (15.8) we write 7 =
(15.11) we write Ax = Ary, Ay and pr = pr,... Then

cusp,unip

Tger ® X and in terms of

7T|Z(GW)S(K) = X|Z(GW)S(K)a
T|(@s. 2(Gw)a)(K) = Tder|(Gx, 2(G=)a) (k) ® Xlaz,, (5)-
The naturality of the LLC for weakly unramified characters entails that the
L-parameter of x|z(gw), (k) (resp. of X|GgerZ(GW)a)(K)) is the image of A, in Z(G)Y
(resp. in Z(GY)/Z(GY)*>WF). Lemmas 15.3, 15.4 and 15.5 show that, to analyze the
enhanced L-parameter of 7Tder|((;zrcr 2(G),)(K), it suffices to consider the restriction
to GY,,(K). Then we are back in the case of semisimple groups, and the construc-

tions in the proof of Theorem 2.2, see especially (14.3), were designed such that the
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L-parameter of Wder|G3)er(K) is the image of A, in ®,.(GY,.(K)). Similarly, the
constructions in Section 13 and their wrap-up after (14.4) show that the enhancement
for Wder‘Giu(K) contains py, .

The above says that (15.13) is compatible with the almost direct product G =
(G4, Z(G¥)4) Z(G¥),. Now the same argument as in and directly after (15.4) and

(15.5) shows that Theorem 2.(4) holds. O

16. Tue Hiraca—IcaHino—IKEDA CONJECTURE

We fix an additive character 1) : K — C* which is trivial on the ring of integers oy
but nontrivial on any larger fractional ideal. We endow K with the Haar measure
that gives ok volume 1 and we normalize the Haar measure on (G*/Z(G%);)(K) =
GY(K)/Z(G¥)s(K) as in [HII08]. As ¢ has order 0, the Haar measure agrees with
that in [GG99, §5] and [Gro97, §4]. The formal degree of a square-integrable modulo
center representation of G¥(K) (e.g. a unitary supercuspidal representation) can be
defined as in [HII08, p. 285].

For a L-parameter A € ®(G¥(K)) we write

(16.1) St = m0(Zayz(c).)v (V).

When A\ is discrete, as it will be most of the time in this paper, we do not have to

take the group of components in (16.1), for the centralizer group is already finite.
Let 7 € Irr(G¥(K))cusp,unip and let (Ar, pr) be its enhanced L-parameter from

Theorem 2. It was conjectured in [HII08, Conj. 1.4] that

(16.2) fdeg(m) = dim(p) [S§_|~" [7(0, Ad 0 Az, ).

We will prove (16.2) with a series of lemmas, of increasing generality. Thanks to
Proposition A.7 we do not have to worry about restriction of scalars.

Levva 16.1. — The equality (16.2) holds for Irt(G* (K)) cusp,unip When G is semisim-
ple and adjoint.

Proof. — By [GG99, Prop. 6.1.4] the normalization of the Haar measure on G¥(K)
is respected by direct products of reductive K-groups. It follows that all the terms
in (16.2) behave multiplicatively with respect to direct products. Using that and
Proposition A.7, we can follow the strategy from the proof of Proposition 12.2 to

reduce to the case of simple adjoint groups. For such groups (16.2) was proved in
[Opd16, Th.4.11]. O

Levwva 16.2. The equality (16.2) holds for Irr(G* (K)) cusp,unip When G is semisim-
ple.

Proof. — As in Sections 13 and 14, we consider the covering map G — G,q. We will
show that it adjusts both sides of (16.2) by the same factor.
From (1.16) and (1.17) we see that
dim(o?) dim(o)

(16.3) ea(m) = Sl Ngr. (BF2)) ~ vol(BF-) [0
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The volume of the Iwahori subgroup of G¥(K) with respect to our normalized Haar
measure was computed in [Gro97, (4.11)]. In our notation, it says

(16.4) vol(PFw) = @Fw ‘qi—((dim@rdim G)/2.

With [DRO09, §5.1] one sees that this formula holds for all parahoric subgroups of
G¥(K).

By [GM16, Prop. 1.4.12.c] the cardinality of the group of F-points of a connected
reductive group does not change when we replace it by an isogenous §-group. In par-
ticular |IFTK1F“| = |ﬁFw|. From [Lus78, §3] we know that o can also be regarded as a
cuspidal unipotent representation o,q of %Fw, and then of course dim(c,q) = dim(o).

Choose a maq € Irr(GEy(K))p,y,0.q) Whose pullback to G¥(K) contains 7. The
above allows us to simplify

. —(dim Pag+dim Gag)/2 5 Fw 0, 0,
(16.5) fdeg(r) _ dim(o)gy ISR BG 00 00T
fdeg(maq) dim(oad)q;((dim P+dim G)/2|?Fw| Q0P |QOF]

Recall from Section 14 that the image of Ar , under Ga.q” — GY is Ar. Adjoint
~-factors are defined via the action on the Lie algebra of GV, so

(16.6) v(s,Ad o Ap, ) = (s, Ad o Ar ,, ¥).
From (13.8) and Lemmas 13.2 and 13.3 we see that

(16.7) dim(pr)/ dim(pe,,) = [, 5 (%), )
With (13.10) we can express (16.7) as

(16.8) Q%7 QO Ny

] = 105711907 ANy, Q07T N, L

Tad Tad | |

Write Sx, = mo(Zav_.())), as in the proof of Lemma 13.2. Then Shey = Sfl\m and

ad
(16.9) S 195,171 = 12(G¥)?[12(GY)°)

Like for any finite abelian group with a Z-action, there are as many invariants as
co-invariants. Also taking (1.1) account, (16.9) equals

(16.10) 1Z(Gse)ol [Z(GY)o| " = [(Q02)71(29)*] 7! = [0 - Q).
With (13.5) we obtain

185,185, 17 = 185,113 7 [Sa, = Sas,,]
(16.11) = [0 - Q)70 - QNN ]
— 0 6 -1 __ 6 -1
= Q[|Q°Ny, [T'=1Q" NNy, [INa, 7"

JE.P.— M., 2020, tome 7



SUPERCUSPIDAL UNIPOTENT REPRESENTATIONS 1179

Recall from (13.3) that N C QZ&P, which implies 7 NNx,., = QQ*PONA”MI. From
(16.6), (16.8), (16.9) and (16.11) we deduce

dim(pe) [S5_ |70, Ad o A, 0)| |07 [|Q7F AN, [[Na,,|

16.12 =
( )dmmwwammwmww [QOF| Ny, 19290 Ny

TR
Q0P|
Now (16.5), (16.12) and Lemma 16.1 imply (16.2) for all 7 € Irr(G* (K)) cusp,unip- U

Leyya 16.3. — The equality (16.2) holds for Irr(G* (K)) cusp,unip When G is reductive
and Z(G)° is K-anisotropic.

Proof. Recall that in Section 15 we established Theorem 2 for G via restriction to
Ger- By [Lus78, §3], the cuspidal unipotent representations of P can be identified
with those of ngr. (Recall that by definitions all these representations are inflated
from finite reductive groups.) We denote o as ]P’ngr—representation by 0ger. In Lemma
15.2 we checked that Q9F = Qgg.

Let P, be the image of Z(G)q(Ky) = Z(G)°(K,,) in P, an F-anisotropic torus
of the same dimension as Z(G),. Then P, x Pge, is isogenous to P, and [GM16,
Prop. 1.4.12.c] tells us that

—F., =—F. —=F,
Po [ [Paer “[ =[P 7.
Since (16.3) and (16.4) are also valid for G¥(K'), we can compare the formal degrees
of m and its restriction mqer to G4, (K):

fdeg(r) _ dim(o)qz ™ot Gae) 2B 10l P
fdeg(maer) g —(dim P+dim G)/2 5 1 y0.p
(16.13) Im(Gder)g5¢ B 00|
(dimP,+dim Z(G),)/2
— K
—F,
IPo |

Recall from Lemma 15.4 and the proof of Proposition 15.6 that A is the canonical

image of A, under GY — Gge, . Using the decomposition

9" = Qder © Z(g7) = Lie(Guaer ") ® Lie(Z(G),),

Tder

we can write
Adgv o A\r = Adg,,,v © Ar,., @ (action of Wi /Ix on Z(g")).

The action of Wx on Z(g¥) can be considered as the composition of the adjoint rep-
resentation of “Z(G), and idw, (as L-parameter for Z(G),(K)). From the definition
(A.6) we see that

(16.14) (s, Adgv 0 A, ¥) = 7(s, Adg,.,v © Araer> V)V(S, Adzg)y oidwy, ).

Recall from Lemma 15.5 and the proof of Proposition 15.6 that p, can be identified
with pr,... Since Z(G),(K) is a torus, L-parameters for that group do not need
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enhancements. Formally, we can say that the enhancement of idw, is the trivial
one-dimensional representation of Ay, = m(Z(G);) = 1.
As in the proof of Lemma 15.5 we see that
Sﬁﬂd ={9Z2(G")° € Gaer” : gArg~" = 2 for some z € Z(GY)°}.
By (15.2) this equals
{92(GY)° € Gaer” : g'Arg’ ™" = Ay for some ¢’ € gZ(G¥)°}
= Zav (M) Zzcvye(Ax) = S5/ Z(GY)>".
Now we compare the right hand sides of (16.2) for 7 and mqe,:

(16.15) dim(pr) ‘Sﬁﬂdej (0, Adgv o A )| |4(0, Ad )y o idw ., ¥)]
' dim(pr,,,) S5 | [7(0, Adg,,, v © Ay, )| |2(G¥)=7]

It was shown in [HIIO8, Lem. 3.5] that
: im a V)0 5 Fuw
10, Ay oidwie, 9)| = g™ 7D (2(G) B
Then (16.15) becomes

i G)o i Fuw = dim P, +di G)a = Fu |-
q?{lmZ( ) |Pa I 1 :qﬁ(lmﬂl’ +dim Z(G) )/2‘Pa | 1,

which equals (16.13). In combination with Lemma 16.2 for Gge, that gives (16.2) for
7 € Irt(G* (K)) cusp, unip- O

We are ready to extend (16.2) to K,-split reductive K-groups.

Proof of Theorem 3. — Let m € Irr(G* (K)) cusp,unip b€ unitary. As observed in (15.7),
1

there exists an unramified character x € X, (G*¥(K)) such that 7’ := 7 ® x ' is
trivial on Z(G¥)s(K). By definition [HII08, p. 285]

(16.16) fdeg(m) = fdeg(n’),

where 7’ is regarded as a representation of (G¥/Z(G*);)(K). By construction (15.13)

()‘7"? pﬂ') = ()‘W’Xva ,077/)7

where x¥ € Z(GV)j is the image of x under (1.3). Recall that our adjoint represen-
tation of G does not act on Lie(G") but on Lie((G/Z(G)s)"). From (A.6) and the
definitions of L-functions and e-factors in [Tat79] we see that

V(s, Ad o Ar, 1) = (s, Ad o A, 9)).
The group S?\W is already defined via (G/Z(G)s)Y, so it equals Sg\ .. A part of the
construction of (15.13) is that p. can be identified with p,.. Thus the entire expression

dim(p) [S5, 7" 7(s, Ad 0 Ar, )

remains unchanged when we replace 7 by «’ and G¥ by G¥/Z(G%),. In view of
(16.16) this means that (16.2) for G*(K) is equivalent to (16.2) for (G¥/Z(G%)s)(K).
The group G*/Z(G¥)s has K-anisotropic connected center, so for

Irr((GW/Z(Gw)S)(K))Cusp’unip
we already established (16.2) in Lemma 16.3. |
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AppPENDIX. RESTRICTION OF SCALARS AND ADJOINT Y-FACTORS

Let L/K be a finite separable extension of non-archimedean local fields. In this
appendix we will first investigate to what extent local factors are inductive for
W C Wgk. This question is well-known for Weil group representations, but more
subtle for representations of Weil-Deligne groups. We could not find in the literature,
although it probably is known to some experts. After establishing the inductivity
result for general Weil-Deligne representations, we will check that it applies to the
Langlands parameters obtained from restriction of scalars of reductive groups. Then
we will show that the HII conjectures are stable under Weil restriction.

We follow the conventions of [Tat79] for local factors. Let ¢p : K — C* be a
nontrivial additive character. We endow K with the Haar measure that gives the ring
of integers ox volume 1, and similarly for L. For s € C let w, : Wg — C* be the
character w — ||w||®. For any (finite dimensional) W g-representation V, by definition

L(s,V)=L(ws®V) and e(s,V,9) =¢e(ws @ V, ).

We endow objects associated to L with a subscript L, to distinguish them from objects
for K (without subscript). The restriction of wy from W g to W, equals w; (as defined
purely in terms of L), so for any W, -representation Vr,:

(A.1) indyy (ws ® V1) = w, ® indyy < V.

As concerns representations of the Weil-Deligne group W g X SLa(C), we only consider
those which are admissible, that is, finite dimensional and the image of W g consists
of semisimple automorphisms. In view of [Tat79, §4.1.6] that is hardly a restriction
for local factors. It has the advantage that the category of such representations is
semisimple, so all the local factors are additive and make sense for virtual admissible
representations of W g x SLy(C). (The definitions of these local factors will be recalled
in the course of the next proofs.)

Lemva A1, —  L-functions of Weil-Deligne representations are inductive. That is,
for any admissible virtual representation (11, Vy) of W, x SLy(C):

L(s, indgf:sgj;((g))m) = L(s,7,) forallseC.

Proof. — Since these local factors are additive, we may assume that (pr,Vy) is an

actual representation. We write Nz = d(7z|sw,(c)) () §) € Endc(Vz) and

. (Wi xSLa(C . Wi xSLa(C
V= lndwf:SL;(((C)) Vo, 7= lndwf::SL;(((C))TLv N =d(7lsL.(c) (86)-

Then the kernel of N € Endc¢(V) is stable under 7(Wg) and the kernel of Ny, is a
71,(W )-stable subspace of V7. One checks directly that ker N = indwf (ker N,) and
(A.2) Tler v = Ind@ X (7L [ker ) -

By definition [Tat79, §4.1.6]

-1

(A.3) L(s,7) = L(ws ® ker N'¥) = det (1 — ¢*7(Frob) [rer n1x )
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The function L, from Weil group representations to C*, is additive and inductive
[Tat79, §3.3.2]. The latter means that

(A4)  L(ws @ ker N7*) = L(indyy* (ws ® ker N*)) = L(ws @ indyy ™ ker N7*).
Let FE be the maximal unramified subextension of L/K, and define Ng, 75 etcetera
in the same way as for K. Since Ip = I,
(A.5) indgg (ker NIIEE) = (indwg ker NE)IK = ker Nx
From (A.2), (A.3), (A.4) and (A.5) we deduce that
L(s,7) = L(ws @ ker N') = L(w, ® indyy X (ker NiF)) = L(s, 7&).

The extension L/F is totally ramified, so ¢, = qg. We can take Frobg in Wy, then
it is also a Frobenius element of W . From
ws @ker NiF = (ws ® indwf (ker NT* ))IE = (indvvgf (ws @ ker N1 ))IE = w, @ker NI
and (A.3) we obtain L(s,7g) = L(s, TL). O

Let ey x and fr,x denote the ramification index and the residue degree of L/K,
respectively. We endow L with the discrete valuation whose image is Z U {oo}. The
restriction of this valuation to K equals e,/ i times the valuation of K.

Recall that the order of ¢ is the largest n € Z such that ¢¥(k) = 1 for all k € K
of valuation > —n. Let ¢y : L — C* be the composition of ¢ with the trace map
for L/K. We recall from [Ser79, Prop.I11.3.7] that the order of %, is determined by

the order of ¥ and the different 7y, /x of L/K. For [ € L* we define another additive
character 9, ; of L by

Yra(y) = Yr(ly) = P(trp x (ly)).

Tueorem A.2. — Let (11, Vi) be an admissible virtual representation of W, x SLa(C).

(1) For everyl € L* and every s € C:

. W xSLa(C . W xSLa(C
(s, lndWIL{;SL;((C)) TL,Y) _ (s, de’L‘XXSL;((C))TL, )
(s, 7L, %L) e(s,7,%Ly) '

(2) For all s € C:

. W i xSLo(C im (Vg
5(3,1ndWLXXSL2((C))TL,¢) _ (E(C[WK/WL]aw))d )

E(SaTIMQ/)L) e(triVWLawL)
In particular, e-factors of Weil-Deligne representations are inductive for virtual rep-

resentations of dimension zero.
(3) When L/K is unramified:

(s, indgy <SS 6 T, W)e(s, 7, p) TH = (—1) KT Dord () dim(Vi),

(4) Suppose that (ws @ 71, VL) is self-dual or unitary. For anyl € L*:

e(s, indest2(C)
e(s, T, Y1)

e(C[W g /W], ¢) [Hm V)

W}( XSLQ(C)TL 'll))
' 6(triva,wL,l)
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(5) We denote the Artin conductor of a W g -representation V' by a(V'). When
ord(v)) = ord(¢pr,;) = 0 and (ws @ 71, VL) is self-dual or unitary:

. W xSLy(C)
e(s, indyy g1 i) T2y ¥) — AW /Wil dim(Ve)/2 _ 1y Ty ImOV/2,
(s, TLs L) K
Proof. — We use the conventions and notations from the proof of Lemma A.1.

(1) Recall from [GR10, §3.2] that for any admissible representation V' of W x
SL2(C):

(A.6) v(s,V,1b) = e(s, V,29)L(1 — s, V*)L(s,V) "

With this definition (1) is an obvious consequence of Lemma A.1.
(2) We write

coker N = V/ker N and coker N, = V,/ker N.

These are representations of W and W, respectively. From (A.1) and (A.2) we see
that

(A7) indwi< (ws ® coker N1,) = ws ® coker N.

Since Ik is compact,
(coker N)'% = V¥ [ ker N
For a Wk x SLy(C)-representation (7, V;) we define a W g-representation (7o, V;) by

— Jwl*/2 0
mw) =7 (. ("} uw|r1/2) )
By definition [Tat79, §4.1.6]

(A.8) e(s,7,1%) = e(ws ® 19, ¢) det ( — ws ® T(Frob)|.oxer NIK),
As L/FE is totally ramified, ¢, = qg and Frob;, = Frobg. From (A.1) we see that
ws ® coker N1z = (ws ® ind&,vf cokerNL)IE =ws ® cokerNiL.
Hence the rightmost term in (A.8) is the same for 7 and for 7.
As in (A.5), we find that
ws ® coker N1x = (ws ® indgvv‘;f cokerNE)IK = ind&,vg (ws ® cokerN]IEE).
With elementary linear algebra one checks that

(A.9) det (= ws @ 7(Frob)|eorer nix ) = det ( — ws @ 7'E(15‘1r0b[E:K])|Coker NIE).
E

Since Frob!®Xl is a Frobenius element of Wg, we see that here the rightmost term
in (A.8) is the same for 7 and for 7, which we already know is the same as for 7.

By [Tat79, §3.4], e(V,4) is additive and inductive in degree 0 (i.e., for virtual
‘W -representations V' of dimension 0). Consider the virtual W -representation

(A.10) Vi = (ws ® 11,0, Vi) — dim(Vy)(triv, C).
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The inductivity in degree 0 says

(A1) elws ® r0,¥r)e(trivw, , n)~ ) = (V7 1)

= e(indw V7, ¥) = e(ws ® 10,9)e(C[W g /W], )~ 4mVe),
We rewrite (A.11) as

elws @ T0,%) (e(@[wK/wLLw)dim(V“
e(ws ® 71,0,%L) e(trivw,,,¥r) '
In view of (A.8) and the above analysis of the rightmost term in that formula, (A.12)
equals (s, 7,v)e(s, 70,1%r) ", as asserted. In particular we see that
e(s,1,¢) = e(s,1r,,9r) if dim(Vy) =0,

proving the inductivity in degree zero.

(3) When L/K is unramified, we can simplify (A.12). In that case [Ser79,
Prop.I11.3.7 & Th.II1.5.1] show that ord(¢ ) = ord(¢). Furthermore the W g-repre-
sentation C[W /W] is a direct sum of unramified characters, which makes it easy
to calculate its e-factor. Pick a € K* with valuation —ord(¢), so that the additive
character 1, : k — 1 (ak) has order zero. From [Tat79, (3.4.4) and §3.2.6] we obtain

(A13) 1=¢(C[Wx /W] va) = |a|¢Z " det(a, C[W i /W L])e(C[W i /W L], ).

(A.12)

By the assumptions on a and L/K,

LK _ qord(WILK] _ jord(9) _ gord(vr)

a _ o) _ gord(v),

The group W /W, can be identified with (Frob) /(FrobX*%1). Elements of valuation
one act on that through a cycle of length [L : K], and a acts by the ord(y)-th power
of that cycle. Consequently

det(a, C[Wg /Wp]) = (—1)[EFK]I-Derd(®)
On the other hand, by [Tat79, (3.2.6.1)] e(trivw,, L) = qzrd(wL). Now (A.13) be-

comes
S(CIWr /W] ) = g (—1) (K=o )
_ g(trinL,wL)(il)([L:K]fl)ord(w).
Combine this with part (2).
(4) By [Tat79, (3.4.4)] applied to (A.10)
(A.14) e(VE, dr)e(VE,4r) ™" = det(l, VE) = det(ws @ r,0(1), VL)
By the assumed self-duality or unitarity of ws ® 7, | det(ws ® 77,0(1), V)| = 1. Then
(A.14) says

6(53 TL, wL)
e(trivwy, , 1 )dmOVe) |

(s, 7L, Y )
€(tI‘iVWL , ¢L,Z)dim(VL)
Combine that with part (2).
(5) We work out the right hand side of part (4). Since ord(¢r ;) = 0 and oy, has
volume 1, e(trivw, , ¥r,;) = 1 [Tat79, §3.2.6]. The Haar measure on K which gives ok
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volume 1 is self-dual with respect to the additive character 1 of order 0. Hence [Tat79,
(3.4.7)] applies. It tells us that

(A.15) le(C[W i /W L], 9)|? = q?((C[WK/WL]).

Let 05, /0, be the discriminant of oy /og, an ideal of ox. By [Ser79, Cor. VI.2.4]
applied to the trivial representation of W :

(A'16) a(C[WK/WL]) = fL/Ka(triVWL) +Va'lK(DUL/UK) = ValK(aﬂL/UK)'

By [Ser79, Prop.II1.3.6] the image of the different 7,k (an ideal in o) under the
norm map for L/K is precisely 0,, /o, , 50

(Al?) ValK(DoL/oK) = ValL(@L/K)[L : K]EZ}K = ValL(@L/K)fL/K.

It follows from (A.15)—(A.17) that

E(C[WK/WL]vw) _a(lCWk/Wir))/2  valL (DL kx)fL/x/2 _ valL(Pr,k)/2
=dg =dK =4dq .

A.18 -
( ) €(terWL ) ’l/)L,l)
Finally we use that anlL(@L/K) = [or : Z1/K] and we plug (A.18) into part (4). O

Suppose that L/K is a finite separable field extension and that H is any connected
reductive L-group. Let G = Resy x(H) be the restriction of scalars of H, from L
to K. Then G(K) = H(L) and, according to [Bor79, Prop.8.4], Shapiro’s lemma
yields a natural bijection

(A.19) B(G(K)) — BH(L)).

It is desirable that (A.19) preserves L-functions, e-factors and v-factors — basically
that is an aspect of the well-definedness of these local factors. Recall from [Spr09,
§12.4.5] that

G= indwzH ~ HILED a6 L-groups.

This yields isomorphisms of W g-groups
(A.20) G = indy* (HY) = (HY)=K]
We regard HY as a subgroup of GV, embedded as the factor associated to the iden-
tity element in W /W . From the proof of Shapiro’s lemma one gets an explicit
description of (A.19): it sends
A€ ®(G(K)) to (HY-component of /\|WL><SL2((C)) € ®(H(L)).
Let Ad or Adgv denote the adjoint representation of “G on
9"/Z(g")W¥ = Lie(G") /Lie((Z(G)s)").

For any A € ®(G(K)), Ad o A is an admissible representation of W x SLy(C) on
0" /Z(g")Wx. We refer to the local factors of Ad o A as the adjoint local factors of A
(all of them tacitly with respect to the Haar measure on K that gives ox volume 1).

Beware that the split component of the center Z(H), is not compatible with restric-

tion of scalars: Resy/x Z(H), is not K-split and contains Z(Resy,/xH), as a proper
subgroup.
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Lemma A3, Let L be a finite separable extension of K and denote the bijection
®(G(K)) — ®(H(L)) from (A.19) by A — Au. Suppose that Z(H)® is L-anisotropic.

Then Adgv o A can be regarded as ind&ffssfj((g)) (Adgv o A\g). In particular the
adjoint local factors of A and Ag are related as in Lemma A.1 and Theorem A.2 (with

Ve =b" and V =g").

Proof. — The proof of Shapiro’s lemma and (A.19) entail that every A € ®(G(K))
is of the form

(A.21) A = indyy S A for a g € ®(H(L)).

To make sense of this induction, we regard A\ (resp. Ag) as a representation on GV
(resp. HY) and we apply (A.20). Then Adgv o A : Wk X SLa(C) — Aut(g¥) equals

indgfxxssfj((g)) (Adgv o Ag). Knowing that, Lemma A.1 and Theorem A.2 apply. O

Lemma A.3 shows that adjoint L-functions of groups with anisotropic center are
always preserved under restriction of scalars (most likely that was known already).
Surprisingly, it also shows that adjoint e-factors and adjoint y-factors are usually not
preserved under Weil restriction, only if L/K is unramified (and up to a sign).

We will deduce from Theorem A.2 that the HII conjectures [HIIO8] are stable
under Weil restriction: they hold for G(K) if and only if they hold for H(L). For that
statement to make sense, we need a way to transfer enhancements of L-parameters
from G(K) to H(L):

Levvia A4, — The map (A.19) extends naturally to a bijection ®.(G(K)) —
D, (H(L)), which preserves cuspidality.

Proof. — For ®(H(L)) the equivalence relation on L-parameters and the component
groups come from the conjugation action of HY and for ®(G(K)) they come from
the conjugation action of (A.20). But (A.19) means that a L-parameter for G(K)
depends (up to equivalence) only on its coordinates in one factor HY of GY, so the
conjugation action of the remaining factors of GY can be ignored. Further, (A.21)
induces a group isomorphism

gy = I\

(4.22) a+— [y al

where the right hand side is a subgroup of indxvvf (HY ). Consequently (A.19) extends
to a bijection

(A.23) 8.(G(K)) — . (H(L)).

For G(K) cuspidality of enhancements of A is formulated via

(A.24) Za NWi) = Z, iy N(Wi) 2 Zaxo (W)

where the isomorphism is a restriction of @\ = 7,,. The right hand side of (A.24)

is just the group in which we detect cuspidality of enhancements of )\|WLXsL2 ©"

Therefore (A.23) respects cuspidality.
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In [GG99] a canonical Haar measure |wg| on G(K) was constructed. It involves the
motive Mg of a reductive group [Gro97]. By [GR10, (18) and §3.4] the Artin conductor
of Mg equals the Artin conductor a(g¥), where the Lie algebra g is endowed with
the W p-action from conjugation in “G.

In [HIIO8] a measure pg. on G(K) is defined in terms of |wg| and the Haar
measure on K that is self-dual with respect to ¥». When v has order 0, that self-
dual measure gives ox volume 1 and pe,y equals |wg|. That works well for K, -split
groups, but for ramified groups we need [HII08, Corr.]. Unfortunately the formula

He .y = q*a(gv)/2
from [HIIO8, Corr.] is incompatible with the equality yig ,, = pG,y for many groups
[GG99, Cor. 7.3]. On the other hand, such a g, is definitely needed in [HII08, Corr.].
To make it work in all cases, we redefine

(A.25) fy = gRE W) dmG)/2)

For K,,-split reductive groups this ug, agrees with [HIIO8], because for those
a(g¥) =0 [GGY9, §4] and (A.25) exhibits the same transformation behaviour with
respect to ¢ as in [HIIO08, (1.1)].

Lemva A5, — Let N be a normal connected K -subgroup of G such that the sequence
of K-rational points

1—NK) — GK)— (G/N)(K) —1

is exact. Then pg,y = UNpHG /Ny, 0 the sense that for all f € C.(G(K)):

o f@ st = [ ([ m dss ) dc ()

Proof. — We revisit the construction of jwg| in [GG99, §5]. Let Go be the split
form of G and let ¢ : G — Gg be a isomorphism of K;-groups. Write Ny = ¢(IN)
and (G/N)y = Gy/Ng. We choose a Chevalley model for Gy over ox. This also
provides Ng and (G/N)g with Chevalley models over ox. Let wn, be an invariant
differential form of top degree which has good reduction modulo wg (with respect to
the Chevalley model). Choosing w(g /Ny, in the same way, the product wn,w(c/N),
defines an analogous invariant differential form wg, for Gy.

The invariant differential forms wn,wa and wg N are obtained from their “split
versions” by pullback along ¢, so they also satisfy wg = wnwg/~. In view of the
exactness of the sequence in the statement, the associated measures on the K-rational
points of the involved groups are related as

(A.26) wa| = [wnl |we /-
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As representation of Gal(Ks/K), g¥ is the direct sum of n¥ := Lie(NY) and
Lie(G/N)Y. With the additivity of Artin conductors we deduce that

(A27) g2 Hord(@) dim G)/2
~ —(a(nY)+ord(y)) dimN)/2 _(a(Lie(G/N)v)-l-ord(w) dim(G/N))/2

Comparing (A.26) and (A.27) with (A.25), we obtain pug.y = UNyiG/N,p- O

Replacing H(L) by G(K) effects the formal degrees of square-integrable represen-
tations with respect to (A.25), but in a transparent way:

Lemma ALG. Suppose that Z(H)° is L-anisotropic and that = € Rep(G(K)) is
square-integrable. Then
—(a(g)+ord dim G)/2 —(a(h)4ord dim H)/2
feg(m, i ) g ®@ T M2 g (a6 ord (i) dim B2,
Proof. — By [GG99, Prop.6.1.4] the measure |wg| is respected by restriction of
scalars, that is, |wg| = |wg|- Note that

tdeg(m, g,y )qre 2@ TR M2 _ g (. wg )

and similarly for H. O

Our adjoint local factors coincide with those [HII08] if the additive characters on K
and L have order zero. But that is not always tenable. Namely, if ¢ : K — C* has
order zero, then ¢ (the composition of ¢ with the trace map for L/K) need not
have order zero. More precisely, when ord(¢)) = 0, [Ser79, Th.IIL.5.1] says that ¢y,
has order zero if and only if L/K is unramified.

So far we used the Haar measure drz on K that gives ox volume 1. When we
compute e-factors or y-factors with respect to an arbitrary additive character v, the
conventions in [HII08] impose that employ the Haar measure on K which is self-dual
with respect to ¥. Thus we take ¢~°*4¥)/2dz and we include it in the notations of
e-factors and v-factors.

For a € K* the additive character v, :  — v (za) has order ord(¢)) + valk (a).
We recall from [Tat79, (3.4.3) and (3.4.4)] that

(5, Vi g 0 I 0 2
=e(s,V, 9, q—(OTd(w)-i-ValK(a))/de)q}’?lK(a) dim(v)det(V, a)

5(5, V, w, qford(w)/Zdz)q‘I/(aIK(a) dim(V)/2 det(V, CL)

= (s, V, b, g2 ] T2 det(V, a).

With these notations, the HII conjecture can be formulated more precisely as
(A.28) fdeg(r, p1g,) = dim(p) [S5_| 7 [7(0, Adgv 0 Ar, 1, g~/ 2da)|.

Let us recall what [HII08] says about this for a split torus GL}. Let x be a unitary
smooth character of GLY'(L). By definition fdeg(x, gLy 4, ) equals the formal degree
of the trivial representation of the trivial group, which is just 1. Similarly all objects
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on the right hand of (A.28) are trivial, for they come from the zero-dimensional
representation of Wx x SLy(C). Hence (A.28) reduces to the equality 1 = 1.

After restriction of scalars and dividing out the split component of the center, we
end up with the anisotropic K-torus T := Resy,x(GL})/GL}. From the proof of
Theorem 3 on page 1180, we know that both sides of (A.28) for Resy,x(GL1)(K)
reduce to the same expressions for T(K). Hence we may assume that y is trivial on
GLT(K). The conjecture of Hiraga, Ichino and Ikeda was never conjectural for tori,
they proved it immediately. By [HII08, Corr.], applied to the smooth character x
of T(K):

a(t’)/2 L(1,Adpv o )y) dim(py)
q ) X Px
A29) fde U ) =
( ) 800 #r.0) |TV-W| L(0, AdTv 0 Ay) \Si |

[7(0, Adpv 0 Ay, ¥)].

Moreover, none of the terms in (A.29) depends on x and p, is just the trivial repre-
sentation of the group @, = 1.

Prorosition A.7. — Let H be any connected reductive L-group and let m € Irr(H(L))
be square-integrable modulo center. Let (X, p) € P(G(K)) be an enhanced L-para-
meter associated to w, and let (Ary, pry) € P (H(L)) be its image under the map
from Lemma A.4. The following are equivalent:

« The HII conjecture (16.2) holds for m as G(K)-representation, with respect to
any nontrivial additive character of K.

« The HII conjecture (16.2) holds for m as H(L)-representation, with respect to any
nontrivial additive character of L.

Proof. — 1If the HII conjecture holds for m € Irr(G(K')) with respect to one nontrivial
additive character of K, then by [HII08, Lem. 1.1 and 1.3] it holds with respect to all
nontrivial additive characters of K. The same applies to 7 as representation of H(L).
Therefore we may assume that ord(y)) = 0, and it suffices to consider one additive
character of L.

First we assume that Z(H)® is L-anisotropic. Choose £ € L* of valuation —ord(zy,).
Then the character ¢, ¢ : © — 91 (fz) of L has order zero. By Lemma A.6

: a(hV)—a(g¥))/2
(ASO) fdeg(ﬂ-7pJH7¢L,€) — fdeg(ﬂ',ﬂg7¢) qu/K (h")—a(g"))/ )

By the self-duality of the adjoint representation of “G, the right hand side of the HII
conjecture (A.28) is

L(l, Ade O )\W)

L(0,Adgv o M) |’

dim(px
(A.31) T;pr') £(0, Adgv © A, 1))
A

It follows quickly from (A.24) that (A.19) induces an isomorphism
(A.32) S5 =m(Zav(Ar)) — mo(Zuy (Ar)) = sﬁm.

In (A.22) we checked that @\ = &/, which implies dim(px) = dim(pry). By Lem-
mas A.1 and A.3 the L-functions in (A.31) do not change if we replace A, by Ary.

JE.P.— M., 2020, tome 7



1190 Y. Fenc, E. Oppam & M. SOLLEVELD
)

So all terms in (A.31), except possibly the e-factor, are inert under

()‘ﬂ'ﬂpﬂ') — ()\WH7p7TH)'

By Lemma A.3 and Theorem A.2.(5)
(A33) |E(O,Ade o )\WH,'(/JL,Z” _ |E(0,Adgv o )\T”w)lq;{a(C[WK/WLDdim(HV)/Z.
By [Ser79, Cor. VI1.2.4]

a(g’) = fr/xalh’) + dim(H")a(C[Wx /W ]).
Then (A.33) becomes
(A34) ‘5(O,AdH\/ ° AWH,¢L7€)| — |€(O,Ade ° )\7771/))‘ qu/Ka(bv)*a(gv))/Q.
From (A.30) and (A.34) we see that replacing G(K) by H(L) adjusts both sides of

(A.28) by the same factor qu/Ka(h )=ale™))/2

We come to the general case: H can be any connected reductive L-group. We ab-
breviate G’ = Resz/x (H/Z(H);) and T = Resy x (Z(H),)/Z(G)s. Applying (15.13)
to H(L), we obtain a short exact sequence

(A.35) 1— Z(H)s(L) — G(K) — G'(K) — 1.

With Galois cohomology one checks that T(K) = Z(H)(L)/Z(G)s(K), just like
(15.13). Plugging that into (A.35), we obtain a short exact sequence

(A.36) 1 — T(K) — (G/Z(G)s)(K) — G'(K) — 1.

Fix a unit vector v in the Hilbert space on which 7 is defined. The formal degree of 7
is given in [HIIO8] as

(A.37) fdeg(m, duc/z(G).0) " = / (7 (9)v,v)Pduc)z(c). v (9)-
(G/Z(G)s)(K)

As 7 is square-integrable, its central character is unitary. Hence |(7(g)v,v)| depends

only on the image of ¢ in H(L)/Z(H)s(L) = G'(K). With (A.36) and Lemma A.5

we see that (A.37) equals

L[ @ o sdue olo) = o () [ [ix(o)o.o) Pducro(o)
"(K) JT(K) G/(K)

By (16.3) and (A.29), for any x € Irr(T(K)):

(A38) e g (T(K)) ™" = fdeg(y, dur.y) = dim(p,)[S5 |~ (0, Adrv 0 Ay, ).

We point out that b’ := Lie(H/Z(H),)") is a representation of Gal(K,/L). Its
Artin conductor is understood as such. From [GG99, Prop.6.1.4] and (A.25) with
ord(¢)) = ord(vr¢) = 0 we see that

—a AYa 2 a AYa 2
(7 (g)v,v)Pdpuar 4 (g) = a0 / (7 (9)v, v) |2 dpes 211y, s, (9)
G’/ (K) (H/Z(H),)(L)

Ny Yy /9 B
:qu/Ka(h ) a(g ))/ fdeg(ﬂquH/Z(H)s’wL,g) 1.
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When we put all this into (A.37), we find that
(A39) fdeg(ﬁ, dug/z(g)s7¢)

= QE? , d,UH/Z(H)S,wL,Z)fdeg(Xa dpr,p)-
By (A.36) the representation space Lie(GY)/Lie((Z(G);s)Y) for the adjoint y-factor
can be decomposed as Lie(G’") @ Lie(T"). The action on the central Lie subalgebra
Lie(T") does not depend on the specific L-parameter, it comes only from the canonical
W g-action. The additivity of local factors tells us that

(A.40) v(s,Adgv o Ar, ) = y(s,Adgv o A, ¥)y(s, Adpv 0 Ay, ¥).

From (A.36) we also get a short exact sequence

(g/v)ffL/Ka(h/v))/2fdeg(

(A41) 1— Zgw ()\W) — Z(GV/Z(G) )v()\ﬂ-) —> Zpv (/\X) — 1.

The involved L-parameters are discrete, so all the groups in (A.41) are finite. By
definition, their component groups are the Siﬁ for the three cases. Thus (A.41) says
that

(A.42) S5 /S5 =S and IS | =S5, |ISx, ],

where the prime means that the group comes from G’. Similar calculations show that
d, = 1 and &\ = & . In particular p, is the same for G and for G’. From that,
(A.40) and (A.42) we deduce that

dim(px
(A.43) ISﬁ(p) (0, Adgv © Ar, 90)|
A :

= dim(px
- # [7(0, Adgrv © Ar, 1))

1S3

| "Y(Oa AdT\/ © )‘X7 ’IZ))I )
B

Using (A.29) and our earlier findings for groups with anisotropic center, in particular

(A.34), we can simplify (A.43) to

(a(a")—fr/rca(h’))/2 A (pry )
di B
St |
We compare that with (A.39) and we note that replacing H(L) by G(K) adjusts both
sides of the HII conjecture (A.28) by a factor

qg(g/v),fL/Ka(h/v))/zfdeg(X’ d//LT,’LZJ) -

In the body of the paper we only use Proposition A.7 for unramified extensions
L/K. That case can be proved more elementarily, without Artin conductors.

|7(0, Admv 0 Aryy, )| fdeg(x, dpr,y)-
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