Ruelle spectrum of linear pseudo-Anosov maps
Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 811-877.

The Ruelle resonances of a dynamical system are spectral data describing the precise asymptotics of correlations. We classify them completely for a class of chaotic two-dimensional maps, the linear pseudo-Anosov maps, in terms of the action of the map on cohomology. As applications, we obtain a full description of the distributions which are invariant under the linear flow in the stable direction of such a linear pseudo-Anosov map, and we solve the cohomological equation for this flow.

Les résonances de Ruelle d’un système dynamique sont des données spectrales qui décrivent les asymptotiques précises des corrélations. Nous les classifions complètement pour une classe d’applications chaotiques en dimension deux, les applications pseudo-Anosov linéaires, en termes de l’action en cohomologie de la transformation. Nous en déduisons une description complète des distributions qui sont invariantes par le flot linéaire dans la direction stable d’un tel pseudo-Anosov, et nous résolvons l’équation cohomologique pour ce flot.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.107
Classification: 37D50, 37A25
Keywords: Ruelle resonances, pseudo-Anosov, linear flow; cohomological equation
Mot clés : Résonances de Ruelle, pseudo-Anosov, flot linéaire, équation cohomologique

Frédéric Faure 1; Sébastien Gouëzel 2; Erwan Lanneau 1

1 Univ. Grenoble Alpes, CNRS UMR 5582, Institut Fourier F-38000 Grenoble, France
2 Laboratoire Jean Leray, CNRS UMR 6629, Université de Nantes 2 rue de la Houssinière, 44322 Nantes, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2019__6__811_0,
     author = {Fr\'ed\'eric Faure and S\'ebastien Gou\"ezel and Erwan Lanneau},
     title = {Ruelle spectrum of linear {pseudo-Anosov} maps},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {811--877},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.107},
     zbl = {07114039},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.107/}
}
TY  - JOUR
AU  - Frédéric Faure
AU  - Sébastien Gouëzel
AU  - Erwan Lanneau
TI  - Ruelle spectrum of linear pseudo-Anosov maps
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2019
SP  - 811
EP  - 877
VL  - 6
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.107/
DO  - 10.5802/jep.107
LA  - en
ID  - JEP_2019__6__811_0
ER  - 
%0 Journal Article
%A Frédéric Faure
%A Sébastien Gouëzel
%A Erwan Lanneau
%T Ruelle spectrum of linear pseudo-Anosov maps
%J Journal de l’École polytechnique — Mathématiques
%D 2019
%P 811-877
%V 6
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.107/
%R 10.5802/jep.107
%G en
%F JEP_2019__6__811_0
Frédéric Faure; Sébastien Gouëzel; Erwan Lanneau. Ruelle spectrum of linear pseudo-Anosov maps. Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 811-877. doi : 10.5802/jep.107. https://jep.centre-mersenne.org/articles/10.5802/jep.107/

[Ada17] A. Adam - “Generic non-trivial resonances for Anosov diffeomorphisms”, Nonlinearity 30 (2017) no. 3, p. 1146-1164 | DOI | MR | Zbl

[AG13] A. Avila & S. Gouëzel - “Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow”, Ann. of Math. (2) 178 (2013) no. 2, p. 385-442 | DOI | Zbl

[Bal05] V. Baladi - “Anisotropic Sobolev spaces and dynamical transfer operators: C foliations”, in Algebraic and topological dynamics, Contemp. Math., vol. 385, American Mathematical Society, Providence, RI, 2005, p. 123-135 | DOI | MR | Zbl

[Bal17] V. Baladi - “The quest for the ultimate anisotropic Banach space”, J. Statist. Phys. 166 (2017) no. 3-4, p. 525-557 | DOI | MR | Zbl

[BJ08] O. F. Bandtlow & O. Jenkinson - “Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions”, Adv. Math. 218 (2008) no. 3, p. 902-925 | DOI | MR | Zbl

[BJS13] O. F. Bandtlow, W. Just & J. Slipantschuk - “Analytic expanding circle maps with explicit spectra”, Nonlinearity 26 (2013) no. 12, p. 3231-3245 | DOI | MR | Zbl

[BJS17] O. F. Bandtlow, W. Just & J. Slipantschuk - “Complete spectral data for analytic Anosov maps of the torus”, Nonlinearity 30 (2017) no. 7, p. 2667-2686 | DOI | MR | Zbl

[BT07] V. Baladi & M. Tsujii - “Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms”, Ann. Inst. Fourier (Grenoble) 57 (2007) no. 1, p. 127-154 | DOI | Zbl

[BT08] V. Baladi & M. Tsujii - “Dynamical determinants and spectrum for hyperbolic diffeomorphisms”, in Geometric and probabilistic structures in dynamics, Contemp. Math., vol. 469, American Mathematical Society, Providence, RI, 2008, p. 29-68 | DOI | MR | Zbl

[Buf14a] A. I. Bufetov - “Finitely-additive measures on the asymptotic foliations of a Markov compactum”, Moscow Math. J. 14 (2014) no. 2, p. 205-224 | DOI | MR | Zbl

[Buf14b] A. I. Bufetov - “Limit theorems for translation flows”, Ann. of Math. (2) 179 (2014) no. 2, p. 431-499 | DOI | MR | Zbl

[DFG15] S. Dyatlov, F. Faure & C. Guillarmou - “Power spectrum of the geodesic flow on hyperbolic manifolds”, Anal. PDE 8 (2015) no. 4, p. 923-1000 | DOI | MR | Zbl

[For97] G. Forni - “Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus”, Ann. of Math. (2) 146 (1997) no. 2, p. 295-344 | DOI | MR | Zbl

[For02] G. Forni - “Deviation of ergodic averages for area-preserving flows on surfaces of higher genus”, Ann. of Math. (2) 155 (2002) no. 1, p. 1-103 | DOI | MR | Zbl

[For07] G. Forni - “Sobolev regularity of solutions of the cohomological equation”, 2007 | arXiv | Zbl

[For18] G. Forni - “Ruelle resonances and cohomological equations” (2018), Talk at the Teichmüller dynamics, mapping class groups and applications summer school in CIRM

[GL08] S. Gouëzel & C. Liverani - “Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties”, J. Differential Geom. 79 (2008) no. 3, p. 433-477 | DOI | MR | Zbl

[GL19] P. Giulietti & C. Liverani - “Parabolic dynamics and anisotropic Banach spaces”, J. Eur. Math. Soc. (JEMS) 21 (2019) no. 9, p. 2793-2858 | DOI | MR | Zbl

[Hen93] H. Hennion - “Sur un théorème spectral et son application aux noyaux lipchitziens”, Proc. Amer. Math. Soc. 118 (1993) no. 2, p. 627-634 | MR | Zbl

[HK95] B. Hasselblatt & A. Katok - Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[Hör03] L. Hörmander - The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-Verlag, Berlin, 2003 | DOI | Zbl

[Jéz17] M. Jézéquel - “Local and global trace formulae for smooth hyperbolic diffeomorphisms”, 2017 | arXiv

[MMY05] S. Marmi, P. Moussa & J.-C. Yoccoz - “The cohomological equation for Roth-type interval exchange maps”, J. Amer. Math. Soc. 18 (2005) no. 4, p. 823-872 | DOI | MR | Zbl

[MY16] S. Marmi & J.-C. Yoccoz - “Hölder regularity of the solutions of the cohomological equation for Roth type interval exchange maps”, Comm. Math. Phys. 344 (2016) no. 1, p. 117-139 | DOI | Zbl

[Nau12] F. Naud - “The Ruelle spectrum of generic transfer operators”, Discrete Contin. Dynam. Systems 32 (2012) no. 7, p. 2521-2531 | DOI | MR | Zbl

[Rue90] D. Ruelle - “An extension of the theory of Fredholm determinants”, Publ. Math. Inst. Hautes Études Sci. 72 (1990), p. 175-193 | DOI | Zbl

[Thu88] W. P. Thurston - “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc. (N.S.) 19 (1988) no. 2, p. 417-431 | DOI | MR | Zbl

[Zor06] A. Zorich - “Flat surfaces”, in Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, p. 437-583 | DOI | MR | Zbl

Cited by Sources: