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RUELLE SPECTRUM OF

LINEAR PSEUDO-ANOSOV MAPS

by Frédéric Faure, Sébastien Gouëzel & Erwan Lanneau

Abstract. — The Ruelle resonances of a dynamical system are spectral data describing the
precise asymptotics of correlations. We classify them completely for a class of chaotic two-
dimensional maps, the linear pseudo-Anosov maps, in terms of the action of the map on coho-
mology. As applications, we obtain a full description of the distributions which are invariant
under the linear flow in the stable direction of such a linear pseudo-Anosov map, and we solve
the cohomological equation for this flow.

Résumé (Spectre de Ruelle des applications pseudo-Anosov linéaires). — Les résonances de
Ruelle d’un système dynamique sont des données spectrales qui décrivent les asymptotiques
précises des corrélations. Nous les classifions complètement pour une classe d’applications chao-
tiques en dimension deux, les applications pseudo-Anosov linéaires, en termes de l’action en
cohomologie de la transformation. Nous en déduisons une description complète des distribu-
tions qui sont invariantes par le flot linéaire dans la direction stable d’un tel pseudo-Anosov,
et nous résolvons l’équation cohomologique pour ce flot.
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1. Introduction, statements of results

Ruelle resonances. — Consider a map T on a smooth manifold X, preserving a
probability measure µ. One feature that encapsulates a lot of information on its
probabilistic behavior is the speed of decay of correlations. Consider two smooth
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812 F. Faure, S. Gouëzel & E. Lanneau

functions f and g. Then one expects that
∫
f ·g◦Tn dµ converges to (

∫
f dµ) ·(

∫
g dµ)

if iterating the dynamics creates more and more independence – if this is the case,
T is said to be mixing for the measure µ. Often, one can say more than just the mere
convergence to 0 of the correlations∫

f · g ◦ Tn dµ−
(∫

f dµ

)
·
(∫

g dµ

)
,

and this is important for applications. For instance, the central limit theorem for the
Birkhoff sums

Snf =

n−1∑
k=0

f ◦ T k

of a function f with 0 average often follows from the summability of the correlations
between f and f ◦ Tn.

When T is very chaotic, the correlations tend exponentially fast to 0. It is sometimes
possible to obtain the next few terms in their asymptotic expansion, in terms of
the Ruelle spectrum (or Ruelle resonances) of the map.

Definition 1.1. — Let T be a map on a space X, preserving a probability measure µ.
Consider a space of bounded functions C on X. Let I be a finite or countable set, let
Λ = (λi)i∈I be a set of complex numbers with |λi| ∈ (0, 1] such that for any ε > 0 there
are only finitely many i with |λi| > ε, and let (Ni)i∈I be nonnegative integers. We say
that T has the Ruelle spectrum (λi)i∈I with Jordan blocks dimension (Ni)i∈I on the
space of functions C if, for any f, g ∈ C and for any ε > 0, there is an asymptotic
expansion ∫

f · g ◦ Tn dµ =
∑
|λi|>ε

∑
j6Ni

λni n
jci,j(f, g) + o(εn),

where ci,j(f, g) are bilinear functions of f and g, that we suppose finite rank but non
zero.

In other words, there is an asymptotic expansion for the correlations of functions
in C, up to an arbitrarily small exponential error. With this definition, it is clear that
the Ruelle spectrum is an intrinsic object, only depending on T , µ and the space of
functions C. In general, one takes for C the space of C∞ functions on a manifold.

As an example, assume that T is a C∞ uniformly expanding map on a manifold
and µ is its unique invariant probability measure in the Lebesgue measure class. Then
the correlations of Cr functions admit an asymptotic expansion up to an exponential
term εnr , where εr tends to 0 when r tends to infinity. Hence, Definition 1.1 is not
satisfied for C = Cr, but it is satisfied for C = C∞(M). The same holds for Anosov
maps, when µ is a Gibbs measure.

The first question one may ask is if it makes sense to talk about the Ruelle spectrum,
i.e., if Definition 1.1 holds for some Λ = (λi)i∈I . Virtually all proofs of such an abstract
existence result follow from spectral considerations, exhibiting the λi as the spectrum
of an operator associated to T , acting on a Banach space or a scale of Banach spaces.
General spectral theorems taking advantage of compactness or quasi-compactness
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Ruelle spectrum of linear pseudo-Anosov maps 813

properties of this operator then imply that there is some set Λ for which Definition 1.1
holds (and moreover all elements of Λ have finite multiplicity), but without giving any
information whatsoever on Λ in addition to the fact that it is discrete and at most
countable – in particular, it is not guaranteed that Λ is not reduced to the eigenvalue 1,
which is always a Ruelle resonance as one can see by taking f = g = 1. Indeed, if T
is the doubling map x 7→ 2x mod 1 on the circle and C = C∞(S1), then there is
no other resonance. In the same way, there is no other resonance for linear Anosov
map of the torus (these facts are easy to check by computing the correlations using
Fourier series). That Definition 1.1 holds is notably known for uniformly expanding
and uniformly hyperbolic smooth maps, see [Rue90, BT07, GL08].

Once the answer to this first question is positive, there is a whole range of questions
one may ask about Λ: is it reduced to {1}? is it infinite? are there asymptotics for
Card(Λ ∩ {|z| > ε}) (possibly counted with multiplicities) when ε tends to 0? is it
possible to describe explicitly Λ? The answers to these questions depend on the map
under consideration. Let us only mention the results of Naud [Nau12] (for generic an-
alytic expanding maps, there is nontrivial Ruelle spectrum, with density at 0 bounded
below explicitly), Adam [Ada17] (the spectrum is generically nonempty for hyperbolic
maps), Bandtlow-Jenkinson [BJ08] (upper bound for the density of Ruelle resonances
at 0 in analytic expanding maps, extending previous results of Fried), Bandtlow-
Just-Slipantschuk [BJS13, BJS17] (construction of expanding or hyperbolic maps for
which the Ruelle spectrum is completely explicit), Dyatlov-Faure-Guillarmou [DFG15]
(classification of the Ruelle resonances for the geodesic flow on compact hyperbolic
manifolds in any dimension).

Our goal in this article is to investigate these questions for a class of maps of
geometric origin, namely linear pseudo-Anosov maps. They are analogues of linear
Anosov maps of the two-dimensional torus, but on higher genus surfaces. The dif-
ference with the torus case is that the expanding and contracting foliations have
singularities. Apart from these singularities, the local picture is exactly the same
as for linear Anosov maps of the torus (in particular, it is the same everywhere in
the manifold). We will obtain a complete description of the Ruelle spectrum of linear
pseudo-Anosov map. Then, using the philosophy of Giulietti-Liverani [GL19] that Ru-
elle resonances contain information on the translation flow along the stable manifold
on the map, we will discuss consequences of these results on the vertical translation
flow in translation surfaces supporting a pseudo-Anosov map. We will in particular
obtain complete results on the set of distributions which are invariant under the ver-
tical flow, and on smooth solutions to the cohomological equation, recovering in this
case results due to Forni on generic translation surfaces [For97, For02, For07].

Linear pseudo-Anosov maps. — There are several equivalent definitions of pseudo-
Anosov maps (especially in terms of foliations carrying a transverse measure). We will
use the following one in which the foliations have already been straightened (i.e., we
use coordinates where the foliations are horizontal and vertical), in terms of half-
translation surfaces (see e.g. [Zor06] for a nice survey on half-translation surfaces).

J.É.P. — M., 2019, tome 6



814 F. Faure, S. Gouëzel & E. Lanneau

Definition 1.2. — Let M be a compact connected surface and let Σ be a finite subset
of M . A half-translation structure on (M,Σ) is an atlas on M − Σ for which the
coordinate changes have the form x 7→ x + v or x 7→ −x + v. Moreover, we require
that around each point of Σ the half translation surface is isomorphic to a finite
ramified cover of R2/± Id around 0.

A half-translation surface carries a canonical complex structure: it is just the canon-
ical complex structure in the charts away from Σ, which extends to the singularities.
In particular, it also has a C∞ structure, and it is orientable.

In a half-translation structure, the horizontal and vertical lines in the charts define
two foliations of M − Σ, called the horizontal and vertical foliations. Of particular
importance to us will be the case where the coordinate changes are of the form x 7→
x+v. In this case, we say that M is a translation surface. Singularities are then finite
ramified cover of R2 around 0. Moreover, the horizontal and vertical foliations carry
a canonical orientation.

Definition 1.3. — Consider a half-translation structure on (M,Σ). A homeomor-
phism T : M →M is a linear pseudo-Anosov map for this structure if T (Σ) = Σ and
there exists λ > 1 such that, for any x ∈ M − Σ, one has in half-translation charts
around x and Tx the equality Ty =

(±λ 0
0 ±λ−1

)
y, where the choice of signs depends

on the choice of coordinate charts. We say that λ is the expansion factor of T .

In other words, T sends horizontal segments to horizontal segments and vertical
segments to vertical segments, expanding by λ in the horizontal direction and con-
tracting by λ in the vertical direction. In particular, Lebesgue measure is invariant
under T .

When M is a translation surface, there are two global signs εh and εv saying if T
preserves or reverses the orientation of the horizontal and vertical foliations. The
simplest case is when εh = εv = 1. In this case, T preserves the orientation of both
foliations, and can be written in local charts as

(
λ 0
0 λ−1

)
.

While we obtain a complete description of the Ruelle spectrum in all situations
(orientable foliations or not, εv and εh equal to 1 or −1), it is easier to explain in
the simplest case of translation surfaces with εv = εh = 1. We will refer to this
case as linear pseudo-Anosov maps preserving orientations. We will focus on this case
in this introduction and most of the paper, and refer to Section 6 for the general
situation (that we will deduce from the case of linear pseudo-Anosov maps preserving
orientations).

In the definition of Ruelle resonances, there is a subtlety related to the choice of
the space of functions C for which we want asymptotic expansions of the correlations.
While it is clear that we want C∞ functions away from the singularities, the require-
ments at the singularities are less obvious. Denote by C∞c (M − Σ) the space of C∞
functions that vanish on a neighborhood of the singularities. This is the space we will
use for definiteness.

J.É.P. — M., 2019, tome 6
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Let T be a linear pseudo-Anosov map, preserving orientations, on a genus g trans-
lation surface M . Let λ be its expansion factor. As the local picture for T is the same
everywhere, it should not be surprising that the only data influencing the Ruelle spec-
trum are of global nature, related to the action of T on the first cohomology group
H1(M) (a vector space of dimension 2g). By Thurston [Thu88], λ and λ−1 are two
simple eigenvalues of

T ∗ : H1(M) −→ H1(M)

(the corresponding eigenvectors are the cohomology classes of the horizontal and the
vertical foliations). The orthogonal subspace to these two cohomology classes has
dimension 2g − 2, it is invariant under T ∗, and the spectrum Ξ = {µ1, . . . , µ2g−2}
of T ∗ on this subspace is made of eigenvalues satisfying λ−1 < |µi| < λ for all i.

Here is our main theorem when T preserves orientations.

Theorem 1.4. — Let T be a linear pseudo-Anosov map preserving orientations on a
genus g compact surface M , with expansion factor λ and singularity set Σ. Then T

has a Ruelle spectrum on C = C∞c (M − Σ) given as follows. First, there is a simple
eigenvalue at 1. Denote by Ξ = {µ1, . . . , µ2g−2} the spectrum of T ∗ on the orthogonal
subspace to the classes of the horizontal and vertical foliations in H1(M). Then, for
any i and for any integer n > 1, there is a Ruelle resonance at λ−nµi of multiplicity n.

Note that a complex number z may sometimes be written in different ways as
λ−nµi (for instance if the spectrum of T ∗ is not simple, i.e., if there is i 6= j with
µi = µj – but it can also happen that there is i 6= j with µi = λ−1µj , which will
lead to more superpositions). In this case, to get the multiplicity of z, one should
add all the multiplicities from the theorem corresponding to the different possible
decompositions.

Let us note that some nonzero functions can be orthogonal to all Ruelle resonances.
For instance, if T lifts a linear Anosov map of the torus to a higher genus surface
covering the torus, then the correlations of any two smooth functions lifted from the
torus tend to 0 faster than any exponential, as this is the case in the torus.

A quick sketch of the proof. — Before we discuss further results, we should explain
briefly the strategy to prove Theorem 1.4. First, we want to show that Ruelle reso-
nances make sense as in Definition 1.1. This part is classical. We introduce a scale
of Banach spaces of distributions, denoted by B−kh,kv , which behaves well under the
composition operator T : f 7→ f ◦ T . The elements of B−kh,kv are objects that can
be integrated along horizontal segments against Ckh -functions, and moreover have kv
vertical derivatives: this is an anisotropic Banach space, taking advantage of the con-
traction of T in the vertical direction and of its expansion in the horizontal direction,
as is customary in the study of hyperbolic dynamics. On the technical level, the def-
inition of B−kh,kv is less involved than in many articles on hyperbolic dynamics (see
for instance [GL08, BT07]), as we may take advantage of the fact that the stable and
unstable directions are smooth – in this respect, it is closer to [Bal05, AG13]. The
only additional difficulty compared to the literature is the singularities, but it turns
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816 F. Faure, S. Gouëzel & E. Lanneau

out that they do not play any role in this part. Hence, we can prove that the essential
spectral radius of T on B−kh,kv is at most λ−min(kh,kv). The existence of Ruelle res-
onances in the sense of Definition 1.1 readily follows. One important point we want
to stress here is that, since we are interested in Ruelle resonances for functions in
C∞c (M −Σ), we take for B−kh,kv the closure of C∞c (M −Σ) for an anisotropic norm
as described above. In particular, smooth functions are dense in B−kh,kv .

The second step in the proof is to show that the elements described in Theorem 1.4
belong to the set of Ruelle resonances or, equivalently, to the spectrum of T on B−kh,kv
when kh and kv are large enough. It is rather easy to show that 1 and λ−1µi belong to
the spectrum, by considering a smooth 1-form ω = ωx dx+ ωy dy whose cohomology
class is an eigenfunction for the iteration of T ∗, and looking at the asymptotics of
T nωx to obtain an element f ∈ B−kh,kv with T f = λ−1µif . Then, one deduces that
λ−nµi also belongs to the spectrum, as Ln−1

h f is an eigenfunction for this eigenvalue,
where Lh denotes the derivative in the horizontal direction.

The most interesting part of the proof is to show that there is no other eigenvalue,
and that the multiplicities are as stated in the theorem. For this, start from an eigen-
function f ∈ B−kh,kv for an eigenvalue ρ. Denote by Lv the derivative in the vertical
direction. Then Lnvf is an eigenfunction for the eigenvalue λnρ. Since all eigenvalues
have modulus at most 1, we deduce that Lnvf = 0 for large enough n. Consider the last
index n where Lnvf 6= 0, and write g = Lnvf . It is an eigenfunction, and Lvg = 0. If we
can prove that the corresponding eigenvalue has the form λ−kµi for some k and i, then
we get ρ = λ−(n+k)µi, as desired. To summarize, it is enough to understand eigen-
functions that, additionally, satisfy Lvg = 0. For this, we introduce a cohomological
interpretation of elements of B−kh,kv ∩ kerLv. Heuristically, elements of B−kh,kv can
be integrated along horizontal segments by definition, so what really matters is not
the distribution g, but the 1-current g dx. (In the language of Forni [For02], elements g
of B−kh,kv ∩ kerLv are the vertically invariant distributions, see his Definition 6.4,
while g dx is the corresponding basic current on M .) Formally, its differential is

d(g dx) = (∂xg dx+ ∂yg dy) ∧ dx = −Lvg dx ∧ dy.

Hence, elements of B−kh,kv∩kerLv give rise to closed currents, and have an associated
cohomology class in H1(M) by de Rham’s theorem (in fact, we do not use de Rham’s
theorem directly, but a custom version suited for our needs that deals more carefully
with the singularities). From the equality T g = ρgg one deduces that this class is an
eigenfunction for T ∗ acting on H1(M), for the eigenvalue λρg. If the class is nonzero,
we get that λρg is one of the µi, and ρg = λ−1µi as desired. If the class is zero, this
means that g dx is itself the differential of a 0-current g̃. It turns out that g̃ belongs
to our scale of Banach spaces, and is an eigenfunction for the eigenvalue λρg. One
can then argue in this way by induction to show that all eigenvalues are of the form
claimed in Theorem 1.4. There are additional difficulties related to the eigenvalue λ−1

of T ∗ : H1(M)→ H1(M): it does not show up in the statement of Theorem 1.4, but
this does not follow from the sketch we have just given. Moreover, getting the precise
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multiplicities requires further arguments, based on duality arguments and beyond this
introduction.

Here is the precise description we get in the end, illustrated on Figure 1.1, assum-
ing for simplicity that µi is simple for T ∗ : H1(M) → H1(M) and that λ−1µi is not
an eigenvalue of T ∗. Then the eigenvalue λ−1µi for T is simple, and realized by a
distribution fi which is annihilated by Lv (i.e., it is invariant under vertical trans-
lation) and such that the cohomology class of fi dx is the eigenfunction in H1(M)

under T ∗, for the eigenvalue µi. Denoting by Eα the generalized eigenspace associ-
ated to the eigenvalue α, then Lv is onto from Eλ−n−1µi to Eλ−nµi , and its kernel is
one-dimensional, equal to LnhEλ−1µi . Therefore, there is a flag decomposition

(1.1) {0} ⊂ LnhEλ−1µi ⊂ L
n−1
h Eλ−2µi ⊂ · · · ⊂ L

2
hEλ−n+1µi ⊂ LhEλ−nµi ⊂ Eλ−n−1µi ,

in which the k-th term Ln+1−k
h Eλ−kµi has dimension k, and is equal to

Eλ−n−1µi ∩ kerLkv .

This decomposition shows that the elements of Eλ−n−1µi behave like polynomials
of degree n when one moves along the vertical direction. Moreover, the decomposi-
tion (1.1) is invariant under the transfer operator T , which is thus in upper triangular
form with λ−n−1µi on the diagonal. We do not know if there are genuine Jordan
blocks, or a choice of basis for which T is diagonal. In particular, we do not identify
in Theorem 1.4 the Jordan blocks dimension of the Ruelle resonances, in the sense
of Definition 1.1. The decomposition (1.1) can also be interpreted in terms of the
operator N = LhLv, which is nilpotent of order n + 1 on the n + 1-dimension space
Eλ−n−1µi : the k-th term is the kernel of Nk, and also the image of Nn+1−k.

Invariant distributions for the vertical flow. — The above description is a first step
into the direction of classifying all distributions on M − Σ which are invariant
under the vertical flow. We will call such distributions vertically invariant, or
Lv-annihilated, or sometimes Lv-invariant. It turns out that there is another family
of such Lv-annihilated distributions, which do not show up in the Ruelle resonances
and correspond to relative homology. They belong to an extended space B−kh,kvext

defined like B−kh,kv above, except that we do not restrict to the closure of the set of
smooth functions. (In the language of Forni [For02], elements g of B−kh,kvext ∩ kerLv
are the vertically quasi-invariant distributions, see his Definition 6.4, while g dx is the
corresponding basic current onM−Σ). An example of an element of B−kh,kvext rB−kh,kv
is as follows: consider a vertical segment Γσ ending at a singularity σ, a function ρ on
this segment which is equal to 1 on a neighborhood of the singularity and to 0 on a
neighborhood of the other endpoint of the segment, and define a distribution ξ(0)

σ by

〈ξ(0)
σ , f〉 =

∫
Γσ

ρ(y)f(y) dy.

In other words, the corresponding distribution on a horizontal segment I is equal to
ρ(xI)δxI if I intersects Γσ at a point xI , and 0 otherwise. It turns out that these
are essentially the only elements of B−kh,kvext r B−kh,kv : the latter has (almost) finite
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kx

ky

0 1

0

1

Lv = ∂y

Lh = ∂x

Eigenspace Eλ−nµi , n = kx + ky

kerLv

Figure 1.1. For a given eigenvalue µi of T ∗ (µi ∈ (λ−1, λ)), each
black point of the lattice (kx, ky)kx>1,ky>0 represents an independent
Ruelle distribution u(kx,ky). In particular fi = u(1,0). The eigenvalues
of the transfer operator T are λ−nµi with n > 1 and the associated
eigenspace is Eλ−nµi = Span

{
ukx,ky , kx + ky = n

}
with dimension n

and represented by a diagonal red line. The operator Lh ≡ ∂x maps
u(kx,ky) to u(kx+1,ky) and Lv ≡ ∂y maps u(kx,ky) to u(kx,ky−1). In par-
ticular the space kerLv is represented by the first horizontal blue line
ky = 0.

codimension in the former (see Proposition 4.4 for a precise statement). Note that
if one chooses another vertical segment Γ′σ ending on the same singularity, then the
difference of the two distributions associated to Γσ and Γ′σ belongs to B−kh,kv when
kh > 1. The same happens if one replaces ρ by another function ρ′. Hence, modulo
B−kh,kv , the distribution ξ(0)

σ is canonically defined and depends only on σ.

Proposition 1.5. — Let kh, kv > 3. For σ ∈ Σ, there exists a distribution ξσ ∈ B−kh,kvext

such that ξσ−ξ(0)
σ ∈ B−kh,kv and Lvξσ is the constant distribution equal to 1/Leb(M).

Therefore, the distributions ξσ − ξσ′ span a subspace of dimension Card Σ− 1 of Lv-
annihilated distributions.

The full description of Lv-annihilated distributions is given in the next theorem.
It states that all such distributions come from the distributions associated to Ruelle
resonances described in Theorem 1.4, and additional spurious distributions coming
from the singularities as in Proposition 1.5.

To give a precise statement, we have to deal carefully with the exceptional situation
when there is an eigenvalue µ′ of T ∗ such that µ = λ−1µ′ is also an eigenvalue of T ∗:
then LhEλ−1µ′ is contained in Eλ−1µ, and there are some formal difficulties.

For each eigenvalue µ ∈ Ξ = {µ1, . . . , µ2g−2}, there is a map f 7→ [f ] from
Eλ−1µ ∩ kerLv to H1(M), whose image is the generalized eigenspace associated to
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Ruelle spectrum of linear pseudo-Anosov maps 819

the eigenvalue µ of T ∗. It is an isomorphism except in the exceptional situation above
where it is onto, with a kernel equal to LhEλ−1µ′ . Denote by EHλ−1µ a subspace of
Eλ−1µ∩kerLv which is sent isomorphically to the generalized eigenspace of T ∗ for the
eigenvalue µ, i.e., EHλ−1µ = Eλ−1µ, except in the exceptional case above where EHλ−1µ

is a vector complement to LhEλ−1µ′ in Eλ−1µ ∩ kerLv.

Theorem 1.6. — Let T be a linear pseudo-Anosov map preserving orientations on a
genus g compact surface M , with expansion factor λ and singularity set Σ. Let Lv
denote the differentiation in the vertical direction. Then the space of distributions in
the kernel of Lv is exactly given by the direct sum of the constant functions, of the
spaces LnhEHλ−1µi

for n > 0 and i = 1, . . . , 2g − 2, of the multiples of the distributions
ξσ − ξσ′ for σ, σ′ ∈ Σ, and of the multiples of Lnhξσ for n > 1 and σ ∈ Σ, where ξσ is
defined in Proposition 1.5.

In particular, the space of Lv-annihilated distributions of order > −N is finite-
dimensional for any N , and its dimension grows like (2g−2+Card Σ)N when N →∞.
This is an analogue of [For02, Th. 7.7(i)] in our context (see Remark 4.8 for a further
cohomological description). If one restricts to Lv-annihilated distributions coming
from B−kh,kv , one should remove the distributions ξσ−ξσ′ and Lnhξσ. Their dimension
grows like (2g − 2)N , corresponding to [For02, Th. 7.7(ii)].

Bufetov has also studied vertically invariant distributions of the vertical foliation
of a linear pseudo-Anosov map in [Buf14a]. In this article, the author is only inter-
ested in distributions of small order, which can be integrated against characteristic
functions of intervals. He obtains a full description of such distributions, by more
combinatorial means, and gets further properties such as their local Hölder behavior.
These distributions correspond exactly to the elements of

⋃
|α|>λ−1 Eα.

Solving the cohomological equation for the vertical flow. — One of the main motivations
to study Lv-annihilated distributions is that they are related to the cohomological
equation for the vertical flow. Indeed, if one wants to write a function f as LvF for
some function F with some smoothness, then one should have for any distribution ω
in the kernel of Lv the equality

(1.2) 〈ω, f〉 = 〈ω,LvF 〉 = −〈Lvω, F 〉 = 0,

at least if F is more smooth than the order of ω and if Lv is anti-selfadjoint on the
relevant distributions (note that, in general, F will not be supported away from the
singularities, so the fact the 〈ω, F 〉 or 〈Lvω, F 〉 are well defined is not obvious, and nei-
ther is the formal equality 〈ω,LvF 〉 = −〈Lvω, F 〉). Such necessary conditions to have
a coboundary are also often sufficient. In this direction, we obtain Theorem 1.7 below.
The philosophy that results on the coboundary equation should follow from results
on Ruelle resonances comes from Giulietti-Liverani [GL19]. Note that the converse is
also true: in a recent work, Forni [For18] studied Ruelle resonances and obstructions
to the existence of solution to the cohomological equation. In particular his work in-
dependently reproves some of the results of our paper (with very different methods).
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The cohomological equation was first solved for a large class of interval exchange maps
(including the ones corresponding to pseudo-Anosov maps) in [MMY05]. The proof
we give of the next theorem also owes a lot to the techniques of [GL19] (although the
local affine structure makes many arguments simpler compared to their article, but
the presence of singularities creates new difficulties, as usual).

Theorem 1.7. — In the setting of Theorem 1.6, consider a C∞ function f with com-
pact support in M − Σ. Assume that 〈ω, f〉 = 0 for all ω ∈

⋃
|α|>λ−k−1 Eα ∩ kerLv.

Then there exists a function F on M which is Ck whose k derivatives are bounded
and continuous on M , such that f = LvF on M − Σ.

The fact that f is C∞ and compactly supported in M − Σ is for the simplicity of
the statement. Indeed, the theorem also holds if f is continuous on M −Σ and Ck+2

along horizontal lines, with Ljhf uniformly bounded for any j 6 k + 2, see the more
precise Theorem 5.9 below (in this case, the primitive F is Ck along horizontal lines).
Even more, Ck+1+ε along horizontal lines would suffice, for any ε > 0. So, the loss
of derivatives in the above theorem is really 1 + ε (which is optimal). Moreover, the
k-th derivative of the solution of the coboundary equation is automatically Hölder
continuous. This corresponds in our context respectively to the results of [For07]
and [MY16].

It is not surprising that distributions in Eα ∩kerLv show up as conditions to solve
the cohomological equation, as explained before the theorem. The main outcome of
Theorem 1.7 is that there are finitely many obstructions to be a Ck coboundary. The
number of such obstructions grows like (2g−2)k when k →∞, by the classification of
the Ruelle spectrum given in Theorem 1.4 and the following discussion. This answers
the problem raised by Forni at the end of [For97], where a similar theorem is proved
for the vertical flow on generic translation surfaces, using different methods based on
the Laplacian.

Note that the distributions that appear in Theorem 1.7 only come from the Ruelle
spectrum. The other Lv-annihilated distributions from Theorem 1.6 do not play a
role. The reason is that the formal computation in (1.2) does not work for these
distributions, as F is not compactly supported away from Σ. These distributions
would appear if one were trying to find a vertical primitive of f which, additionally,
vanishes at all singularities.

Trace formula. — In finite dimension, the trace of an operator is the sum of its eigen-
values. This does not hold in general in infinite dimension (sometimes for lack of a
good notion of trace, or for lack of summability of the eigenvalues), but it sometimes
does for well behaved operators. In the dynamical world, this often holds for analytic
maps (for which the transfer operator can be interpreted as a nuclear operator on
a suitable space), but it fails most of the time outside of this class, see [Jéz17] and
references therein.

In our case, it is easy to investigate this question, as we have a full description
of the Ruelle spectrum. One should also define a suitable trace of the composition
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operator T . On smooth manifolds, one can define the flat trace of a composition
operator as the limit of the integral along the diagonal of the Schwartz kernel of
a smoothed version of T , when the smoothing parameter tends to 0. When T is a
diffeomorphism with isolated fixed points, this reduces to a sum over the fixed points
of 1/|det(Id−DT (x))|, as follows from an easy computation involving the change of
variables y = x− Tx.

In our case, the determinant is (1 − λ)(1 − λ−1) everywhere, but one should also
deal with the singularities, where the smoothing procedure is not clear (one can not
convolve with a kernel because of the singularity). We recall the notion of Lefschetz
index of an isolated fixed point x of a homeomorphism T in two dimensions (see for
instance [HK95, §8.4]): it is the number

indT (x) = deg(p 7→ (p− Tp)/‖p− Tp‖),

where the degree is computed on a small curve around x, identified with S1. If one
could make sense of a smoothing at the singularity σ, then its contribution to the flat
trace would be indT σ/((1−λ)(1−λ−1)), as follows from the same formal computation
with the change of variables y = x−Tx (the index comes from the number of branches
of this map, giving a multiplicity when one computes the integral). Thus, to have a
sound definition independent of an unclear smoothing procedure, we define the flat
trace of T n as

tr[(T n) =
∑

Tnx=x

indTn x

(1− λn)(1− λ−n)
.

If Tn is smooth at a fixed point x, then its index is −1 and we recover the usual
contribution of x to the flat trace. More generally, if T is such that det(I −DT ) has
a limit at all fixed points of T (regular or singular) then one defines its flat trace as
the sum over all fixed points x of indT x/(limx det(I −DT )).

Theorem 1.8. — Let T be a linear pseudo-Anosov map preserving orientations on a
compact surface M . Then, for all n,

(1.3) tr[(T n) =
∑
α

dαα
n,

where the sum is over all Ruelle resonances α of T , and dα denotes the multiplicity
of α.

Proof. — The Lefschetz fixed-point formula (see [HK95, Th. 8.6.2]) gives∑
Tnx=x

indTn x = tr((Tn)∗|H0(M))− tr((Tn)∗|H1(M)) + tr((Tn)∗|H2(M))

= 1−
(
λn + λ−n +

2g−2∑
i=1

µni

)
+ 1,

where {µ1, . . . , µ2g−2} denote the eigenvalues of T ∗ on the subspace of H1(M) orthog-
onal to [dx] and [dy], as in the statement of Theorem 1.4. We can also compute the
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right hand side of (1.3), using the description of Ruelle resonances: 1 has multiplicity
one, and λ−kµi has multiplicity k for k > 1. As∑

kxk = x/(1− x)2 = −1/((1− x)(1− x−1)),

we get∑
α

dαα
n = 1 +

2g−2∑
i=1

∞∑
k=1

kλ−nkµni = 1−
2g−2∑
i=1

µni
(1− λ−n)(1− λn)

=
(1− λ−n)(1− λn)−

∑2g−2
i=1 µni

(1− λ−n)(1− λn)
=

2−
(
λn + λ−n +

∑2g−2
i=1 µni

)
(1− λ−n)(1− λn)

.

Combining the two formulas with the definition of the flat trace, we get the conclusion
of the theorem. �

Organization of the paper. — In Section 2, we define the anisotropic Banach spaces
B−kh,kv we will use to understand the spectrum of the composition operator T . The
construction works in any translation surface. We prove the basic properties of these
Banach spaces, including notably compact inclusion statements, a duality result, and
a cohomological interpretation of elements of the space which are vertically invariant.
All these tools are put to good use in Section 3, where we describe the Ruelle spectrum
of a linear pseudo-Anosov map preserving orientations, proving Theorem 1.4. Then,
we use (and extend) this theorem in Section 4 to classify all vertically invariant
distributions (proving Theorem 1.6), and in Section 5 to find smooth solutions to
the cohomological equation (proving Theorem 1.7). Finally, Section 6 is devoted to
the discussion of the Ruelle spectrum for linear pseudo-Anosov maps which do not
preserve orientations.

Acknowledgements. — We thank Corinna Ulcigrai, Mauro Artigiani and Giovanni
Forni for their enlightening comments.

2. Functional spaces on translation surfaces

2.1. Anisotropic Banach spaces on translation surfaces. — In this section, we con-
sider a translation surface (M,Σ). We wish to define anisotropic Banach spaces of
distributions on such a surface, i.e., spaces of distributions which are smooth along
the vertical direction, and dual of smooth along the horizontal direction. Indeed, this
is the kind of space on which the transfer operator associated to a pseudo-Anosov
map will be well behaved, leading ultimately to the existence of Ruelle spectrum for
such a map, and to its explicit description. The definition we use below is of geo-
metric nature: we will require that the objects in our space can be integrated along
horizontal segments when multiplied by smooth functions, and that they have ver-
tical derivatives with the same property. This simple-minded definition in the spirit
of [GL08, AG13] is very well suited for the constructions we have in mind below
(especially for the cohomological interpretation in Section 2.4 below) and makes it
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possible to deal transparently with the singularities. However, it is probably possible
to use other approaches as explained in [Bal17] and references therein.

Let V h be the unit norm positively oriented horizontal vector field, i.e., the vector
field equal to 1 ∈ C in the translation charts. It is C∞ on M − Σ, but singular at Σ.
In particular, the derivation Lh given by this vector field acts on C∞(M −Σ). In the
same way, the vertical vector field V v (equal to i in the complex translation charts)
is C∞ on M −Σ, and the corresponding derivation Lv acts on C∞(M −Σ). On this
space, the two derivations Lv and Lh commute, as this is the case in C.

Choose two real numbers k > 0 and β > 0. Denote by Ihβ the set of horizontal
segments of length β in M − Σ. For I ∈ Ihβ , denote by Ckc (I) the set of Ck functions
on I which vanish on a neighborhood of the boundary of I, endowed with the Ck
norm (when k is not an integer, this is the set of functions of class Cbkc whose bkc-th
derivative is Hölder continuous with exponent k − bkc).

When kh > 0 is a nonnegative real number, and kv > 0 is an integer, we define a
seminorm on C∞c (M − Σ) by

‖f‖′−kh,kv,β = sup
I∈Ihβ

sup
ϕ∈Ckhc (I),‖ϕ‖

Ckh
61

∣∣∣∣∫
I

ϕ · (Lv)kvf dx

∣∣∣∣.
Essentially, this seminorm measures kv derivatives in the vertical direction, and −kh
derivatives in the horizontal direction (as one is integrating against a function with kh
derivatives). Hence, it is indeed a norm of anisotropic type. One could define many
such norms, but this one is arguably the simplest one: it takes advantage of the fact
that the horizontal and vertical foliations are smooth, and even affine.

Proposition 2.1. — If β is smaller than the length of the shortest horizontal saddle
connection, then this seminorm does not really depend on β: if β1 is another such
number, then there exists a constant C = C(β, β1, kh, kv) such that, for any f ∈
C∞c (M − Σ),

C−1‖f‖′−kh,kv,β1
6 ‖f‖′−kh,kv,β 6 C‖f‖

′
−kh,kv,β1

.

We recall that a horizontal saddle connection is a horizontal segment connecting two
singularities. There is no horizontal saddle connection in a surface carrying a pseudo-
Anosov map: otherwise, iterating the inverse of the map (which contracts uniformly
the horizontal segments), we would deduce the existence of arbitrarily short horizontal
saddle connections, a contradiction.

Proof. — Assume for instance β1 > β. The inequality ‖f‖′−kh,kv,β 6 ‖f‖
′
−kh,kv,β1

is
clear: an interval I ∈ Ihβ is contained in an interval I1 in Ihβ1

as β1 is smaller than
the length of any horizontal saddle connection. Moreover, a compactly supported test
function ϕ on I can be extended by 0 to outside of I to get a test function on I1. The
result follows readily.

Conversely, consider a smooth partition of unity (ρj)j∈J on [0, β1] by C∞ functions
whose support has length at most β (we do not require that the functions vanish
at 0 or β1. Using this partition of unity, for I1 ∈ Ihβ1

, one may decompose a test
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function ϕ ∈ Ckhc (I1) as the sum of the functions ϕ · ρj , which are all compactly
supported on intervals belonging to Ihβ . Moreover, their Ckh norms are controlled by
the Ckh norm of ϕ. It follows that the integrals defining ‖f‖′−kh,kv,β1

are controlled
by finitely many integrals that appear in the definition of ‖f‖′−kh,kv,β , giving the
inequality ‖f‖′−kh,kv,β1

6 C‖f‖′−kh,kv,β . �

By the above proposition, we may use any small enough β. For definiteness, let
us choose once and for all β = β0 much smaller than the distance between any two
singularities. This implies that, in all the local discussions, we will have to consider
at most one singularity. From this point on, we will keep β0 implicit, unless there is
an ambiguity.

The seminorms ‖·‖′−kh,kv are not norms in general on C∞c (M − Σ). For instance,
if there is a cylinder made of closed vertical leaves, then one may find a function which
is constant on each vertical leaf, vanishes close to the singularities, and is nevertheless
not everywhere zero. Then Lvf = 0, so that ‖f‖′−kh,kv = 0 if kv > 0, but still f 6= 0.
This is not the case when there is no vertical connection: in this case, all vertical leaves
are dense, hence a function which is constant along vertical leaves and vanishes on a
neighborhood of the singularities has to vanish everywhere. In general, this remark
indicates that the above seminorms do not behave very well by themselves. On the
other hand, the following norm is much nicer:

(2.1) ‖f‖−kh,kv = sup
j6kv
‖f‖′−kh,j = sup

j6kv
sup
I∈Ih

sup
ϕ∈Ckhc (I),‖ϕ‖

Ckh
61

∣∣∣∣∫
I

ϕ · Ljvf dx

∣∣∣∣.
This is obviously a norm on C∞c (M − Σ). Indeed, if a function f is not identically
zero, then it is nonzero at some point x. Taking a horizontal interval I around x and
a test function ϕ on I supported on a small neighborhood of x, one gets

∫
I
ϕf dx 6= 0,

and therefore ‖f‖−kh,kv > 0.
Then, let us define the space B−kh,kv as the (abstract) completion of C∞c (M −Σ)

for this norm. Note that all the linear forms

`I,ϕ,j : f 7→
∫
I

ϕ · Ljvf dx,

initially defined on C∞c (M − Σ), extend by continuity to B−kh,kv (for I ∈ Ih and
ϕ ∈ Ckhc (I) and j 6 kv). Heuristically, an element in B−kh,kv can be differentiated in
the vertical direction, and integrated in the horizontal direction. Moreover, the norm
of an element in B−kh,kv is

(2.2) ‖f‖−kh,kv = sup
j6kv

sup
I∈Ih

sup
ϕ∈Ckhc (I),‖ϕ‖

Ckh
61

|`I,ϕ,j(f)|.

This follows directly from the definition of the norm on C∞c (M − Σ) and from the
construction of B−kh,kv as its completion.

Remark 2.2. — In the spaces B−kh,kv we have just defined, the parameter kh of
horizontal regularity can be any nonnegative real, but the parameter kv of vertical
regularity has to be an integer, as it counts a number of derivatives. One could also
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use a non-integer vertical parameter kv, requiring additionally the following control:
if kv = k+ r, where k is an integer and r ∈ (0, 1), then we require the boundedness of

ε−r
∣∣∣∣∫
I0

ϕ0L
k
vf dx−

∫
Iε

ϕεL
k
vf dx

∣∣∣∣
when I0 is a horizontal interval of length β0, ϕ0 is a compactly supported Ckh function
on I0 with norm at most 1, ε ∈ [0, β0] is such that one can translate vertically the
interval I0 into an interval Iε without hitting any singularity, and ϕε is the push-
forward of ϕ0 on Iε using the vertical translation. In other words, we are requiring
that Lkvf is Hölder continuous of order r vertically, in the distributional sense. All the
results that follow are true for such a norm, but the proofs become more cumbersome
while the results are not essentially stronger, so we will only consider integer kv for
the sake of simplicity.

Let ϕ be a C∞ function on M , and denote by dLeb the flat Lebesgue measure
on M . Then `ϕ : f 7→

∫
fϕdLeb is a linear form on C∞c (M − Σ). Contrary to the

previous linear forms, `ϕ does not extend to a linear form on B−kh,kv , because of the
singularities: from the point of view of the C∞ structure, horizontals and verticals
close to the singularity have a lot of curvature, so that the restriction of ϕ to I ∈ Ih
is Ck, but with a large Ck norm (larger when I is closer to the singularity). This
prevents the extension of `ϕ to B−kh,kv . On the other hand, if ϕ is supported by
M −B(Σ, δ), then one has a control of the form

|`ϕ(f)| 6 C(δ)‖ϕ‖Ckh ‖f‖−kh,kv ,

so that `ϕ extends continuously to B−kh,kv . More precisely, denote by D∞(M − Σ)

the set of distributions on M −Σ, i.e., the dual space of C∞c (M −Σ) with its natural
topology. Then the above argument shows that there is a map

i : B−kh,kv −→ D∞(M − Σ),

extending the canonical inclusion C∞c (M − Σ)→ D∞(M − Σ) given by

〈i(f), ϕ〉 =

∫
fϕdLeb .

Locally, if ϕ is supported by a small rectangle foliated by horizontal segments It ∈ Ih
(where t is an arc-length parameterization along the vertical direction), one has the
explicit description

(2.3) 〈i(f), ϕ〉 =

∫
`It,ϕ|It ,0(f) dt.

Indeed, this formula holds when f is C∞, and extends by uniform limit to all elements
of B−kh,kv .

Proposition 2.3. — The map i : B−kh,kv → D∞(M − Σ) is injective. Therefore, one
can identify B−kh,kv with a space of distributions on M − Σ.
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Proof. — Consider I ∈ Ih and ϕ ∈ Ckhc (I). For small enough t, one can shift ver-
tically I by t, and obtain a new interval It ∈ Ih, as well as a function ϕt : It → R
(equal to the composition of the vertical projection from It to I, and of ϕ). For
any f ∈ C∞c (M − Σ), the function t 7→ `It,ϕt,0(f) is Ckv , with successive derivatives
t 7→ `It,ϕt,j(f). An element f ∈ B−kh,kv can be written as a limit of a Cauchy sequence
of smooth functions. Then `It,ϕt,j(fn) converges uniformly to `It,ϕt,j(f). Passing to
the limit in n, we deduce that t 7→ `It,ϕt,0(f) is Ckv , with successive derivatives
t 7→ `It,ϕt,j(f).

Consider a nonzero f ∈ B−kh,kv , with norm c > 0. By (2.2), there exist I, ϕ
and j such that |`I,ϕ,j(f)| > c/2. Let us shift I vertically as above. The function
t 7→ `It,ϕt,0(f) has a j-th derivative which is nonzero at 0, hence it is not locally
constant. In particular, it does not vanish at some parameter t0. Consider δ such that
it is almost constant on the interval [t0 − δ, t0 + δ] by continuity. Let ψ be a smooth
function with positive integral, supported by [t0 − δ, t0 + δ]. In local coordinates, let
us finally write ζ(x, y) = ϕ(x)ψ(y). It satisfies 〈i(f), ζ〉 6= 0 thanks to the explicit
description (2.3) for i(f). �

It follows that one can think of elements of B−kh,kv as objects that can be integrated
along horizontal segments, or after an additional vertical integration as distributions.
Even better, since the elements of B−kh,kv are designed to be integrated horizontally,
the natural object to consider is rather f dx. This is a current, i.e., a differential form
with distributional coefficients, but it is nicer than general currents as it can really be
integrated along horizontal segments (i.e., it is regular in the vertical direction). The
process that associates to such an object a global distribution is simply the exterior
product with dy. Going back and forth like that between 0-currents and 1-currents
will be an essential feature of the forthcoming arguments.

The next lemma makes it possible to use partitions of unity, to decompose an
element of B−kh,kv into a sum of elements supported in arbitrarily small balls.

Lemma 2.4. — Let ψ ∈ C∞(M) be constant in the neighborhood of each singularity.
Then the map f 7→ ψf , initially defined on C∞c (M − Σ), extends continuously to a
linear map on B−kh,kv .

Proof. — We have to bound
∫
I
ϕ · Ljv(ψf) dx when I is a horizontal interval, ϕ a

compactly supported Ckh function on I, and j 6 kv. We have

Ljv(ψf) =
∑
k6j

(
j

k

)
Lj−kv ψ · Lkvf,

hence this integral can be decomposed as a sum of integrals of Lkvf against the func-
tions ϕ · Lj−kv ψ which are Ckh and compactly supported on I. This concludes the
proof, by definition of B−kh,kv . �

One may wonder how rich the space B−kh,kv is, and if the choice to take the closure
of the set of functions vanishing on a neighborhood of the singularities really matters.
Other functions are natural, for instance the constants, or more generally the smooth
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functions that factorize through the covering projection π : z 7→ zp around each
singularity of angle 2πp. The largest natural class is the space of functions f which
are C∞ on M − Σ and such that, for all indices ah and av, the function Lavv L

ah
h f is

bounded. The next lemma asserts that starting from any of these classes of functions
would not make any difference, as our space B−kh,kv is already rich enough to contain
all of them.

Lemma 2.5. — Consider a function f on M which is Ckv on every vertical segment
and such that Lkvf is bounded and continuous on M − Σ for any k 6 kv. Then the
function f (or rather the corresponding distribution i(f)) belongs to B−kh,kv for any
kh > 0. This is in particular the case of the constant function f = 1.

Proof. — First, if f is supported away from the singularities, one shows that
f ∈ B−kh,kv by convolving it with a smooth kernel ρε: the sequence fε = f ∗ ρε thus
constructed is C∞ and forms a Cauchy sequence in B−kh,kv , hence it converges in
this space to a limit. As it converges to f in the distributional sense, this shows
f ∈ B−kh,kv .

To handle the general case, by taking a partition of unity, it suffices to treat the
case of a function f supported in a small neighborhood of a singularity, such that
Lkvf is continuous and bounded for any k 6 kv. Let π denote the covering projection,
defined on a neighborhood of this singularity. Let u be a real function, equal to 1 on
a neighborhood of 0, supported in [−1, 1]. Let N > 0 be large enough. For δ > 0,
we define a function ρδ(x + iy) = u(x/δN )u(y/δ), supported on the neighborhood
[−δN , δN ] + i[−δ, δ] of 0 in C.

We claim that, if N > kv, then in C one has ‖ρδ‖−kh,kv → 0 when δ → 0, where
by ‖·‖−kh,kv we mean the formal expression (2.1), which makes sense for any function
but could be infinite. To prove this, consider a horizontal interval I of length β0, a
function ϕ ∈ Ckhc (I) with norm at most 1, and a differentiation order j 6 kv. Then∣∣∣∣∫

I

ϕ · Ljvρδ dx

∣∣∣∣ = δ−j
∣∣∣∣∫
I

ϕ · u(x/δN )u(j)(y/δ) dx

∣∣∣∣
6 δ−j‖ϕ‖C0‖u‖C0‖u(j)‖C0 Leb([−δN , δN ]).

This quantity tends to 0 if N > j, as claimed.
The same computation, taking moreover into account the fact that the vertical

derivatives of f are bounded, shows that ‖f · ρδ ◦ π‖−kh,kv → 0 when δ → 0. It fol-
lows that the sequence fn = f(1− ρ1/n ◦π) is a Cauchy sequence in B−kh,kv , made of
functions in Ckvc (M−Σ) (which is indeed included in B−kh,kv by the first step). It con-
verges (in L1, and therefore in the sense of distributions) to f , which has therefore to
coincide with its limit in B−kh,kv . �

In particular, if Σ contains an artificial singularity σ (i.e., around which the angle
is equal to 2π), then one gets the same space B−kh,kv by using the singularity sets Σ

or Σ− {σ}.
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The horizontal and vertical derivations Lh and Lv act on C∞c (M −Σ). By duality,
they also act on D∞(M − Σ). In view of Proposition 2.3 asserting that B−kh,kv is a
space of distributions, it makes sense to ask if they stabilize these spaces, or if they
send one into the other.

Proposition 2.6. — The derivation Lh maps continuously B−kh,kv to B−kh−1,kv , and
it satisfies `I,ϕ,j(Lhf) = −`I,ϕ′,j(f) for every I ∈ Ih, ϕ ∈ Ckh+1

c (I), j 6 kv and
f ∈ B−kh,kv .

The derivation Lv maps continuously B−kh,kv to B−kh,kv−1 if kv > 0, and it
satisfies `I,ϕ,j(Lvf) = `I,ϕ,j+1(f) for every I ∈ Ih, ϕ ∈ Ckhc (I), j 6 kv − 1 and
f ∈ B−kh,kv .

Proof. — The formulas `I,ϕ,j(Lhf) = −`I,ϕ′,j(f) and `I,ϕ,j(Lvf) = `I,ϕ,j+1(f) are
obvious when f is a smooth function. The general result follows by density. �

Lemma 2.7. — Assume that there is no horizontal saddle connection in M . Let
f ∈ B−kh,kv satisfy Lhf = 0. Then f is a constant function.

Proof. — As Lhf = 0, one has `I,ϕ′,0(f) = 0 for any smooth function ϕ on a horizon-
tal interval I. Denoting by τh the translation by h, one gets `I,ϕ,0(f) = `I,ϕ◦τh,0(f)

if ϕ and ϕ ◦ τh both have their support in I. It follows that the distribution induced
by f on a bi-infinite horizontal leaf is invariant by translation. Therefore, it is a mul-
tiple cdLeb of Lebesgue measure. Since there is no horizontal saddle connection by
assumption, the horizontal flow is minimal by Keane’s Criterion. In particular, the
above bi-infinite horizontal leaf is dense. At the quantities `I,ϕ,0(f) vary continuously
when one moves I vertically, it follows that f is equal to cdLeb on all horizontal
intervals. �

We want to stress that Lemma 2.7 is wrong for Lv. A measure µ which is invariant
for the vertical flow can locally be written as ν ⊗ dy, where ν is a measure along
horizontal leaves, invariant under vertical holonomy. Writing ν as a limit of measures
which are equivalent to Lebesgue and with smooth densities, one checks that µ belongs
to B−kh,kv , and moreover it satisfies Lvµ = 0. In a translation surface in which the
vertical flow is minimal but not uniquely ergodic, one can find such examples where µ
is not Lebesgue measure.

In the case of surfaces associated to pseudo-Anosov maps, the vertical flow is
uniquely ergodic, so this argument does not apply. However, we will see later that
there are still many nonconstant distributions f in B−kh,kv which satisfy Lvf = 0.

It is enlightening to try to prove that f ∈ B−kh,kv with Lvf = 0 has to be con-
stant, and see where the argument fails. The problem stems from the fact that f is a
distribution on horizontal segments. Let F be a dense vertical leaf, let It be a small
horizontal interval around the point at height t on F , and let ϕ be a function on I0
that we push vertically to a function on It (still denoted ϕ) while this is possible.
Then we get

∫
It
ϕf dx =

∫
I0
ϕf dx as Lvf = 0. If this were true for all real t, then

we would deduce that f is constant. However, the support of ϕ has positive length.
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Hence, when we push it vertically, we will encounter a singularity in finite time, and
the argument is void afterward. We could say something on a longer time interval if
we used a function ϕ̃ with smaller support, but the same problem will happen again.
The key point is a competition between the speed at which F fills the surface, and
how close to singularities it passes. The existence of nonconstant distributions f with
Lvf = 0 is a manifestation of the fact that F is often too close to singularities.

A related but more detailed discussion is made before the proof of Theorem 3.11,
where we study the existence of primitives under Lv of some eigendistributions, not
only 0.

2.2. Compact inclusions. — In this paragraph, we prove the following proposition,
ensuring that there is inclusion (resp. compact inclusion) in the family of spaces
B−kh,kv if one requires less (resp. strictly less) regularity in all directions. This corre-
sponds to the usual intuitions.

Proposition 2.8. — Consider k′h with −k′h 6 −kh (i.e., k′h > kh) and k′v with k′v 6 kv.
Then there is a continuous inclusion B−kh,kv ⊆ B−k′h,k′v . If the two inequalities are
strict, this inclusion is compact.

Proof. — The inclusion B−kh,kv ⊆ B−k′u,k′v when k′h > kh and k′v 6 kv is obvious, as
one uses fewer linear forms in the second space than in the first space to define the
norm.

For the compact inclusion, we will use the following criterion. Let B ⊆ C be two
Banach spaces. Assume that, for every ε > 0, there exist finitely many continuous
linear forms `1, . . . , `P on B such that, for any x ∈ B,

(2.4) ‖x‖C 6 ε‖x‖B +
∑
p6P

|`p(x)|.

Then the inclusion of B in C is compact.
To prove the criterion, suppose its assumptions are satisfied, and consider a se-

quence xn ∈ B of elements with norm at most 1. Extracting a subsequence, one can
ensure that all the sequences `i(xn) converge, for i 6 P . We deduce from the above
inequality that lim supm,n→∞‖xm−xn‖C 6 2ε. By a diagonal argument, one can then
extract a subsequence of xn which is a Cauchy sequence in C, and therefore converges.

Let us now apply the criterion to B = B−kh,kv5β0
and C = B−k

′
h,k
′
v

β0
with k′h > kh

and k′v < kv. We take larger intervals in the first space than in the second space for
technical convenience, but this is irrelevant for the result as the spaces do not depend
on β, see Proposition 2.1.

Let us first fix a finite family of intervals (Jn)n6N in Ih5β0
such that any interval

in Ihβ0
can be translated vertically by at most ε/2, without hitting a singularity, and

end up in the central part of one of the Jn, denoted by Jn[β0, 4β0]. Such a family
exists by compactness, and the singularities do not create any problem there. Then,
on each Jn, let us fix finitely many functions (ϕn,k)k6K in C

k′h
c (Jn) with norm at

most 1 such that, for any function ϕ ∈ Ck′h(Jn) with Ck′h norm at most 1 and with
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support included in Jn[β0, 4β0], there exists k such that ‖ϕ− ϕn,k‖Ckh 6 ε/2. Their
existence follows from the compactness of the inclusion of Ck′h in Ckh . We will use
the linear forms `n,k,j = `Jn,ϕn,k,j for n 6 N , k 6 K and j 6 kv to apply the
criterion (2.4).

Let us fix f ∈ B−kh,kv5β0
. We want to bound its norm in B−k

′
h,k
′
v

β0
. By density, it is

enough to do it for f ∈ C∞c (M −Σ) – this does not change anything to the following
argument, but it is comforting. Consider thus I ∈ Ihβ0

, and ϕ ∈ Ck
′
h
c (I) with norm

at most 1, and j 6 k′v < kv. Let (It)06t6δ be vertical shifts of I, parameterized by
the vertical length t, with Iδ included in an interval Jn[β0, 4β0] and δ 6 ε/2. Denote
by ϕt the push-forward of ϕ on It. Integrating by parts, one gets∫

I0

ϕ · Ljvf dx =

∫
Iδ

ϕδ · Ljvf dx−
∫ δ

0

(∫
It

ϕtL
j+1
v f dx

)
dt.

The integrals on each It are bounded by ‖f‖−kh,kv as j 6 k′v < kv. Hence, the last
term is at most δ‖f‖−kh,kv 6 (ε/2)‖f‖−kh,kv . In the first term, choose k such that
‖ϕδ − ϕn,k‖Ckh 6 ε/2. Then this integral is bounded by (ε/2)‖f‖−kh,kv + |`n,k,j(f)|.
We have proved that

‖f‖−k′h,k′v 6 ε‖f‖−kh,kv + max
n,k,j
|`n,k,j(f)|.

This shows that the compactness criterion (2.4) applies, and concludes the proof. �

2.3. Duality. — Let us define the spaces B̌ǩh,−ǩv just like the spaces B−kh,kv but
exchanging horizontals and verticals. Hence, ǩv quantifies the regularity of a test
function in the vertical direction, and ǩh the number of required derivatives in the
horizontal direction. The derivations Lv and Lh still act on B̌, as in Proposition 2.6,
but their roles are swapped compared to B.

Some of the arguments later to identify the spectrum and the multiplicities of a
pseudo-Anosov map rely on a duality argument, exchanging the roles of the horizontal
and vertical directions. To carry out this argument, we need to show that there is a
duality between the spaces B−kh,kv and B̌ǩh,−ǩv when the global regularity is positive
enough in every direction, i.e., when−kh+ǩh > 2 and kv−ǩv > 0 (or conversely, as one
can exchange the two directions – it is possible that the duality holds if ǩh − kh > 0

and kv − ǩv > 0, but our proof requires a little bit more). This is not surprising:
g ∈ Bǩh,−ǩv has essentially ǩh derivatives along horizontals, and f ∈ B−kh,kv can be
integrated along horizontals against Ckh functions, so if ǩh > kh one expects that one
can integrate the product fg along horizontals, and therefore globally. This argument
is wrong since the horizontal regularity of g is only in the distributional sense, so we
will also have to take advantage of the vertical smoothness of f . Using a computation
based on suitable integrations by parts, it is easy to make this argument rigorous away
from singularities. However, as it is often the case, the proof is much more delicate
close to singularities, as integrations by parts can not cross the singularity, giving rise
to additional boundary terms that can a priori not be controlled, unless one proceeds
in a roundabout way as in the following proof. The technical difficulty of this proof
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is probably related to our choice of Banach spaces: it is possible that another choice
of Banach space makes this proposition essentially trivial. This proof can be skipped
on first reading.

Proposition 2.9. — Assume −kh + ǩh > 2 and kv − ǩv > 0. Then there exists C > 0

such that, for any f, g ∈ C∞c (M − Σ), one has∣∣∣∣∫ fg dLeb

∣∣∣∣ 6 C‖f‖B−kh,kv · ‖g‖B̌ǩh,−ǩv .
Therefore, the map (f, g) 7→

∫
fg dLeb extends by continuity to a bilinear map on

B−kh,kv × B̌ǩh,−ǩv that we denote by 〈f, g〉.

The proof will rely on a decomposition of f into basic pieces for which all the
above integrals can be controlled. We will denote by H the set of local half-planes
around all singularities, bounded by horizontal or vertical lines. Specifically, if σ is a
singularity of angle 2πκ with covering projection π, these sets are the κ components
of π−1{z : <z > 0} in a neighborhood of σ, intersected with a small disk around σ,
and similarly for the upper half-planes, lower half-planes and left half-planes, giving
rise to 4κ half-planes around σ.

Lemma 2.10. — Fix kh and kv. There exist N , C, and rectangles (Ri)i6N away from
the singularities with the following property. For any f ∈ C∞c (M − Σ), there is a
decomposition

(2.5) f =

N∑
i=1

fi +
∑
σ∈Σ

fσ +
∑
H∈H

fH

where all the fi and fσ and fH are Ckv functions with compact support in M − Σ.
They belong to B−kh,kv and have norm at most C‖f‖−kh,kv . Moreover, each fi is
supported in Ri, each fH is supported in H, and each fσ is supported in a small
disk Dσ around σ and is constant on the fibers of the covering projection π around σ.

Proof. — Multiplying f by a partition of unity, we can assume that f is supported
in a small disk around a singularity σ with angle 2πκ (the terms away from the
singularities will give rise to the terms fi in the decomposition (2.5)). We have to
construct a decomposition

(2.6) f = fσ +
∑
H∈Hσ

fH

as in the statement of the lemma, where Hσ denotes the set of half-planes around σ.
We assume ‖f‖−kh,kv 6 1 for definiteness.

Let π = πσ be the covering projection, sending σ to 0. We may assume
that π−1([−a, a]2) only contains σ as a singularity, and that f is supported in
π−1([−a/2, a/2]2). Denote by ω = e2iπ/κ the fundamental κ-th root of unity. Let R
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be the rotation by 2π around σ. For q ∈ Z/κZ, let

fq(z) = κ−1
κ−1∑
j=0

ωqjf(Rjz).

This is the component of f that is multiplied by ωq when one turns by 2π around σ.
We have f =

∑
fq by construction, and each fq is C∞, compactly supported, and

satisfies ‖fq‖B−kh,kv 6 1 since this is the case for f .
The function f0 is constant along the fibers of π. It will be the function fσ in the

decomposition of f . Consider now q 6= 0. We will first work in a chart U sent by π
on [−a, a]2 − [0,∞), i.e., a chart cut along the positive real axis. When one crosses
this axis from top to bottom, the function fq is multiplied by ωq. We will use the
canonical complex coordinates on U .

Let us first show the following: for ϕ ∈ Ckhc ([−a, a]) and j 6 kv, one has

(2.7)
∣∣∣∣∫ 0

−a
ϕ · Ljvfq dx

∣∣∣∣ 6 C‖ϕ‖Ckh .
The interest of this estimate is that ϕ is a priori not compactly supported in [−a, 0],
so that this integral can not be controlled directly using ‖fq‖−kh,kv .

For small y > 0 and ε ∈ {−1, 1}, the interval [−a, a] + εiy is included in U .
Therefore,

(2.8)
∣∣∣∣∫ a

−a
ϕ(x)fq(x+ εiy) dx

∣∣∣∣ 6 ‖ϕ‖Ckh .
Let y tend to 0. For x 6 0, fq(x+ εiy) tends to fq(x). On the other hand, for x > 0,
the limit depends on ε: one gets fq(x+) for ε = 1 and fq(x−) = ωqfq(x

+) for ε = −1.
Hence,∫ a

−a
ϕ(x)fq(x+ iy) dx− ω−q

∫ a

−a
ϕ(x)fq(x− iy) dx −→ (1− ω−q)

∫ 0

−a
ϕ(x)fq(x) dx.

Combined with the control (2.8), this proves (2.7) for j = 0 (for C = 2/|1 − ω−q|).
The argument is the same for j > 0.

Consider a C∞ function ρ2 which is equal to 1 on [−a/2, a/2]2 and vanishes outside
of [−a, a]2. We define a function fU on U by

fU (x+ iy) = 1x60ρ2(x+ iy)
∑
j6kv

yjLjvfq(x).

This is a C∞ function, compactly supported in M − Σ (we recall that f , and there-
fore fq, vanishes in a neighborhood of σ, so that fq(x) = 0 for x close to 0 in the
chart U). This function is supported by U . Its interest is that its germ along [−a, 0] is
the same as that of fq. Moreover, it follows from (2.7) that the norm of fU in B−kh,kv is
uniformly bounded. This function is supported in the left half-plane H ∈ H contained
in U . Let us denote it by fq,H . It will be part of the term fH in the decomposition (2.6).

For each horizontal segment τ coming out of the singularity σ, one can consider
a chart U as above cut along τ (with the difference that [−a, a]2 can be cut along
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either the positive real axis, or the negative real axis, depending on τ), and then the
associated function fU . Let f̃q = fq−

∑
U fU . This function is bounded by a constant

in B−kh,kv . Its interest is that it vanishes along every horizontal segment coming out
of σ, and moreover all its vertical derivatives up to order kv also vanish there. In
particular, the restriction of f̃q to any upper half-plane or lower half-plane H ∈ H
is still Ckv and it can be extended to the rest of the manifold by zero. Denote this
extended function by fq,H . It belongs to B−kh,kv and has a bounded norm in this
space, and it is supported in H.

Finally, the decomposition (2.6) of f is obtained by letting fσ = f0 and fH =∑
q 6=0 fq,H . �

Proof of Proposition 2.9. — Decomposing f as in Lemma 2.10, it suffices to show the
inequality

∫
fg dLeb 6 C 6 C‖f‖B−kh,kv · ‖g‖B̌ǩh,−ǩv when f is:

(1) supported away from the singularities,
(2) or supported on a small neighborhood of a singularity, and constant on the

fibers of the covering projection,
(3) or supported in a half-plane close to a singularity.

For definiteness, we will also assume ‖f‖B−kh,kv 6 1 and ‖g‖B̌ǩh,−ǩv 6 1.
Let us first handle the case where f is supported in a small rectangle [−a, a]2 away

from the singularities. We can even assume that f is supported in [−a/4, a/4]2. Multi-
plying g by a cutoff function, we can assume that it is also supported in [−a/2, a/2]2.

Using a local chart, we may work in C. Along the horizontal interval [−a, a] + iy,
the successive primitives of F0 = f vanishing at −a+ iy are given by

(2.9) Fk(x+ iy) =

∫ x

−a
f(t+ iy)(x− t)k−1/(k − 1)! dt,

as one checks easily by induction over k. Let us take k = kh + 2. With k integrations
by parts, one gets

(2.10)
∫

[−a,a]+iy

fg dx = (−1)k
∫

[−a,a]+iy

Fk · Lkhg dx.

Let us consider a function ρ(x) equal to 1 for x > −a/2 and vanishing on a neighbor-
hood of −a. As f is supported by [−a/2, a/2]2, one has

Fk(x+ iy) =

∫ a

−a
f(t+ iy) · ρ(t)1t6x(x− t)k−1/(k − 1)! dt.

The function

(2.11) t 7→ ρ(t)1t6x(x− t)k−1/(k − 1)!

is of class Ck−2 on [−a, a], with a bounded Ck−2 norm: Its singularity at x is a zero
of order k−1 to the left of x, and of infinite order to the right of x, so that everything
matches in Ck−2 topology. Therefore, by the definition of B−kh,kv and the choice
k = kh + 2, one has |Fk(x+ iy)| 6 C as ‖f‖B−kh,kv 6 1. In the same way, the vertical
derivatives of Fk involve vertical derivatives of f , which can be integrated against
Ckh functions along horizontals. We get, for all j 6 kv and all x + iy ∈ [−a, a]2,
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the inequality
∣∣LjvFk(x+ iy)

∣∣ 6 C. Therefore, along any vertical segment of the form
x+i[−a, a], the function Fk is Ckv with bounded norm, and it is compactly supported
as it vanishes for |y| > a/2 (as f is supported by [−a/2, a/2]2).

Let us integrate the equality (2.10) with respect to y. We get

(2.12)
∫
fg dLeb = (−1)k

∫
x∈[−a,a]

(∫
x+i[−a,a]

Fk · Lkhg dy

)
dx.

When x is fixed, every integral
∫
x+i[−a,a]

Fk ·Lkhg dy is the integral against a Ckv func-
tion with bounded norm of the function Lkhg, with k 6 ǩh and kv > ǩv by assumption.
By definition, this integral is bounded by ‖Fk‖Ckv ‖g‖B̌ǩh,−ǩv 6 C. Integrating in x,
we obtain the desired inequality

∣∣∫ fg dLeb
∣∣ 6 C.

We still have to consider the case where f is supported in the neighborhood of
a singularity σ with angle 2πκ. Multiplying g by a cutoff function, we can assume
that g is also supported there. Write π for the corresponding covering projection,
sending σ to 0. We may assume that π−1([−a, a]2) only contains σ as a singularity,
and that f and g are supported by π−1([−a/2, a/2]2). We would like to carry out
the same argument as before, but the function Fk one obtains by integrating along
a horizontal line is smooth along vertical lines to the left of the singularity, but it is
discontinuous on vertical lines on the right of the singularity, breaking the argument.

Assume first that f is invariant under the covering projection π. Denote by ω =

e2iπ/κ the fundamental κ-th root of unity. Let R be the rotation by 2π around σ. For
q ∈ Z/κZ, let

gq(z) = κ−1
κ−1∑
j=0

ωqjg(Rjz).

This is the component of g that is multiplied by ωq when one turns by 2π around σ.
For q 6= 0, the function fgq is multiplied by ωq when one turns around the singularity.
Therefore, ∫

fgq dLeb = ωq
∫
fgq dLeb,

which implies
∫
fgq dLeb = 0 (this is just the classical fact that two functions living

in different irreducible representations are orthogonal). Let us now handle g0. The
functions f and g0 are both R-invariant. They can be written as f̃◦π and g̃◦π, where f̃
and g̃ are functions on C supported by [−a/2, a/2]2. The norms of these functions
(in B−kh,kv and B̌ǩh,−ǩv respectively) are bounded by 1. The case of functions away
from singularities, that we have already treated, shows that

∣∣∫ f̃ g̃ dLeb
∣∣ 6 C. This

gives the same estimate for
∫
fg0 dLeb.

Assume now that f is supported in a vertical half-plane H, to the left of σ for
instance. Let us show that

(2.13)
∣∣∣∣∫ fg dLeb

∣∣∣∣ 6 C.
We proceed like in the proof away from singularities, making integrations by parts
along horizontals. Let Fj be the j-th primitive of f along horizontals, vanishing
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at −a+ iy. It is given by the formula (2.9). Then, we do k = kh + 2 integrations
by parts along each horizontal line, to get∫

[−a,0]+iy

fg dx = (−1)k
∫

[−a,0]+iy

Fk · Lkhg dx+
∑
j<k

(−1)jFj+1(iy)Ljhg(iy).

The difference with (2.10) is the boundary terms, due to the fact that g does not
vanish on the line x = 0. Integrating in y, we obtain

(2.14)
∫
fg dLeb = (−1)k

∫
x∈[−a,0]

(∫
x+i[−a,a]

Fk · Lkhg dy

)
dx

+
∑
j<k

(−1)j
(∫

i[−a,a]

Fj+1 · Ljhg dy

)
.

The first term is controlled as in the case away from singularities, as the function Fk
is bounded and Ckv along vertical segments since k = kh + 2. On the other hand,
the boundary terms are more delicate. The difficulty is that, a priori, Fj+1(iy) is
not bounded just in terms of ‖f‖B−kh,kv : The function (2.11) (with k replaced by j
and x = 0) is not Ckh for j < k because of its singularity at 0. Nevertheless, as the
distribution f is supported in H, we may replace the function in (2.11) by another
function which coincides with it on [−a, 0] and is Ckh with bounded norm on [−a, a],
without changing the value of the integral. It follows that in fact Fj(iy) is bounded in
terms of ‖f‖B−kh,kv . In the same way, its vertical derivatives are also bounded. As g ∈
B̌ǩh,−ǩv has norm at most 1, we obtain (integrating on a segment with horizontal
coordinate −x with x small to avoid the singularity)(∫ a

−a
Fj+1(iy) · Ljhg(−x+ iy) dy

)
6 C.

Letting x tend to 0, we obtain that the second term in (2.14) is uniformly bounded.
This proves (2.13).

Finally, assume that f is supported in a horizontal half-plane H, for instance an
upper half plane above σ. We proceed exactly as in the case without singularities,
integrating by parts along horizontal segments. Let Fj be the j-th primitive of f that
vanishes on −a+ i(0, a]. The only difference is at the end of the argument: the analog
of (2.12) in our case is∫

H

f · g dLeb = (−1)k
∫
x∈[−a,a]

(∫
x+i(0,a]

Fk · Lkhg dy

)
dx.

The function Fk is still smooth along vertical segments, with uniformly bounded
derivatives. However, it is not compactly supported in x + i[0, a], which prevents us
from writing.

(2.15)
∣∣∣∣∫
x+i(0,a]

Fk · Lkhg dy

∣∣∣∣ 6 C‖g‖B̌ǩh,−ǩv .
On the other hand, Fk vanishes on [−a, a], as well as its successive derivatives. Indeed,
f is supported in H and smooth vertically, so by approximating the left and half parts

J.É.P. — M., 2019, tome 6



836 F. Faure, S. Gouëzel & E. Lanneau

of the boundary of H from below one obtains this vanishing property. Therefore, we
may extend Fk by 0 for points with negative imaginary part. This extension is still Ckv
along vertical lines. This justifies the inequality (2.15). Integrating in x, we obtain
the desired inequality

∣∣∫ f · g dLeb
∣∣ 6 C. �

Lemma 2.11. — We have the following duality formulas for f ∈ B−kh,kv and g ∈
B̌ǩh,−ǩv :

(2.16) 〈Lhf, g〉 = −〈f, Lhg〉, 〈Lvf, g〉 = −〈f, Lvg〉.

Proof. — It is enough to check these formulas for functions in C∞c (M − Σ), as they
extend by density to the whole spaces thanks to Proposition 2.9. The function fg

vanishes on a neighborhood of the singularities. Denote by Ω the complement of a
union of small disks around the singularities such that fg = 0 outside of Ω. We have∫

M

Lh(fg) dx ∧ dy =

∫
Ω

d(fg dy) = −
∫
∂Ω

fg dy = 0.

Hence,
∫
Lhf · g dLeb +

∫
f · Lhg dLeb = 0. This proves the first identity in (2.16).

The second one is identical, upon exchanging the roles of x and y. �

2.4. Cohomological interpretation. — In the study of the Ruelle spectrum of
pseudo-Anosov maps, a special role will be played by the elements of B−kh,kv ∩kerLv.
Heuristically, the relevant object associated to f ∈ B−kh,kv is the current f dx. When f
satisfies additionally Lvf = 0, then the formal derivative of this current is

d(f dx) = (∂xf dx+ ∂yf dy) ∧ dx.

The term dx∧dx vanishes. When Lvf = 0, one has ∂yf = 0, and one gets d(f dx) = 0.
Therefore, the current f dx is closed. It defines a cohomology class in H1(M −Σ). We
will give a more explicit description of this cohomology class, and show that it even
belongs to H1(M) (i.e., it vanishes if one integrates it along a small path around a
singularity).

Let γ be a continuous closed loop inM −Σ and let f ∈ B−kh,kv ∩kerLv. We define
the integral of f along γ, denoted by

∫
γ
f dx, as follows. Deforming γ slightly, we can

first transform it into a loop made of finitely many horizontal and vertical segments.
In
∫
γ
f dx, the vertical components of γ do not appear. For a horizontal component I,

we would like it to contribute by
∫
I
f dx, but this does not make sense since f can only

be integrated against smooth functions, which is not the case for the characteristic
function of I. Let us smoothen this function by adding to the end of I a smooth
function going from 1 to 0. In the next horizontal interval J , that follows I in γ,
on the contrary, we subtract ϕ (pushed forward by the vertical translation from I

to J) to the characteristic function χJ of J – this process changes it to the function
χJ − ϕ, which is smooth. In this way, we obtain integrals that are well defined. As f
is invariant under vertical holonomy by the assumption Lvf = 0, it follows that the
result is independent of the choice of ϕ, and of the choice of the initial deformation of γ
in M − Σ. This concludes the definition of

∫
γ
f dx. This construction is reminiscent
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of [Buf14b, §1.3], although the fact that our distributions can not be integrated against
characteristic functions enforces an additional smoothing step in the definition above.

Proposition 2.12. — Let f ∈ B−kh,kv ∩kerLv. Then the integral
∫
γ
f dx only depends

on the homology class of γ in H1(M). Therefore, the map γ 7→
∫
γ
f dx defines a linear

map from H1(M) to R, i.e., a cohomology class in H1(M) which we denote by [f ] or
[f dx].

Proof. — The fact that
∫
γ
f dx only depends on the homology class of γ in M − Σ

follows directly from the definitions. The only assertion that remains to be checked
is that this integral is not modified when one crosses a singularity. Equivalently, we
have to show that

∫
γ
f dx = 0 when γ is a positive path around a singularity σ.

Let π be the covering projection around σ, well defined on a neighborhood of
size δ ∈ (0, β0/10). Let us fix a function ϕ on R equal to 1 around 0, with support
included in [−δ, δ]. For y > 0, we may construct a path γ around σ by considering
I+
y = π−1([−δ, δ] + iy) (a union of κ horizontal segments, where κ is the degree of σ),
crossed negatively, and I−y = π−1([−δ, δ] − iy) (a union of κ horizontal segments),
crossed positively, as well as the corresponding vertical segments. Then

(2.17)
∫
γ

f dx =

∫
I−y

ϕ(x)f dx−
∫
I+
y

ϕ(x)f dx

for any y > 0, by definition.
Let ε > 0. By definition of B−kh,kv , we may choose g ∈ C∞c (M − Σ) with

‖f − g‖−kh,kv < ε. When y tends to 0, we have∫
I−y

ϕg dx−
∫
I+
y

ϕg dx −→ 0

as the horizontal segments compensate each other, and the singularity does not con-
tribute as g vanishes close to σ. We can in particular choose y for which this quantity
is less than ε. We have∣∣∣∣∫

I−y

ϕg dx−
∫
I−y

ϕf dx

∣∣∣∣ 6 κ‖ϕ‖Ckh ‖g − f‖−kh,kv 6 Cε,
as the integral along each of the κ horizontal segments composing I−y is bounded by
‖ϕ‖Ckh ‖g − f‖−kh,kv . The same holds on I+

y . Finally, we get∣∣∣∣∫
I−y

ϕf dx−
∫
I+
y

ϕf dx

∣∣∣∣ 6 (2C + 1)ε.

This concludes the proof thanks to (2.17). �

By definition of cohomology, a closed current of degree 1 vanishes in cohomology
if and only if it is the differential of a current of degree 0. In the case of currents
in B−kh,kv ∩ kerLv, we will see that this primitive is of the same type in the next
proposition. The primitive of the current f dx is obtained by integrating f along
horizontal leaves. We will have to see that this makes sense, and that the primitive
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thus defined has all the required regularity properties. Equivalently, the primitive g
has to satisfy Lhg = f .

Proposition 2.13. — Assume that there is no horizontal saddle connection. Consider
f ∈ B−kh,kv ∩ kerLv such that [f ] = 0 ∈ H1(M), with kh > 0. Then there exists
g ∈ B−kh+1,kv ∩ kerLv such that f = Lhg.

Proof. — Let x0 be a basepoint, and F a horizontal half-line starting at x0, positively
oriented, which does not end at a singularity. Since we assume there is no horizontal
saddle connection, it is dense. We identify it with [0,∞). We will denote by xt the
point of F at horizontal distance t of x0. Choose on F a function ρ0 equal to 1 in a
neighborhood of x0, and to 0 on [δ/2,+∞), where δ is small enough that there is no
singularity in the ball of radius 10δ around x0.

Let ϕ be a Ckh−1 function on F with compact support. Let Φ be its unique primitive
that vanishes at x0. It is constant after some time T , equal to

∫
ϕ. Choose a time

t > T such that xt belongs to the vertical segment of size δ through x0 (it exists as the
half-line F is dense). Consider then the function Φt equal to Φ on [0, t], to (

∫
ϕ) · ρ0

on [t, t + δ] (where ρ0 is pushed vertically to [xt, xt+δ]), and to 0 further on. This is
a function of class Ckh with compact support in F , so that

∫
F

Φtf dx is well defined.
Then we define formally an object g by the formula

(2.18)
∫
ϕ · g dx = −

∫
Φt · f dx.

Let us first notice that this quantity does not depend on t. Indeed, if we choose another
time s > t such that xs also belongs to the vertical segment of size δ through x0,
then the difference between these two quantities is given by (

∫
ϕ)
∫
γ
f dx, where γ

is the union of the piece of F between xt and xs, and a subsegment of the vertical
segment through x0. As [f ] = 0, this integral vanishes. Note that, for now, g is only
a distribution along F .

The interest of this definition is the following. If we prove that g defines a genuine
element of B−kh+1,kv , we will have by definition of Lh that, for any function ϕ with
compact support on a segment I ⊆ F ,∫

I

ϕ · Lhg dx = −
∫
I

ϕ′ · g dx =

∫
I

Ψt · f dx,

where Ψt is the primitive of ϕ′ vanishing at x0, extended to the right by (
∫
ϕ′)ρ0 = 0.

Hence, Ψt = ϕ. This formula shows that Lhg = f , at least along subintervals of F .
As we will see later that g is invariant under vertical holonomy, we will obtain Lhg = f

everywhere, as desired.
The same argument using [f ] = 0 shows that, if two segments I and J of F

are obtained one from the other by a vertical translation in a small chart without
singularity, and if ϕI is a function on I, then

∫
I
ϕIg dx =

∫
J
ϕJg dx, where ϕJ is

the push-forward to J of ϕI by vertical translation. This makes it possible to define∫
I
ϕg dx for any horizontal segment I and any ϕ ∈ Ckh−1

c (I), by using the integral
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on a small vertical translate of I included in F . By the above, it does not depend on
the choice of the translate.

Let δ > 0 be such that any horizontal segment of length β0 can be translated
vertically, in the positive or negative direction, by at least δ. If T is large enough, then
F [0, T ] is δ-dense in M . This implies that, to compute

∫
I
ϕg dx for any interval I of

length β0, one can first translate it vertically to reduce the computation to an interval
included in F [0, T + β0], and then use a time t independent of I. The function Φt
obtained in this way has a Ckh norm which is bounded by C‖ϕ‖Ckh−1 . This shows
that, uniformly in I ∈ Ih, ∣∣∣∣∫

I

ϕ · g dx

∣∣∣∣ 6 C‖ϕ‖Ckh−1 .

Moreover, as g is locally invariant under vertical translations, we have∫
I

ϕ · Ljvg dx = 0 for all j > 0.

Therefore, g satisfies all the inequalities that are satisfied by the elements of B−kh+1,kv .
However, this is not enough to conclude that g is indeed an element of B−kh+1,kv .

We should come back to the definition of this space as the closure of C∞c (M−Σ), and
show that g is a limit of smooth functions with compact support. This is the hardest
part of the proof, as one may not regularize g blindly by convolving it with a smooth
kernel along horizontal segments: this fails for segments that hit the singularity. We
prove the statement locally, as one can then extend it using a partition of unity. We
treat the harder case of the neighborhood of a singularity σ, the case away from
singularities is easier. Let π : U → C be the covering projection of a neighborhood U
of σ in C, sending σ to 0. We write Ur = π−1([−r, r] + i[−r, r]). Let a > 0 be small
enough. We fix a smooth function ρ that is equal to 1 on U4a and vanishes outside
of U5a.

By assumption, f itself is the limit in B−kh,kv of a sequence of functions fn ∈
C∞c (M−Σ). Let us consider around σ the function g0

n which is a primitive of fn along
every horizontal segment, and vanishes on the vertical segments going through σ. Then
ρg0
n ∈ C∞c (M−Σ). However, g0

n will not converge in general to g, as one has to adjust
integration constants. The difficulty is that, if we adjust the integration constant
by considering what happens to the left of σ in complex charts (i.e., on the set of
points whose image under π has negative real part), then this integration constant
will behave nicely along vertical segments to the left of σ, but it will be discontinuous
along vertical segments to the right of σ. The converse problem shows up if we fix
the integration constant by using what happens to the right of σ. The idea will be to
have two integration constants, coming from the left and from the right, and to show
that they are necessarily close.

Let η be a nonnegative C∞ function on R with support in [0, a] and with integral 1.
We will write ηt for η(· − t), whose support is contained in [t, t+ a]. Given a point y
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on a vertical segment through σ, we write

c+n (y) =

∫
[6a,7a]+iy

η6ag dx−
∫

[6a,7a]+iy

η6ag
0
n dx,

c−n (y) =

∫
[−7a,−6a]+iy

η−7ag dx−
∫

[−7a,−6a]+iy

η−7ag
0
n dx

(where we used the local complex coordinates given by π). These functions are uni-
formly bounded. As g is invariant under vertical shift and as g0

n is C∞, they are
smooth along vertical segments. More precisely, c+n is C∞ along vertical segments on
the right of the singularity (in the chart π), while c−n is C∞ along vertical segments
to the left of the singularity.

We claim that, for y as above, for any function ϕ ∈ Ckh−1
c ([−3a, 3a] + iy) with

norm at most 1, and for any sign s = ±,

(2.19)
∣∣∣∣∫ ρϕg dx−

∫
ρϕg0

n dx−
(∫

ρϕ

)
csn(y)

∣∣∣∣ 6 C‖f − fn‖−kh,kv ,
where C does not depend on n. Let us prove this for s = + for instance. By density
of F and by continuity of all the objects under consideration, it suffices to prove it
if y ∈ F . The function ρϕ − (

∫
ρϕ)η6a has a vanishing integral on [−3a, 7a] + iy. Its

primitive Φ vanishing at −3a+ iy also vanishes at 7a+ iy. The definition of g entails∫ (
ρϕ−

(∫
ρϕ

)
η6a

)
g = −

∫
Φf.

Moreover, ∫ (
ρϕ−

(∫
ρϕ

)
η6a

)
g0
n =

∫
Φ′g0

n = −
∫

Φ(g0
n)′ = −

∫
Φfn.

Taking the difference between these two equations and using the definition of c+n (y)

yields ∫
ρϕg −

∫
ρϕg0

n −
(∫

ρϕ

)
c+n (y) =

∫
Φfn −

∫
Φf.

Thanks to the definition of the norm, this proves (2.19) since Φ is Ckh with norm and
support uniformly bounded.

Let us now consider a function ϕ supported by [−3a, 3a] with integral 1. We have∫
ρϕ = 1 if |y| 6 3a by definition of ρ. Using the inequalities (2.19) with the signs +

and − and taking their differences, we get in particular

(2.20) |c+n (y)− c−n (y)| 6 C‖f − fn‖−kh,kv .

Let hn be a smooth function on R equal to 0 in a neighborhood of 0 and to 1

for |x| > 1/n. We define gn by gn(x + iy) = g0
n(x + iy) + csgn x

n (y)hn(x). This is a
C∞ function on U3a, vanishing in a neighborhood of σ. Let ρ be a smooth function
equal to 1 on Ua, vanishing outside of U2a. Let us show that ρgn converges to ρg in
B−kh+1,kv , to conclude the proof.
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We first control what happens without vertical derivatives. Let I be a horizontal
interval. We may assume that it is close to σ, at height y with |y| < 2a, otherwise ρ
vanishes on I and everything is trivial. Consider also ϕ ∈ Ckh−1

c (I). Then∫
I

ϕ·ρg dx−
∫
I

ϕ·ρgn dx =

∫
I

ρ·ρϕ·g dx−
∫
I

ρ·ρϕ·g0
n dx−

∫
I

ρ·ρϕcsgn x
n (y)hn(x) dx

=

(∫
I

ρ · ρϕ
)
c+n (y)−

∫
I

ρ · ρϕ · csgn x
n (y)hn(x) dx+O(‖f − fn‖−kh,kv ),

where the first equality comes from the definition of gn, and the second one
from (2.19). In the last integral, if one replaces c−n (y) by c+n (y), one makes a mistake
which is bounded by C‖f − fn‖−kh,kv , thanks to (2.20). We are left with

c+n (y) ·
∫
I

ρ · ρϕ · (1− hn(x)) dx+O(‖f − fn‖−kh,kv ).

Since 1− hn is supported in an interval of length 2/n and since the function ρ · ρϕ is
uniformly bounded, as well as c+n , this quantity is bounded by C/n+C‖f−fn‖−kh,kv ,
which tends to 0 with n. We have therefore proved that ‖ρgn − ρg‖−kh+1,0 → 0.

Let us then consider what happens with successive derivatives in the vertical di-
rection. In Ljv(ρg), if one differentiates ρ, then the number of derivatives of g is less
than j, and one concludes by induction. We are left with proving the convergence
to 0 of ∫

I

ϕ · ρLjvg dx−
∫
I

ϕ · ρLjvgn dx.

As the vertical derivative of g vanishes, the first term is 0. For the second term, the
vertical derivatives of fn, integrated against a smooth function, are small since they
are close to the corresponding term for f , which vanishes as Lvf = 0. Integrating
horizontally, we deduce that the vertical derivatives of g0

n are small in the distribu-
tional sense. As a consequence, the vertical derivatives of c+n and c−n are also small.
The same is true for the vertical derivatives of gn. This concludes the proof. �

The following lemma will be very important for us, to show that the eigenvalue λ−1

of a pseudo-Anosov map acting on H1(M) does not show up in its Ruelle spectrum.

Lemma 2.14. — There is no f ∈ B−kh,kv ∩ kerLv with [f ] = [dy].

Proof. — We argue by contradiction, assuming that f ∈ B−kh,kv ∩ kerLv satisfies
[f ] = [dy]. Increasing kh (which only makes the space larger), we can assume kh > 1.
Since f is in the kernel of Lv, its vertical smoothness is infinite, so we can also assume
kv > 3. We claim that, in this case, there exists g ∈ B−kh+1,kv with Lhg = f and
Lvg = 1.

We follow the construction in Proposition 2.13 to construct the primitive g of f .
Let us use all the notations of the corresponding proof. In particular, let F be a half-
infinite horizontal leaf starting at a point x0, and let xt be the point at distance t
of x0 in F , and let ρ0 be a function on F which is equal to 1 on a neighborhood of x0

and to 0 on [δ/2,+∞[, where δ is small enough.
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Let ϕ be a Ckh−1 function on F , with compact support. Denote by Φ its primitive
that vanishes at 0. It is eventually constant and equal to

∫
ϕ after some time T . Choose

t > T such that xt belongs to the vertical segment of size δ through x0 (such a time
exists as the half-leaf F is dense), at a vertical distance y(xt). Let us consider the
function Φt equal to Φ on [0, t], to (

∫
ϕ) ·ρ0 on [t, t+ δ] (where ρ0 is pushed vertically

to [xt, xt+δ]), and to 0 afterward. This is a compactly supported Ckh function on F .
Therefore,

∫
F

Φtf dx is well defined. Let us define formally

(2.21)
∫
ϕ · g dx = −

∫
Φt · f dx− y(xt) ·

∫
ϕ.

The last term is the only difference with (2.18).
This quantity does not depend on t. Indeed, choose s > t such that xs is also on

the vertical leaf of size δ through x0. Then(
−
∫

Φs · f dx− y(xs) ·
∫
ϕ

)
−
(
−
∫

Φt · f dx− y(xt) ·
∫
ϕ

)
= −

(∫
ϕ

)(∫
γ

f dx+ y(xs)− y(xt)

)
,

where γ is the union of the piece of F between xt and xs, and of the small vertical
segment between xs and xt. As [f ] = [dy], we have

∫
γ
f dx = y(xt)−y(xs). Therefore,

the above difference vanishes.
Let I0 be a subsegment of F , let ϕ be a compactly supported function on I0, let Iε

be a vertical translate of I0 by a small parameter ε so that there is no singularity in
between and so that Iε is also included in F . Then we have

(2.22)
∫
Iε

ϕ · g dx−
∫
I0

ϕ · g dx =

(∫
ϕ

)
ε.

Indeed, let us use in Definition (2.21) a time t which is large enough to work as
well for I0 and Iε. The difference between the primitives of ϕ on I0 and Iε is then
supported on the subsegment of F between I0 and Iε, and is equal to

∫
ϕ except in

the boundaries I0 and Iε. We obtain∫
Iε

ϕ · g dx−
∫
I0

ϕ · g dx = −
(∫

ϕ

)∫
γ

f dx,

where γ is made of a horizontal piece of F and of the vertical segment between the left
endpoints of Iε and I0, with length ε. As [f ] = [dy], we have

∫
γ
f dx =

∫
γ

dy = −ε.
This proves (2.22).

We can then extend by continuity g to all horizontal segments, ensuring that (2.22)
is always satisfied. Then, by definition, Lvg = 1 in the distributional sense. It remains
to check that g belongs to B−kh+1,kv . The argument is completely identical to the
corresponding argument in the proof of Proposition 2.13.

We have obtained g ∈ B−kh+1,kv with Lvg = 1. With the duality from Lemma 2.11,
we get

LebM = 〈1, 1〉 = 〈Lvg, 1〉 = −〈g, Lv1〉 = 0.

This is a contradiction, concluding the proof of the lemma. �
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3. The Ruelle spectrum of pseudo-Anosov maps with orientable foliations

Let T be a pseudo-Anosov map preserving orientations, on a translation surface
(M,Σ). This section is devoted to the description of its Ruelle spectrum, culminating
with the proof of Theorem 1.4.

3.1. Quasi-compactness of the transfer operator. — In this paragraph, we show
that the operator T of composition with T acts on B−kh,kv , and is quasi-compact
with a small essential spectral radius. Namely:

Theorem 3.1. — The operator T acting on B−kh,kv has a spectral radius bounded
by 1, and an essential spectral radius bounded by λ−min(kh,kv).

The proof will use a Lasota-Yorke inequality given in the next proposition.

Proof of Theorem 3.1 assuming Proposition 3.2. — This follows readily from Hennion’s
theorem [Hen93], from the compact embedding proposition 2.8 and from the Lasota-
Yorke inequality given in Proposition 3.2. �

Proposition 3.2. — Let kh, kv > 0. The operator T : f 7→ f ◦ T , initially defined for
f ∈ C∞c (M − Σ), extends to a continuous linear operator on B−kh,kv , whose iterates
are uniformly bounded. Moreover, it satisfies the inequality

(3.1) ‖T nf‖−kh,kv 6 Cλ−min(kh,kv)n‖f‖−kh,kv + Cn‖f‖−kh−1,kv−1,

where C and Cn are constants that do not depend on f . (When kv = 0, the last term
should be omitted).

Proof. — Assume that we can prove the inequality (3.1) for f ∈ C∞c (M −Σ). Then,
it extends to B−kh,kv by density, and proves that T acts continuously on this space
thanks to the inclusion B−kh,kv ⊆ B−kh−1,kv−1.

Let us now prove (3.1) for smooth f . In the course of the proof, we will also establish
the boundedness of the iterates of T on B−kh,kv . First, we estimate the contribution of
‖T nf‖′−kh,kv to ‖T nf‖−kh,kv . Consider I ∈ Ih and ϕ ∈ Ckhc (I) with norm at most 1,
and compute∫
I

ϕ ·Lkvv (f ◦Tn) dx = λ−kvn
∫
I

ϕ · (Lkvv f)◦Tn dx = λ−kvn ·λ−n
∫
TnI

ϕ◦T−n ·Lkvv f dx.

Let us then introduce a partition of unity ρp on TnI into smooth functions with
supports of size 6 β0 and bounded intersection multiplicity. Thus, we decompose TnI
as a union of at most Cλn intervals in Ih. On each of these intervals, the integral is
bounded by C‖f‖′−kh,kv as the function ϕ◦T

−n ·ρp has a Ckh-norm which is uniformly
bounded (this is the case for ϕ and ρp, and the map T−n only makes things better as it
is a uniform contraction by λ−n). Summing over p, we get a bound Cλ−kvn‖f‖′−kh,kv .
Hence,

(3.2) ‖T nf‖′−kh,kv 6 Cλ
−kvn‖f‖−kh,kv .
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If we use the same argument with a norm involving j < kv stable derivatives, we get
a weaker gain λ−jn. Summing over j, this shows that the iterates of T are uniformly
bounded on B−kh,kv , but this is not enough to prove (3.1). To prove it, we will take
advantage of the expansion in the horizontal direction, which we have not used yet.
We can extend I in one of the two horizontal directions without meeting a singularity,
for instance to its right, to an interval I ′ ∈ Ih2β0

. Let ϕε = ϕ ? θε, where θε is a kernel
supported on [0, ε], and ε < β0 is a small parameter that will be chosen later on,
depending on n. (If the interval I had been extended to its left, we would have taken
the support of θε in [−ε, 0]). Then ϕε is compactly supported in I ′ if ε < β0, and it
satisfies

(3.3) ‖ϕ− ϕε‖Ckh−1 6 Cε, ‖ϕε‖Ckh 6 C, ‖ϕε‖Ckh+1 6 C/ε.

Let us compute as above, introducing a partition of unity ρp on TnI ′. We get∫
I

ϕ · Ljv(f ◦ Tn) dx = λ−jn · λ−n
∑
p

∫
Ip

(ϕ− ϕε) ◦ T−n · ρp · Ljvf dx

+ λ−jn · λ−n
∑
p

∫
Ip

ϕε ◦ T−n · ρp · Ljvf dx.

In the second sum, the test function ϕε ◦T−n ·ρp has a Ckh+1 norm which is bounded
by C/ε. As the number j of derivatives we consider is < kv, we deduce that this term
is bounded by

Cλ−jnε−1‖f‖−kh−1,kv−1 6 C(ε, n)‖f‖−kh−1,kv−1.

In the first sum, the first kh − 1 derivatives of (ϕ− ϕε) ◦ T−n are bounded by Cε, as
this already holds for ϕ−ϕε by (3.3). The kh-th derivative of ϕ−ϕε is only bounded
by a constant. As T−n contracts by λ−n, the kh-th derivative of (ϕ − ϕε) ◦ T−n is
therefore bounded by Cλ−khn. Hence, taking ε = λ−khn, we get

‖(ϕ− ϕε) ◦ T−n‖Ckh 6 Cλ−khn.

Multiplying by ρp (whose derivatives are all bounded) and then integrating and sum-
ming, we find that the first sum is bounded by

Cλ−(j+kh)n‖f‖−kh,kv 6 Cλ−khn‖f‖−kh,kv .

Finally, we have proved that, for j < kv,

‖T nf‖′−kh,j 6 Cλ
−khn‖f‖−kh,kv + Cn‖f‖−kh−1,kv−1.

Together with the inequality (3.2), we get the conclusion of the proposition. �

Theorem 3.1 shows that the spectrum of T acting on B−kh,kv is discrete in
{z : |z| > λ−min(kh,kv)}, made of at most countably many eigenvalues which are
all discrete and of finite multiplicity. A priori, the spectrum could depend on the
space B−kh,kv we consider. However, all these spaces contain the dense subspace
C∞c (M − Σ) and they are all continuously embedded in the distribution space
D∞(M − Σ). A theorem of Baladi-Tsujii [BT08, Lem.A.1] then ensures that the
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spectrum (and even the eigenspaces, considered as subspaces of the space of distri-
butions) do not depend on the space one considers, if one is beyond the essential
spectral radius. Hence, it makes sense to talk about the spectrum of T , independently
of the space B−kh,kv . We have proved the existence of a Ruelle spectrum for T in
the sense of Definition 1.1. To complete the proof of Theorem 1.4, we still have to
identify this spectrum.

For α 6= 0, let us denote by E(1)
α the eigenspace corresponding to the eigenvalue α,

and by Eα the corresponding generalized eigenspace (containing the eigenvectors
and more generally the generalized eigenvectors, i.e., such that (T − αI)kf = 0 for
some k > 0). They are included in B−kh,kv when |α| > λ−min(kh,kv). These spaces are
reduced to {0} when α is not an eigenvalue of T .

3.2. Description of the spectrum. — To describe the spectrum, we will rely crucially
on the action of the operators Lh and Lv.

Proposition 3.3. — We have T ◦Lv = λLv◦T on C∞c (M−Σ). This equality still holds
on all spaces to which these operators extend continuously, in particular as operators
from B−kh,kv to B−kh,kv−1 when kv > 0.

In the same way, T ◦ Lh = λ−1Lh ◦ T on C∞c (M − Σ). This equality still holds
on all spaces to which these operators extend continuously, in particular as operators
from B−kh,kv to B−kh−1,kv .

Proof. — We compute: (T ◦ Lv)(f) = (Lvf) ◦ T , and

(Lv ◦ T )(f) = Lv(f ◦ T ) = λ−1(Lvf) ◦ T

as T contracts by λ−1 in the vertical direction. This proves the desired equality for Lv.
The argument is the same for Lh. �

Corollary 3.4. — The operator Lv sends Eα to Eλα. The operator Lh sends Eα to
Eλ−1α.

Proof. — A generalized eigendistribution f for α satisfies (T − αI)kf = 0 for large
enough k. Moreover, we have

(T − λαI) ◦ Lv = λLv ◦ (T − αI)

by Proposition 3.3. By induction,

(T − λαI)k ◦ Lv = λkLv ◦ (T − αI)k.

Therefore,
(T − λαI)k(Lvf) = λkLv((T − αI)kf) = 0.

This shows that Lv maps Eα to Eλα. The argument is the same for Lh. �

Corollary 3.5. — For f ∈ Eα, we have Lkvf = 0 when k is large enough, more
specifically when λk|α| > 1.

Proof. — We have Lkvf ∈ Eλkα. This space is trivial if |λkα| > 1 as the iterates of T
are bounded on B−kh,kv by Proposition 3.2. �
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If we start from a nonzero generalized eigendistribution, we can consider the small-
est k such that Lkvf = 0. Then Lk−1

v f is a generalized eigendistribution for T , and it
satisfies Lvf = 0. Such elements are the main building blocks to describe the spec-
trum of T . We will take advantage of the cohomological description of such objects
we have given in Section 2.4 to go further in the description of the spectrum.

Let us now try to see if any cohomology class can be realized by elements in
B−kh,kv ∩ kerLv – and if the class is a (generalized) eigenfunction for the action of T
on cohomology we will try to realize it by a (generalized) eigendistribution for T , for
the same eigenvalue. This is not always possible: if one considers the action of a linear
Anosov matrix on the torus, then the cohomology has dimension 2, but the spectrum
of T is reduced to {1}: it is not possible to realize in this way the cohomology class
corresponding to the stable foliation. We will see that this is the only obstruction: all
the other eigenvectors in cohomology (which correspond to eigenvalues in (λ−1, λ])
can be realized.

Theorem 3.6. — Let h ∈ H1(M) be a cohomology class which is a generalized eigen-
function for the linear action of T on cohomology: we have (T ∗ − µ)Jh = 0 for some
J > 1 and some µ with |µ| ∈ [λ−1, λ] (where µ = λ if and only if h is a multiple of
the class of the horizontal foliation dx, and µ = λ−1 if and only if h is a multiple of
the class of the vertical foliation dy). We assume µ 6= λ−1, i.e., we exclude multiples
of dy.

Then, for min(kh, kv) > 3, there exists f ∈ B−kh,kv ∩ kerLv in the generalized
eigenspace Eλ−1µ whose cohomology class [f ] is equal to h. In particular, if h 6= 0, the
eigenspace is nontrivial.

Proof. — Let ω be a closed 1-form with compact support inM−Σ such that [ω] = h,
i.e.,

∫
γ
ω = 〈h, γ〉 for any closed curve γ. It is possible to choose such an ω which

vanishes on a neighborhood of Σ as part of the long exact sequence in cohomology
reads

H1
c (M − Σ) −→ H1

c (M) −→ H1
c (Σ).

As the last term is 0, the previous arrow is onto.
Let us write ω = ωx dx+ωy dy, where ωx and ωy belong to C∞c (M −Σ). Then we

have
(Tn)∗ω = λn(T nωx) dx+ λ−n(T nωy) dy,

as T expands horizontally by λ and contracts vertically by λ.
Consider a closed path γ made of horizontal and vertical segments, away from the

singularities. Denote by γt the same path but shifted horizontally by t. If t is small
enough, it does not meet any singularity either. Let γ =

∫
t
η(t)γt, where η is a smooth

function whose support is small enough to ensure that this is well defined. This integral
should be understood in the weak sense, i.e., for any form ω the integral of ω on γ

is by definition
∫
t
η(t)(

∫
γt
ω). Then γ is made of horizontal segments weighted by a

C∞ compactly supported function – we denote this part by γh – and of vertical parts
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that we denote by γv. Then∫
γh

(T nωx) dx = λ−n
∫
γ

(Tn)∗ω − λ−2n

∫
γv

(T nωy) dy.

The last integral is uniformly bounded as ωy is a bounded function. Hence, its contri-
bution is O(λ−2n). In the first term, as (Tn)∗ω is closed, it is equivalent to integrate
just on γ. This only depends on the homology class h of ω, which is a generalized
eigenvector for T ∗. By Jordan’s decomposition, we may write

(Tn)∗h = µn
∑
j<J

njhj ,

with h0 = h. We get

(3.4)
∫
γh

(T nωx) dx =

(∫
η

)
· (λ−1µ)n

∑
j<J

nj〈hj , γ〉+O(λ−2n).

In B−kh,kv , we can write

T nωx =
∑
|r|>λ−2

∑
j6C

rnnjfr,j +Rn,

where r runs along the eigenvalues of modulus > λ−2 of T , the fr,j belong to Er
and Rn is a remainder term which decays faster than λ−2n. Identifying the terms in
the asymptotic (3.4) thanks to the assumption |µ| > λ−1 and using h0 = h, we obtain
for f = fλ−1µ,0 the equality

(3.5)
∫
γh

f dx =

(∫
η

)
〈h, γ〉.

Let us show that f satisfies Lvf = 0. Consider a horizontal interval I0 = [0, q], a
small vertical translate Iε = I0+iε of this interval (in a chart away from singularities),
and a compactly supported test function ϕ0 on I0. We want to show that∫

I0

ϕ0f dx =

∫
Iε

ϕεf dx,

where ϕε is the vertical push-forward of ϕ0 on Iε. To do this, denote by γt the
path from 0 to t then to iε + t then to iε then to 0. 0. Let also η(t) = −ϕ′0(t). In
γ =

∫
η(t)γt dt, a point x ∈ [0, q] is counted with a weight∫

t∈[x,q]

η(t) dt = −ϕ0(q) + ϕ0(x) = ϕ0(x).

One can argue similarly along Iε. Therefore, by definition,∫
I0

ϕ0f dx−
∫
Iε

ϕεf dx =

∫
γh

f dx.

This integral vanishes by (3.5) as
∫
η = 0. This shows that f is invariant under vertical

translation, i.e., Lvf = 0.
The cohomology class [f ] is then well defined by Proposition 2.12, as well as

∫
γ
f dx

for any closed path. By definition of this integral, it coincides with
∫
γh
f dx when γ is
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a smoothing of γ as above and η has integral 1. We deduce from (3.5) that
∫
γ
f dx =

〈h, γ〉 for any closed path γ. By definition, this shows that [f ] = h. �

We can use this statement to show that the spectrum of T contains the set men-
tioned in Theorem 1.4:

Corollary 3.7. — The Ruelle spectrum of T contains all the λ−nµ for n > 1 and
µ ∈ Ξ, where Ξ is the spectrum of T ∗ on the subspace of H1(M) made of 1-forms
which are orthogonal to dx and dy, as in the statement of Theorem 1.4.

Proof. — Theorem 3.6 ensures that λ−1µ belongs to the Ruelle spectrum of T . The
map Lh is injective on the generalized eigenspace Eλ−1µ by Lemma 2.7, as the kernel
of Lh is included in E1. It sends it to Eλ−2µ by Corollary 3.4, hence this space is
nontrivial. By induction, one proves in the same way that all the spaces Eλ−nµ are
nontrivial. �

Proposition 3.8. — For any α 6= 0, the operator Lh is onto from Eα ∩ kerLv to
Eλ−1α ∩ kerLv ∩ ker[·]. It is bijective for α 6= 1.

Proof. — First, Lh sends Eα to Eλ−1α by Corollary 3.4. As it commutes with Lv, it
even sends Eα ∩ kerLv to Eλ−1α ∩ kerLv. Let us show that its image is contained
in ker[·]. Let f ∈ kerLv, we have to see that [Lhf ] = 0. Consider a path γ made
of horizontal and vertical segments. We compute

∫
γ
Lhf dx by coming back to its

definition. Informally, we have∫
γ

Lhf dx =
∑
I

∫
I

Lhf dx,

where the sum is over horizontal parts of γ. With an integration by parts,∫
γ

Lhf dx =
∑
I

(f(yI)− f(xI)),

where yI and xI are the endpoints of I. As γ is a closed path and f is invariant
vertically each f(yI) cancels out with −f(xJ), where J is the horizontal interval
following I in γ. We are left with

∫
γ
Lhf dx = 0.

This computation is not rigorous as f can not be integrated against characteristic
functions, and f(yI) makes no sense (f is only a distribution). This is why

∫
γ
Lhf dx

is defined in Section 2.4 by using a regularization of the characteristic function of I.
The above argument works with the regularization. As f is vertically invariant, the
contribution of the end of the interval I to

∫
γ
Lhf dx compensates exactly with the

contribution of the beginning of the next interval, and we are left with
∫
γ
Lhf = 0 as

desired.
It remains to show that Lh : Eα ∩ kerLv → Eλ−1α ∩ kerLv ∩ ker[·] is surjective

(its bijectivity for α 6= 1 follows directly as Lh is injective away from constants by
Lemma 2.7). Fix f ∈ Eλ−1α∩kerLv∩ker[·]. By Proposition 2.13, if kh and kv are large
enough, there exists g ∈ B−kh+1,kv such that Lvg = 0 and Lhg = f . The question is
whether one can take g ∈ Eα.
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Consider j such that (T −λ−1α)jf = 0. We have (T −λ−1α)j◦Lh = λ−jLh◦(T −α)j

by Proposition 3.3. Therefore, Lh((T − α)jg) = 0, i.e., there exists a constant c such
that (T −α)jg = c by Lemma 2.7. If α 6= 1, we have then (T −α)j(g−c/(1−α)j) = 0.
Therefore, g̃ = g − c/(1 − α)j satisfies g̃ ∈ Eα ∩ kerLv and Lhg̃ = f , as announced.
If α = 1, then (T − α)j+1g = (T − 1)c = 0, so g itself already belongs to Eα. �

There are two possible spectral values, corresponding to the eigenvalues λ and λ−1

of T ∗ : H1(M) → H1(M), i.e., to dx and dy. They have a special status in Theo-
rem 1.4: the first one is simple and does not interact with the rest of the spectrum,
while the second one does not belong to the Ruelle spectrum. Let us now give the
specific results about these values that we will need to classify the Ruelle spectrum.

Lemma 3.9. — The generalized eigenspace E1 is one-dimensional, made of constants.

Proof. — The generalized eigenspace E1 contains the constants as the function 1

belongs to B−kh,kv by Lemma 2.5. Moreover, any element f of E1 satisfies Lvf = 0

(as Lvf belongs to Eλ by Corollary 3.4, and this space is trivial by Theorem 3.1).
Therefore, there is a linear map f 7→ [f ] from E1 to H1(M), taking its values in
the generalized eigenspace for the eigenvalue λ of T ∗. This space has dimension 1.
To conclude, it suffices to show that this map is injective, i.e., if f ∈ E1 satisfies
[f ] = 0 then f vanishes. When [f ] = 0, Proposition 3.8 shows that f can be written
as Lhg with g ∈ Eλ. As this space is trivial, we get g = 0 and then f = 0. �

We have almost all the tools to show that the Ruelle spectrum of T is given exactly
by the set described in Theorem 1.4. More precisely, we can already show the following
partial result.

Proposition 3.10. — The Ruelle spectrum of T is given exactly by the set described
in Theorem 1.4, i.e., it is made of 1 and of the numbers λ−nµ with n > 1 and µ ∈ Ξ.

Proof. — On the one hand, 1 belongs to the spectrum by Lemma 3.9. On the other
hand, for µ ∈ Ξ and n > 1, then Eλ−nµ is nontrivial by Corollary 3.7. This shows one
inclusion in the proposition.

For the converse, consider α 6= 0 such that Eα is nontrivial, and take a nonzero
f ∈ Eα. Let k > 0 be the integer such that Lkvf 6= 0 and Lk+1

v f = 0. It exists
by Corollary 3.5. The function fk = Lkvf belongs to Eλkα by Corollary 3.5, and to
kerLv by construction. If [fk] = 0, Proposition 3.8 shows that there exists fk+1 ∈
Eλk+1α ∩ kerLv with Lhfk+1 = fk. If [fk+1] = 0, we can iterate the same process. It
has to stop at some point as Eλk+nα is trivial for n large. Therefore, we get an integer n
and a distribution fk+n ∈ Eλk+nα ∩ kerLv with Lnhfk+n = fk and [fk+n] 6= 0. The
cohomology class [fk+n] belongs to the generalized eigenspace for T ∗ : H1(M) →
H1(M) for the eigenvalue α′ = λk+n+1α. We have α′ 6= λ−1, since otherwise the
corresponding cohomology class would be a nonzero multiple of [dy], contradicting
Lemma 2.14. Hence, α′ ∈ Ξ or α′ = λ. If α′ ∈ Ξ, we have written α as λ−pα′ with
p > 1, in accordance with the claim of the proposition. If α′ = λ, then fk+n ∈ E1.
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By Lemma 3.9, fk+n is constant. As Lnhfk+n = fk 6= 0, we deduce n = 0. Then
Lkvf = fk is a nonzero constant c. Using the duality formula from Lemma 2.11,
we get

cLebM = 〈fk, 1〉 = 〈Lkvf, 1〉 = −〈f, Lkv1〉.
If k were nonzero, then Lkv1 would vanish and we would get a contradiction. Therefore,
k = 0. Finally, α = 1, again in accordance with the claim. �

The conclusion of the proof of Theorem 1.4 relies on the following statement.

Theorem 3.11. — Let α /∈ {0, 1}. Then Lv : Eλ−1α → Eα is onto.

Before proving the theorem, let us show how we can conclude the proof of Theo-
rem 1.4.

Proof of Theorem 1.4 using Theorem 3.11. — To simplify the notations, we will assume
that for µ ∈ Ξ then λ−1µ /∈ Ξ (otherwise, there is a superposition phenomenon as
explained after the statement of Theorem 1.4, which makes things more complicated
to write but does not change anything in the proof).

In Proposition 3.10, we have described exactly the spectrum of T , and moreover
we have shown how the generalized eigenspaces were constructed. On the one hand,
there is the space E1, which is one-dimensional by Lemma 3.9. On the other hand, for
µ ∈ Ξ, the space Eλ−1µ is in bijection with the generalized eigenspace for the action
of T ∗ on H1(M) and the eigenvalue µ, with dimension dµ.

Finally, Eλ−(n+1)µ is made of elements sent by Lv to Eλ−nµ, and of elements in
Eλ−(n+1)µ∩kerLv. Proposition 3.8 shows that Lh is a bijection between Eλ−nµ∩kerLv
and Eλ−(n+1)µ∩kerLv (as, on the second space, the condition [f ] = 0 is always satisfied
thanks to our non-superposition assumption). Therefore, by induction, all these spaces
have dimension dµ. As Lv : Eλ−(n+1)µ → Eλ−nµ is onto by Theorem 3.11, we get

dimEλ−(n+1)µ = dimEλ−nµ + dimEλ−(n+1)µ ∩ kerLv = dimEλ−nµ + dµ.

By induction, we obtain dimEλ−nµ = ndµ. In fact, we have even proved the flag
decomposition expressed in (1.1). �

We recall that Lv sends Eλ−1α to Eα by Corollary 3.4. To prove Theorem 3.11,
the most natural approach would be to start from an element of Eα with α /∈ {0, 1}
and to construct a preimage under Lv, by integrating along vertical lines as we did
in the proof of Proposition 2.13. But we have no cohomological condition to use,
and moreover we only have a distributional object for which the meaning of vertical
integration is not clear. If one thinks about it, the result of the theorem is even
counter-intuitive.

Let us try to prove the opposite of Theorem 3.11, to see the subtlety. Assume for
instance that f ∈ Eα is nonzero and satisfies Lvf = 0, and that we can find a vertical
primitive g of f , i.e., one has Lvg = f . Let us try to prove that f = 0. We should
not succeed (this would be a contradiction with Theorem 3.11), but we will see that
there is a strong nonrigorous argument in favor of the equality f = 0. Consider an
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embedded rectangle with horizontal sides I0 and IR and very long vertical sides of
length R. Fix a smooth compactly supported function ϕ on I0, and push it vertically
to IR. We should have ∫

IR

ϕg dx−
∫
I0

ϕg dx = R

∫
I0

ϕf dx.

As the left hand side is bounded, we obtain∫
I0

ϕf dx = O(‖ϕ‖Ckh /R).

Letting R tend to infinity, we can almost deduce that f vanishes, except that this
argument is not correct as one can not take R arbitrarily large because of the singu-
larities. If one tries to cut I0 into smaller pieces for which one can increase R, then we
will use a partition of unity with a large Ckh norm, so that we will improve the bound
at the level of 1/R, but lose at the level of ‖ϕ‖Ckh . Therefore, we can not prove in
this way that f vanishes, so there is hope that Theorem 3.11 is true. But this shows
that this theorem is nontrivial, and follows from a subtle balance.

The proof we will give of Theorem 3.11 will not follow the constructive approach
we sketched above. Instead, it will follow from an indirect duality argument: we will
show that the adjoint of Lv is injective. To do this, let us define the operator Ť
which extends to B̌ǩh,−ǩv the operator f 7→ f ◦ T−1 initially defined on C∞c (M −Σ).
As T−1 is a pseudo-Anosov map, all the results of the previous paragraphs apply
to Ť . In particular, one can talk about its Ruelle spectrum. We will write Ěα for the
generalized eigenspace of Ť associated to the eigenvalue α, on any space B̌ǩh,−ǩv with
|α| > λ−min(ǩh,ǩv).

From this point on, we will only consider nonnegative integers kh, kv, ǩh and ǩv that
satisfy the conditions of the duality Proposition 2.9, i.e., −kh+ ǩh > 2 and kv− ǩv > 0

(or conversely). If we are dealing with an eigenvalue α, we will moreover choose them
with |α| > λ−min(kh,kv) and |α| > λ−min(ǩh,ǩv) to ensure that the corresponding
generalized eigenspaces for T and Ť are included respectively in B−kh,kv and Bǩh,−ǩv .
This implies in particular that the duality is well defined on Eα×Ěα′ for all α, α′ 6= 0.

In addition to the duality formulas for Lh and Lv given in Lemma 2.11, we will
also use the following one: For f ∈ B−kh,kv and g ∈ B̌ǩh,−ǩv ,

(3.6) 〈T f, g〉 = 〈f, Ť g〉.

It follows readily from the definitions and the fact that T preserves Lebesgue measure.

Lemma 3.12. — We have 〈f, g〉 = 0 for f ∈ Eα and g ∈ Ěα′ with α 6= α′. Moreover,
(f, g) 7→ 〈f, g〉 is a perfect duality on Eα × Ěα, i.e., it identifies Eα with the dual
of Ěα, and conversely.

Proof. — Take f ∈ Eα. Then T nf =
∑
j6J α

nnjfj for some fj ∈ Eα, with f0 = f .
In the same way, for g ∈ Ěα′ , we have Ť ng =

∑
j6J(α′)nnjgj for some gj ∈ Ěα′

J.É.P. — M., 2019, tome 6



852 F. Faure, S. Gouëzel & E. Lanneau

with g0 = g. Using the duality (3.6), we obtain for all n∑
αnnj〈fj , g〉 = 〈T nf, g〉 = 〈f, Ť ng〉 =

∑
(α′)nnj〈f, gj〉.

When α 6= α′, one gets by identifying the asymptotics that 〈fj , g〉 = 0 for all j. In
particular, for j = 0, this gives 〈f, g〉 = 0 and shows that Eα and Ěα′ are orthogonal.

To prove that there is a perfect duality between Eα and Ěα, we have to show that
the duality is nondegenerate: for any f ∈ Eα, we have to find g ∈ Ěα with 〈f, g〉 6= 0

(and conversely, but the argument is the same). As f is a distribution, there exists a
function h ∈ C∞c (M − Σ) with 〈f, h〉 6= 0. We think of h as an element of B̌ǩh,−ǩv ,
and we write its spectral decomposition for Ť : we have

Ť nh =
∑
i,j

αni n
jhi,j +O(εn),

where ε < |α| and hi,j ∈ Ěαi . As above, using (3.6), we find∑
αnnj〈fj , h〉 = 〈T nf, h〉 = 〈f, Ť nh〉 =

∑
i,j

αni n
j〈f, hi,j〉+O(εn).

In the sum on the left, there is the term αn〈f0, h〉 with 〈f0, h〉 = 〈f, h〉 6= 0. Therefore,
there also has to be a term in αn on the right hand side. This entails that one of
the αi equals α, and the corresponding function g = hi,0 belongs to Ěα and satisfies
〈f, g〉 6= 0, as desired. �

Proof of Theorem 3.11. — Let α /∈ {0, 1}. We want to show that Lv : Eλ−1α → Eα
is onto. Equivalently, we want to show that its adjoint, from E∗α to E∗λ−1α, is injec-
tive. These spaces are identified respectively with Ěα and Ěλ−1α by the duality of
Lemma 3.12, and the adjoint of Lv is −Lv by (2.16). Hence, it is enough to show that
Lv : Ěα → Ěλ−1α is injective. This follows from Lemma 2.7 (we recall that Lv plays
in B̌ the same role as Lh in B). �

4. Vertically invariant distributions

Let (M,Σ) be a translation surface, and T a linear pseudo-Anosov map on (M,Σ),
preserving orientations. Theorem 1.4 and its proof give a whole set of distributions
which are annihilated by Lv. Indeed, this is the case of the constant distribution, of
the distributions in Eλ−1µi ∩kerLv, and of their images under Lnh. These are the only
distributions in B−kh,kv which are vertically invariant:

Lemma 4.1. — Any distribution in B−kh,kv ∩ kerLv belongs to the linear span of the
constant distributions and of the spaces Lnh(Eλ−1µi ∩ kerLv) for i = 1, . . . , 2g− 2 and
n > 0.

Proof. — This follows from the same inductive strategy used to classify Ruelle reso-
nances. We show that any ω ∈ B−kh,kv ∩ kerLv belongs to the space F spanned by
the constant distributions and the spaces Lnh(Eλ−1µi ∩ kerLv) for i = 1, . . . , 2g − 2

and n > 0, by induction on the order of ω.
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The constant distributions and the distributions in Eλ−1µi∩kerLv have cohomology
classes which span all the classes without any [dy] components, i.e., the orthogonal
to [dx]. Therefore, there exists ω̃ in F such that [ω − ω̃] is a multiple of [dy]. By
Lemma 2.14, we have in fact [ω− ω̃] = 0. Therefore, by Proposition 2.13, there exists
η ∈ B−kh+1,kv ∩ kerLv (and therefore in B−kh,kv ∩ kerLv) such that ω − ω̃ = Lhη.
The order of η being strictly smaller than the order of ω, the induction assumption
ensures that η ∈ F . As F is stable under Lh, we get ω = ω̃ + Lhη ∈ F .

We should also check the initial step of the induction, when ω is of order 0. With the
same construction as above, η is a continuous function. As it is vertically invariant, we
deduce that it is constant by minimality of the vertical flow. In particular, it belongs
to F , and so does ω. �

However, there are some distributions that are not seen with this point of view,
as they are not in the closure of C∞c (M − Σ). To describe them, we will follow the
same route as above, but replacing our Banach space B−kh,kv by an extended space
B−kh,kvext .

We define an element ω of B−kh,kvext to be a family of distributions ωI of order at
most kh on all horizontal segments I in Ih, with the following conditions:

(1) Compatibility: if two segments I, I ′ ∈ Ih intersect, then the corresponding
distributions coincide on functions supported in I ∩ I ′.

(2) Smoothness in the vertical direction: for any interval I ∈ I, and any test
function ϕ ∈ Ckhc (I) with norm at most 1, denote by It the vertical translation by t
of I for small enough t, and by ϕt the vertical push-forward of ϕ on It. Then we require
that t 7→

∫
It
ϕtωIt is Ckv , with all derivatives bounded by a constant C independent

of I or ϕ. The best such C is by definition the norm of ω in B−kh,kvext .
(3) Extension to the singularity: if (It)t∈(0,ε] is a family of vertical translates of a

horizontal segment, parameterized by height, such that the limit I0 contains a singu-
larity, then we require that ωIt and all its kv vertical derivatives extend continuously
up to I0.
The first two conditions are very natural, and reproduce directly what we have im-
posed in the construction of B−kh,kv in Section 2.1. The third condition is to exclude
pathological behaviour such as in the following example. Consider a vertical segment
Γ = (0, ε] ending on a singularity at 0, a function ρ on Γ with support in [0, ε/2] that
oscillates like sin(1/t) at 0, and define ωI to be equal to ρ(xI)δxI if I intersects Γσ
at a point xI , and 0 otherwise. Then this would be an element of our extended space
without the third condition. Recall that B−kh,kvext 6= B−kh,kv (see the example on
Page 817).

With this definition, many of the results of the previous sections extend readily.
We indicate in the next proposition all the results for which the statements and the
proofs do not need any modification.
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Proposition 4.2. — The spaces B−kh,kvext have the following properties:

(1) The space B−kh,kv is a closed subspace of B−kh,kvext .
(2) The space B−kh,kvext is canonically a space of distributions, as in Proposition 2.3.
(3) Multiplication by C∞ functions which are constant on a neighborhood of the

singularities, or more generally by Ckh+kv -functions on M − Σ with LahL
b
vψ uni-

formly bounded for a 6 kh and b 6 kv, maps B−kh,kvext into itself continuously, as in
Lemma 2.4.

(4) The derivation Lh maps continuously B−kh,kvext to B−kh−1,kv
ext . The derivation Lv

maps continuously B−kh,kvext to B−kh,kv−1
ext if kv > 1, as in Proposition 2.6.

(5) As there is no horizontal saddle connection, an element in B−kh,kvext satisfying
Lhf = 0 is constant, as in Lemma 2.7.

(6) The space B−kh,kvext is continuously included in B−k′h,k′v if k′h > kh and k′v 6 kv.
This inclusion is compact if both inequalities are strict, as in Proposition 2.8.

(7) The composition operator T acts continuously on B−kh,kvext , and it satisfies a
Lasota-Yorke inequality (3.1). Therefore, its spectral radius is bounded by 1, and its
essential spectral radius is at most λ−min(kh,kv), as in Theorem 3.1.

(8) We have T ◦ Lv = λLv ◦ T and T ◦ Lh = λ−1Lh ◦ T , as in Proposition 3.3.

The space B−kh,kvext is relevant to study vertically invariant distributions, as all such
distributions belong to these spaces:

Lemma 4.3. — Assume that ω is an Lv-annihilated distribution. Then for large enough
kh and for any kv one has ω ∈ B−kh,kvext .

Proof. — Let ω be an Lv-annihilated distribution. For an interval I ∈ Ih, define a
distribution ηI on I by the equality

∫
I
ϕ(x)ηI(x) =

∫
ϕ(x)ρ(y)ω(x, y), where ρ is a

smooth function supported in [−δ, δ] (where δ is small enough so that I × [−δ, δ]
does not contain any singularity) with

∫
ρ = 1. We claim that this quantity does not

depend on ρ. Indeed, if ρ̃ is another such function, then (x, y) 7→ ϕ(x)(ρ(y)− ρ̃(y)) has
zero average along every vertical segment through I × [−δ, δ], hence it can be written
as Lvf for some function f supported in I × [−δ, δ]. Then

0 = 〈Lvω, f〉 = −〈ω,Lvf〉 = 〈ω, ϕ(x)ρ̃(y)〉 − 〈ω, ϕ(x)ρ(y)〉.

This shows that ηI is well defined. It is a finite order distribution on any interval I.
Moreover, as ω is vertically invariant, one has ηIt = ηI if It is a vertical family of
horizontal segments through I.

By compactness of the manifold, there is a finite family of horizontal segments such
that any horizontal segment can be obtained as a subinterval of a vertical translate
of one interval in the finite family. If follows that the order of all the distributions ηI
is uniformly bounded, independently of I ∈ Ih. By vertical invariance, it follows that
the family ηI defines an element η ∈ B−kh,kvext if kh is large enough.
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Let us finally prove that ω = η as distributions. Consider a smooth function ϕ

supported by a rectangle I × [−δ, δ] away from singularities. Then

〈η, ϕ〉 =

∫ δ

t=−δ

∫
It

ϕ(x, t)ηIt =

∫ δ

t=−δ

∫
It

ϕ(x, t)ηI =

∫
I

(∫ δ

t=−δ
ϕ(x, t) dt

)
ηI

=

∫ (∫ δ

t=−δ
ϕ(x, t) dt

)
ρ(y)ω(x, y),

where the last equality is the definition of ηI . Since the integrals of(∫ δ

t=−δ
ϕ(x, t) dt

)
ρ(y) and ϕ

are the same along all vertical segments, this is equal to
∫
ϕω thanks to the vertical

invariance of ω as we have explained above.
We have proved that 〈η, ϕ〉 = 〈ω, ϕ〉 for any smooth function ϕ with compact

support in a rectangle away from the singularities. As any ϕ ∈ C∞c (M − Σ) can be
decomposed as a finite sum of such functions, we obtain η = ω as desired. �

Since the space C∞c (M − Σ) is not dense in B−kh,kvext , we can not use the theorem
of Baladi-Tsujii to claim that the eigenspaces beyond the essential spectral radius do
not depend on kh or kv. Nevertheless, we will show that this is the case, by describing
explicitly the new eigenvalues compared to B−kh,kv .

For σ ∈ Σ and ih, iv > 0, we define a distribution ξ
(0)
σ,ih,iv

as follows. Choose a
vertical segment Γσ ending on σ and whose image under the covering projection is in
the negative half-plane, choose a function ρ on this segment which is equal to 1 on a
neighborhood of the singularity and to 0 on a neighborhood of the other endpoint of
the segment, and define a distribution ξ(0)

σ,ih,iv
∈ B−kh,kvext by

〈ξ(0)
σ,ih,iv

f〉 =

∫
Γσ

ρ(y)yivLihv f(y) dy.

In other words, the corresponding distribution on a horizontal segment I is equal to
ρ(yI)y

iv
I δ

(ih)
xI if I intersects Γσ at a point zI = (xI , yI), and 0 otherwise. This is clearly

an element of B−kh,kvext if ih 6 kh.

Proposition 4.4. — An element ω of B−kh,kvext can be written uniquely as

(4.1) ω = ω̃ +
∑
σ∈Σ

∑
ih6kh,iv6kv

cσ,ih,ivξ
(0)
σ,ih,iv

,

with ω̃∈B−kh−1,kv∩B−kh,kvext . Moreover, this decomposition depends continuously on ω.

The reason we have ω̃ ∈ B−kh−1,kv and not ω̃ ∈ B−kh,kv in the statement is that
a distribution of order kh is not well approximated in (Ckh)∗ by a regularization by
convolution: one needs to use smoother test functions, in Ckh+1, to get uniform norm
controls.

J.É.P. — M., 2019, tome 6



856 F. Faure, S. Gouëzel & E. Lanneau

Proof. — Let us first prove the uniqueness in the decomposition (4.1). Consider a
singularity σ, of angle 2πκ. There are κ half-planes above σ, and κ half-planes be-
low σ. Along any of these half-planes U , consider horizontal intervals It which are
all vertical translates of an interval I0 = I0(U) through the singularity σ, identified
with [−δ, δ] ⊂ C by the covering projection sending σ to 0. By Condition (3) in the
definition of B−kh,kvext , the corresponding distributions ωIt converge to ωI0(U). Consider
now the distribution on [−δ, δ] defined by

ωσ :=
∑

ωI0(U+) −
∑

ωI0(U−)

where the first sum is over all half-planes above σ, and the second sum is over all half-
planes below σ. By vertical continuity to the left and to the right of the singularity,
there are many cancellations in the definition of ωσ, so that this distribution on [−δ, δ]
is in fact supported at 0. Therefore, it is a linear combination of derivatives of Dirac
masses [Hör03, Th. 2.3.4], of the form

∑
i6kh

ciδ
(i)
0 . Let us do the same construction

with the term on the right of (4.1). For functions f ∈ C∞c (M−Σ), the distribution fσ
is obviously 0. By density, this extends to B−kh−1,kv , hence ω̃σ = 0. In the same
way, the singularities different from σ do not contribute, and the functions ξ(0)

σ,ih,iv

contribute only when iv = 0, with a distribution δ(ih). Identifying the coefficients,
we get that cσ,ih,0 = ci is uniquely defined by ω. In the same way, we can identify
cσ,ih,iv from ω by the same process after iv vertical differentiations. This shows that
the decomposition (4.1) is unique. Moreover, the continuity of the decomposition
follows from the continuity of all the coefficients cσ,ih,iv , which is obvious from the
construction.

For the existence, let us decompose ω as

ω =

N∑
i=1

ωi +
∑
σ∈Σ

ωσ +
∑
H∈H

ωH

as in Lemma 2.10, where ωi is supported in a rectangle Ri away from the singularities,
and ωσ is supported in a small disk around the singularity σ and is constant along
fibers of the covering projection πσ, and ωH is supported in a local half-plane H based
at a singularity. Indeed, the proof of Lemma 2.10 goes through in B−kh,kvext . We will
show that each term in this decomposition can be written as in (4.1).

We start with ωi. Let ρε(x) be a real C∞ approximation of the identity. For z =

(x, y) in a chart, define

fε(z) = ωi ∗ ρε(z) =

∫
ωi(x− h, y)ρε(h) dh.

This is an integral of ωi along a small horizontal interval against a C∞c function, hence
it is well defined. Moreover, fε is C∞ along the horizontal direction, Ckv along the ver-
tical direction, and compactly supported away from the singularities. By Lemma 2.5,
fε ∈ B−kh−1,kv . Moreover, fε converges in B−kh−1,kv to ωi thanks to the fact that ωi
is of order kh and to the fact that we are using Ckh+1 test functions: standard proper-
ties of convolutions ensure that their difference is bounded by O(ε) in norm. It follows
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that ωi ∈ B−kh−1,kv . This gives the decomposition (4.1) for ωi, just taking ω̃ = ωi
and the other terms equal to 0.

Let us now consider ωσ. Its push-forward η = π∗ωσ under the covering projection π
is almost in B−kh,kvext (C), except for the fact that the horizontal distributions do not
have to match when one reaches 0 from above and from below. The difference is
exactly given by a sum of the form

∑
ih,iv

cih,ivξ
(0)
0,ih,iv

as constructed above. In other
words, we have

η = η̃ +
∑
ih,iv

cih,ivξ
(0)
0,ih,iv

,

with η̃ ∈ B−kh,kvext (C). The case away from singularities shows that η̃ ∈ B−kh−1,kv (C).
Lifting everything with π, we get

ωσ = η ◦ π = η̃ ◦ π +
∑
ih,iv

cih,ivξ
(0)
0,ih,iv

◦ π.

The first term η̃ ◦π belongs to B−kh−1,kv . For the other terms, ξ(0)
0,ih,iv

◦π is not equal
to ξ(0)

σ,ih,iv
as the latter is supported on one single vertical segment ending on σ while

the former is supported on all κ such segments. We claim that the difference belongs
to B−kh−1,kv , which will conclude the proof.

To prove this, consider a vertical half-plane H with σ in its boundary, and denote
by Γ+ and Γ− the two components of its boundary, above and below σ. Define a
distribution

αH =

∫
Γ−

yivδ(ih)ρ(y) dy +

∫
Γ+

yivδ(ih)ρ(y) dy,

where ρ is smooth and equal to 1 on a neighborhood of 0. This distribution belongs
to B−kh−1,kv , as it is the limit of a smooth function supported in the interior of H,
constructed by approximating insideH the derivative of the Dirac mass with a smooth
function. Consider now two consecutive half-planes H and H ′ sharing the same Γ+.
Taking the difference between αH and αH′ , we deduce that∫

Γ−

yivδ(ih)ρ(y) dy −
∫

Γ′−

yivδ(ih)ρ(y) dy ∈ B−kh−1,kv .

Iterating the argument using a sequence of half-planes, we deduce that the same holds
for any vertical segments Γ− and Γ′− ending at σ. This concludes the proof of the
decomposition for ωσ.

Let us now consider ωH , where H is a local vertical half-plane with a singularity σ
in its boundary. This case is easy: as in the case away from singularities, one can
smoothen ωi by convolving it with a kernel ρε, with the additional condition that ρε is
supported in [ε, 2ε] if H is to the right of σ, and in [−2ε,−ε] if H is to the left of σ: this
ensures that ωi ∗ ρε is supported in H and everything matches vertically. In fact, the
resulting distribution will not be smooth vertically if there is a discrepancy between
what happens on the boundaries Γ+ and Γ− ofH above and below σ. This discrepancy
is handled as in the case of ωσ, by first subtracting a distribution supported on Γ− to
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make sure there is no discrepancy, and then arguing that this distribution supported
on Γ− can be written in the form (4.1).

Finally, let us consider ωH , where H is a local horizontal half-plane with a singu-
larity σ in its boundary. Subtracting if necessary a distribution η supported in the
vertical segment inside H ending on σ, we can assume that the distribution induced
by ωH on the boundary of H vanishes, as well as all its vertical derivatives up to
order kv. The distribution η is handled as in the two previous cases. Let us then
smoothen ωH by convolving with a kernel ρε in the horizontal direction. Inside H,
we get a smooth function. On the boundary of H, this function vanishes, as well as
its vertical derivatives up to order kv. Hence, if one extends this function by 0 outside
of H, we get a Ckv function, which belongs to B−kh−1,kv by Lemma 2.5. It approx-
imates ωH in the B−kh,kvext norm, showing that ωH ∈ B−kh−1,kv . This concludes the
proof. �

Corollary 4.5. — The spectrum of T on B−kh,kvext in {z : |z| > λ−min(kh,kv)} is given
by the spectrum of T on B−kh,kv in this region as described in Theorem 1.4, and
additionally j Card Σ eigenvalues of modulus λ−j for any j > 1 with j < min(kh, kv).

One can be more specific about the additional eigenvalues. If T stabilizes pointwise
each singularity, then λ−j itself is an eigenvalue of multiplicity j Card Σ. Otherwise,
there are cycles of singularities, and each cycle of length p gives rise to eigenvalues
e2ikπ/pλ−j with multiplicity j for k = 0, . . . , p− 1.

We can also formulate the results in terms of the action of T ∗ on relative cohomol-
ogy group H1(M,Σ,C) (the eigenvalues of T ∗ are then λ, λ−1, µi for i = 1, . . . , 2g− 2

and roots of unity e2ikπ/p for some p corresponding to cycles of singularities of
length p).

Proof. — Define

E = B−kh−1,kv ∩ B−kh,kvext and F = B−kh,kvext /(B−kh−1,kv ∩ B−kh,kvext ).

The space E is closed and the space F is finite-dimensional, isomorphic to the span
of ξ(0)

σ,ih,iv
for ih 6 kh and iv 6 kv, by Proposition 4.4.

The space E is stable under T , and the essential spectral radius of T on this space
is 6 λ−min(kh,kv) as this is the case on the whole space B−kh,kvext by Proposition 4.2(7).
Since C∞c (M − Σ) is dense in E, it follows from the theorem of Baladi-Tsujii that
the spectrum of T on E beyond λ−min(kh,kv) is the same as on B−kh,kv . Moreover,
since T stabilizes E, its spectrum on the whole space is the union of its spectrum
on E and on F . To conclude, we should thus describe the spectrum of T on F .

The image under T of ξ(0)
σ,ih,iv

is equal to the sum of λ−1−ih−ivξ
(0)
T−1σ,ih,iv

and of
a distribution in B−kh−1,kv ∩ B−kh,kvext . Indeed, this follows readily from the definition
if the vertical segment ΓT−1σ is sent by T to Γσ. In general, it is sent to another
vertical segment ending on σ, but Proposition 4.4 shows that changing the choice of
the vertical segment results in a difference in B−kh−1,kv ∩ B−kh,kvext . This shows that
the matrix of T on the finite-dimensional space F is a union of permutation matrices
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multiplied by λ−j for j = 1 + ih + iv. The spectrum of such a permutation matrix,
along a cycle of length p, is made of the eigenvalues e2ikπ/p for k = 0, . . . , p−1. Hence,
the spectrum of T on F is made of eigenvalues of modulus λ−j , and the number of
such eigenvalues is

Card{(ih, iv) : ih 6 kh, iv 6 kv, j = ih + iv + 1} · Card Σ.

For j < min(kh, kv), this is equal to j Card Σ. �

The description of the spectrum of T on F in this proof is reminiscent of the
description of the spectrum of T on B−kh,kv , but in a simpler situation. Assume to
simplify the discussion that T acts as the identity on Σ. Then there are some basic
eigenfunctions for the eigenvalue λ−1, which are the classes of the functions

ξ(0)
σ = ξ

(0)
σ,0,0 =

∫
Γσ

δ · ρ(y) dy

modulo B−kh−1,kv ∩ B−kh,kvext . The other eigenfunctions are given by

ξ
(0)
σ,ih,iv

=

∫
Γσ

yivδ(ih) · ρ(y) dy.

They are obtained by differentiating the original function ih times in the horizontal
direction, and integrating it iv times in the vertical direction. To obtain the eigen-
value λ−j , the total number of such operations ih+iv should be equal to j−1, giving j
choices.

It follows from the above corollary that one can define the generalized eigenspace
Eα,ext associated to the eigenvalue α of T acting on B−kh,kv for large enough kh
and kv. This space of distributions does not depend on kh and kv if they are large
enough. Moreover, Lv maps Eα,ext to Eλα,ext and Lh maps Eα,ext to Eλ−1α,ext as in
Corollary 3.4.

To proceed, we will need some ingredients of duality. In general, there is no canon-
ical way to define a pairing between B−kh,kvext and B̌ǩh,−ǩvext . Indeed, consider a distribu-
tion ϕ on [−1, 1] for which

∫ 1

−1
1y60ϕ(y) does not make sense, and define a distribution

ω ∈ B̌−ǩh,ǩvext which is equal to ϕ on each vertical leaf around a singularity σ, mul-
tiplied by a cutoff function to extend it by 0 elsewhere. Then one can not make
sense of 〈ξ(0)

σ,0,0, ϕ〉. However, there is no difficulty to define 〈ω, 1〉 by integrating a
partition of unity along horizontal segments, and then summing over the partition of
unity. When ω belongs to B−kh,kv , this coincides with the duality between B−kh,kv
and B̌ǩh,−ǩv defined in Proposition 2.9 if one considers the distribution 1 as an element
of B̌ǩh,−ǩv . The main property of this linear form we will use is the following.

Lemma 4.6. — Let ω ∈ B−kh,kvext . Consider its decomposition given by Proposition 4.4.
Then

〈Lvω, 1〉 =
∑
σ

cσ,0,0.

J.É.P. — M., 2019, tome 6



860 F. Faure, S. Gouëzel & E. Lanneau

Proof. — We should show that 〈Lvω̃, 1〉 = 0, and that 〈Lvξ(0)
σ,ih,iv

, 1〉 = 1 if ih = iv = 0

and 0 otherwise. First, 〈Lvω̃, 1〉 = −〈ω̃, Lv1〉 = 0 by Lemma 2.11. The fact that Lv is
anti-selfadjoint does not apply to ξ(0)

σ,ih,iv
as additional boundary terms show up when

one does integrations by parts (contrary to the case of elements of B−kh,kv , which are
in the closure of compactly supported functions and for which there is therefore no
boundary term). These boundary terms are responsible for the formula in the lemma,
as we will see in the following computation.

We show that 〈Lvξ(0)
σ,0,0, 1〉 = 1, the other case is similar. Write

ξ
(0)
σ,0,0 =

∫ 0

y=−δ
ρ(y)δ(x,y) dy

as in its definition, where we are integrating on a vertical segment ending at a singu-
larity and ρ vanishes on a neighborhood of −δ and is equal to 1 on a neighborhood
of 0. Then

Lvξ
(0)
σ,0,0 =

∫ 0

y=−δ
ρ′(y)δ(x,y) dy.

Therefore,

〈Lvξ(0)
σ,0,0, 1〉 =

∫ 0

y=−δ
ρ′(y) dy = ρ(0)− ρ(−δ) = 1. �

We can now prove Proposition 1.5, asserting that ξ(0)
σ = ξ

(0)
σ,0,0 can be modified by

adding an element of B−kh,kv to obtain a distribution which is mapped by Lv to the
constant distribution 1/LebM . As in the statement of the proposition, we will denote
this modified distribution by ξσ or ξσ,0,0.

Proof of Proposition 1.5. — We work in B−2,kv
ext . On this space, the essential spectral

radius of T is 6 λ−2 < λ−1. Replacing T by a power of T if necessary, we can assume
without loss of generality that σ is fixed by T . Then T ξ(0)

σ = λ−1ξ
(0)
σ + η, where

η ∈ E = B−3,kv ∩B−2,kv
ext as explained in the proof of Corollary 4.5. Since the essential

spectral radius of T on E is 6 λ−2 (see again the proof of Corollary 4.5), we can
decompose η = η1 + η2, where η1 is in the generalized eigenspace associated to λ−1,
and η2 belongs to its spectral complement, on which T −λ−1 is invertible. Therefore,
we can write η2 = −(T − λ−1)ω for some ω ∈ E. Finally, we have

(T − λ−1)(ξ(0)
σ + ω) = η − η2 = η1.

Since η1 is a generalized eigenvector for the eigenvalue λ−1, we have (T −λ−1)Nη1 = 0

for large enough N . Hence, (T − λ−1)N+1(ξ
(0)
σ + ω) = 0. This shows that ξ(0)

σ + ω

belongs to the generalized eigenspace Eλ−1,ext associated to the eigenvalue λ−1 of T
acting on B−2,2

ext . Moreover, as min(kh, kv) > 3, we have ω ∈ B−kh,kv .
To conclude the proof, it remains to show that Lv(ξ(0)

σ + ω) = 1/LebM . Since
ξ

(0)
σ +ω ∈ Eλ−1,ext, we have Lv(ξ

(0)
σ +ω) ∈ E1,ext. The description of the spectrum in

Corollary 4.5 shows that this space is just E1. By Lemma 3.9, it is made of constants.
We get the existence of a constant c such that Lv(ξ(0)

σ + ω) = c.
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To identify c, we compute

cLebM = 〈c, 1〉 = 〈Lv(ξ(0)
σ + ω), 1〉 = 1,

thanks to Lemma 4.6. This proves that c = 1/LebM . �

Lemma 4.7. — Let kh, kv > 3. Then all Lv-annihilated distributions in B−kh,kvext are of
the form described in Theorem 1.6, i.e., they are linear combinations of distributions
ξσ − ξσ′ for σ, σ′ ∈ Σ, of Lnhξσ with n > 1 and σ ∈ Σ, of 1, and of LnhEHλ−1µi

with
n > 0 and i = 1, . . . , 2g − 2.

Proof. — Define a distribution ξσ,ih,iv = Lihh ξσ,0,0 if iv = 0 and ξσ,ih,iv = ξ
(0)
σ,ih,iv

otherwise. Then we have

B−kh,kvext = (B−kh−1,kv ∩ B−kh,kvext )⊕
⊕

ih6kh,iv6kv

Rξσ,ih,iv ,

by Proposition 4.4 and the fact that

ξσ,ih,iv − ξ
(0)
σ,ih,iv

∈ B−kh−1,kv ∩ B−kh,kvext .

Write this decomposition as B−kh,kvext = E ⊕ F . On B−kh,kvext /E, the operator Lv maps
ξσ,ih,iv to ξσ,ih,iv−1 if iv > 0, and to 0 if iv = 0. Therefore, a distribution ω with
Lvω = 0 must have zero components on ξσ,ih,iv for iv > 0: it can be written as
ω̃ +

∑
ih6kh

cσ,ihξσ,ih,0. Moreover, Lvω̃ = 0.
By Lemma 4.6, we have

0 = 〈Lvω, 1〉 =
∑
σ

cσ,0.

This shows that ω− ω̃ belongs to the vector space generated by the ξσ−ξσ′ over σ, σ′,
and by all the Lnhξσ for n > 0. Moreover, Lemma 4.1 shows that ω̃ belongs to the
span of the constant distribution and of LnhEHλ−1µi

with n > 0 and i = 1, . . . , 2g − 2.
This concludes the proof. �

Since all Lv-invariant distributions belong to some space B−kh,kvext by Lemma 4.3,
Theorem 1.6 giving the classification of all vertically invariant distributions follows
directly from Lemma 4.7.

Remark 4.8. — Although it is not needed for the above proof, it is enlightening to
describe a cohomological interpretation for all the elements of B−kh,kvext ∩ kerLv, i.e.,
for all vertically invariant distributions.

If γ is a continuous closed loop in M −Σ and ω ∈ B−kh,kvext ∩ kerLv, one can define
the integral

∫
γ
ω just like for elements in B−kh,kv ∩ kerLv (see the discussion before

Proposition 2.12). This integral only depends on γ up to deformation in M − Σ.
Therefore, it defines an element of H1(M −Σ), that we denote by [ω]ext. Contrary to
the case of B−kh,kv ∩ kerLv, however, the integral

∫
γσ
ω along a small loop γσ around

a singularity σ does not have to vanish, so that [ω]ext is not an element of H1(M)

in general. Indeed, if one considers two different singularities σ and σ′, then ξσ − ξ′σ
is annihilated by Lv, but the corresponding cohomology class integrates to 1 along a
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small positive loop around σ, and to −1 along a small positive loop around σ′. This
is a direct consequence of the definition of ξ(0)

σ , with a Dirac mass along a vertical
segment ending at σ, that will be intersected once by a small loop around σ. In
general, for ω ∈ B−kh,kvext ∩ kerLv, one has

(4.2)
∫
γσ

[ω]ext = cσ,0,0(ω),

where cσ,0,0 is defined in the decomposition of Proposition 4.4. Indeed, ξ(0)
σ,0,0 con-

tributes by 1 to the integral along a small loop around σ, while the contribution of all
the other terms tends to 0 when the loop tends to σ. In fact, the map ω 7→ cσ,0,0(ω)

corresponds to the boundary operator of [MY16] (it does not appear in the case of
Ruelle resonances as all our functions are continuous in this setting).

If a distribution ω ∈ B−kh,kvext ∩ kerLv satisfies [f ]ext = 0, then one proves as in
Proposition 2.13 that it can be written as ω = Lhη for some η ∈ B−kh+1,kv

ext ∩ kerLv.
Indeed, the proof of this proposition goes through, and it is in fact easier as one does
not need to show that the resulting object one constructs by horizontal integration
belongs to the closure of C∞c (M − Σ), which is the hard part in Proposition 2.13.

With (4.2) and Lemma 4.6, one has∑
σ

∫
γσ

[ω]ext =
∑
σ

cσ,0,0(ω) = 〈Lvω, 1〉 = 0.

This corresponds to the fact that, in the homology of M − Σ, one has
∑

[γσ] = 0.
The cohomology classes one can get in this way are all cohomology classes without

any [dy] component, i.e., orthogonal to [dx], as one can realize all such classes in
H1(M) using B−kh,kv , and one can account for the additional Card Σ− 1 dimensions
in H1(M − Σ) by using the ξσ − ξσ′ . It turns out that one can also recover the
class [dy]. Indeed, start from ξσ,0,0 and consider a path γ made of horizontal and
vertical segments. As dξσ,0,0 is exact, one may compute formally

0 =

∫
γ

dξσ,0,0 =

∫
γ

Lhξσ,0,0 dx+

∫
γ

Lvξσ,0,0 dy =

∫
γ

Lhξσ,0,0 dx+
1

LebM

∫
γ

dy,

where the last equality follows from Proposition 1.5. It follows that the element
−LebM · Lhξσ,0,0, which belongs to B−kh,kvext ∩ kerLv, has a cohomology class whose
integral along any path coincides with the integral of dy along this path, i.e.,

[−LebM · Lhξσ,0,0]ext = [dy].

The above formal computation can be made rigorous by smoothing the path γ hori-
zontally, as we did to define the cohomology classes. This shows that, for kh, kv > 3,
the map from B−kh,kvext ∩ kerLv to H1(M −Σ) is onto. This is the analogue of [For02,
Th. 7.1(ii)] in our setting.

5. Solving the cohomological equation

Consider a C∞ function f which is compactly supported away from the singularity
set Σ on a translation surface M . Solving the cohomological equation for the vertical

J.É.P. — M., 2019, tome 6



Ruelle spectrum of linear pseudo-Anosov maps 863

flow on M amounts to finding a function F , which is smooth along vertical lines,
and satisfies the equality LvF = f . In general, the function F will not be compactly
supported on M − Σ, but it will hopefully be continuous on M . More generally, one
may ask how smooth the solution F can be chosen.

A direct obstruction to solve the cohomological equation with a smooth solution is
given by distributions in the kernel of Lv: if Lvω = 0, then

〈ω, f〉 = 〈ω,LvF 〉 = −〈Lvω, F 〉 = 0,

where the last equalities make sense if F belongs to the space on which ω acts. Indeed,
in general, a distribution ω ∈ D∞(M−Σ) is in the dual of C∞c (M−Σ), so that 〈ω, F 〉
does not make sense if F is not C∞ or not compactly supported away from Σ. However,
many distributions act on larger classes of functions, so an important question in the
discussion below will be to see if 〈ω, F 〉 is meaningful.

The Gottschalk-Hedlund theorem states that, for a minimal continuous flow on a
compact manifold, a continuous function is a continuous coboundary if and only if its
Birkhoff integrals

∫ T
0
f(gtx) dt are bounded independently of x and T . We will use a

variation around this result due to Giulietti-Liverani [GL19]. Its interest is that it gives
an explicit formula for the coboundary, which we will use to study its smoothness.

In this section, we fix once and for all a C∞ function χ : R→ [0, 1] which is equal
to 1 on a neighborhood of (−∞, 0] and to 0 on a neighborhood of [1,∞).

Lemma 5.1. — Consider a semiflow gt on a space X, and a function f : X → R for
which there exist C > 0 and ε > 0 and r ∈ N with the following property: for any
x ∈ X, for any τ > 1, for any function ϕ which is compactly supported on (0, 1),

(5.1)
∣∣∣∣∫ τ

t=0

ϕ(t/τ)f(gtx) dt

∣∣∣∣ 6 C‖ϕ‖Cr/τε.
Then f is a coboundary: there exists a function F such that∫ τ

0

f(gtx) dt = F (x)− F (gτx)

for all x ∈ X and all τ > 0.
More specifically, F can be constructed as follows. Fix λ > 1. Define a function

Fn(x) =

∫ λn

t=0

χ(t/λn)f(gtx) dt.

Then Fn converges uniformly to a function F as above. Moreover,

|Fn(x)− F (x)| 6 Cλ−εn,

where C does not depend on x or n.

In fact, one can even prove that
∫ τ
t=0

χ(t/τ)f(gtx) dt converges to F (x) at a uniform
rate O(1/τε) when τ →∞, without having to restrict to the subsequence λn, with a
small modification of the following proof. We will not need this more precise version
of the lemma.
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Proof. — This is essentially a reformulation of [GL19, Lem. 1.4&Lem. 3.1].
Define ϕ(t) = χ(t)− χ(λt). This is a C∞ function with compact support on (0, 1).

Moreover,

Fn+1(x)− Fn(x) =

∫ λn+1

t=0

(χ(t/λn+1)− χ(t/λn))f(gtx) dt =

∫ λn+1

t=0

ϕ(t/λn+1)f(gtx) dt,

Under the assumptions of the lemma, this is bounded by C(ϕ)/λ(n+1)ε. This shows
that Fn(x) is a Cauchy sequence, converging uniformly to a limit F (x) with

|Fn(x)− F (x)| 6 Cλ−εn.

To conclude, we should show that F solves the cohomological equation. Let us fix x
and τ . We have

Fn(gτx) +

∫ τ

0

f(gtx) dt− Fn(x) =

∫ λn+τ

τ

χ((t− τ)/λn)f(gtx)

+

∫ τ

0

χ((t− τ)/λn)f(gtx) dt−
∫ λn

0

χ(t/λn)f(gtx) dt

=

∫ λn+τ

0

ϕn,τ (t/(λn + τ))f(gtx) dt,

where
ϕn,τ (s) = χ(((λn + τ)s− τ)/λn)− χ((λn + τ)s/λn).

The function ϕn,τ has compact support in (0, 1) and uniformly bounded Cr norm
when n tends to infinity. By (5.1) applied to ϕn,τ , we deduce that

Fn(gτx) +

∫ τ

0

f(gtx) dt− Fn(x)

tends to 0. Passing to the limit, we get

F (gτx) +

∫ τ

0

f(gtx)− F (x) = 0. �

We will denote by Ckh the space of functions M → R which are Ck along the
horizontal direction and such that Lihf is continuous and bounded on M − Σ for
i 6 k. Elements of Ckh belong to B̌k,0 by Lemma 2.5. To formulate the assumptions
of our theorems, we will use the following fact:

(5.2) 〈ω, f〉 makes sense for f ∈ Ck+2
h and ω ∈ Eα with |α| > λ−k−1.

Indeed, elements of Eα for |α| > λ−k−1 belong to B−k−2,k+2 as the essential spectral
radius of T on this space is 6 λ−k−2 < λ−k−1. Therefore, since f ∈ B̌k+2,0, the
coupling 〈ω, f〉 is well defined by Proposition 2.9 (exchanging the roles of the hori-
zontal and the vertical direction to make sure that the inequalities on the exponents
are satisfied). One could even weaken slightly more the conditions, by requiring only
f ∈ Ck+1+ε

h for ε > 0, by exploring the route alluded to in Remark 2.2 if one were
striving for minimal assumptions.
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We will apply the previous lemma in the setting of the vertical flow on a translation
surface endowed with a pseudo-Anosov map preserving orientations, with expansion
factor λ. We obtain the following criterion to have a continuous coboundary.

Theorem 5.2. — Let T be a linear pseudo-Anosov map preserving orientations on a
translation surface (M,Σ). Denote by gt the vertical flow on this surface. Consider a
function f on M in C2

h. Assume that, for any ω ∈
⋃
|α|>λ−1 Eα, one has 〈ω, f〉 = 0.

Then f is a continuous coboundary: there exists a continuous function F on M such
that, for any x and any τ such that gtx is well defined for t ∈ [0, τ ], holds

(5.3)
∫ τ

0

f(gtx) dt = F (x)− F (gτx).

The assumptions of the theorem make sense by (5.2). The distributions appearing
in the statement of the theorem have been completely classified in Theorem 1.4 and
its proof. In particular, they are all vertically invariant.

To prove this theorem, let us first check that the assumptions of the Giulietti-
Liverani criterion of Lemma 5.1 are satisfied.

Lemma 5.3. — Under the assumptions of Theorem 5.2, there exists ε > 0 such that
the inequality ∣∣∣∣∫ τ

t=0

ϕ(t/τ)f(gtx) dt

∣∣∣∣ 6 C‖ϕ‖C2/τε

in (5.1) holds, with r = 2.

Proof. — It suffices to prove the estimate for τ of the form λn, as the case of a
general τ follows by using n such that τ ∈ [λn−1, λn]. Fix x and ϕ. We have∫ λn

0

ϕ(t/λn)f(gtx) dt = λn
∫ 1

0

ϕ(s)f(T−n(gs(T
nx))) ds

= λn
∫ 1

0

ϕ(s)Ť nf(gsy) ds,

(5.4)

for y = Tnx. The integral is the integral of Ť nf ∈ B̌2,−2 along a vertical manifold
against a C2 smooth function. Therefore, this is bounded by λn‖ϕ‖C2‖Ť nf‖B̌2,−2 .

On this space, the essential spectral radius of Ť is 6 λ−2 < λ−1, by Theorem 3.1.
Let us decompose f as

∑
α fα+f̃ , where α runs among the (finitely many) eigenvalues

of Ť of modulus > λ−2, and fα is the component of f on the corresponding generalized
eigenspace Ěα. By assumption, 〈ω, f〉 = 0 for any ω ∈ Eα with |α| > λ−1. Thanks to
the perfect duality statement given in Lemma 3.12, this gives fα = 0 for all such α.
Let γ < λ−1 be such that all eigenvalues of modulus < λ−1 have in fact modulus < γ.
We deduce that ‖Ť nf‖B̌2,−2 grows at most like Cγn. Together with (5.4), this gives∣∣∣∣∫ λn

0

ϕ(t/λn)f(gtx) dt

∣∣∣∣ 6 C‖ϕ‖C2(λγ)n.

As λγ < 1, one may write λγ = λ−ε for some ε > 0. Then this bound is of the form
C‖ϕ‖C2/(λn)ε, as requested. �
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There is a difficulty to apply Lemma 5.1 due to the singularities, which imply that
the flow is not defined everywhere for all times. One can circumvent the difficulty by
going to a bigger space in which trajectories ending on a singularity are split into two
trajectories going on both sides of the singularity. This results in a compact space
with a Cantor transverse structure and a minimal flow, to which Lemma 5.1 applies.
This classical strategy works well for continuous coboundary results, but there are
difficulties in higher smoothness. Instead, we will use a strategy which avoids the use
of such an extension, and works also for higher smoothness. The idea is to iterate the
flow in forward time or backward time depending on the point one considers.

Proof of Theorem 5.2. — LetM+
n ⊆M be the set of points for which the vertical flow

is defined for all times in [0, λn], and let M+ =
⋂
nM

+
n , i.e., the set of points that do

not reach a singularity in finite positive time. In the same way, but using backward
time, we define M−n and M−. Then M −Σ = M+ ∪M− as there is no vertical saddle
connection.

Let us define functions F+
n (x) on M+

n and F−n on M−n by

F+
n (x) =

∫ λn

0

χ(t/λn)f(gtx) dt, F−n (x) = −
∫ λn

0

χ(t/λn)f(g−tx) dt.

For x ∈M+
n ∩M−n , the difference F+

n (x)− F−n (x) can be written as

F+
n (x)− F−n (x) =

∫ λn

−λn
χ̃(t/λn)f(gtx) dt,

where χ̃(t) = χ(|t|). By Lemma 5.3, this tends to 0 like C(χ̃)/(2λn)ε.
Lemma 5.1 applied to the semiflow gt on M+, and to the semiflow g−t on M−,

shows that F+
n (x) converges uniformly to a function F+(x) on M+, and that F−n (x)

converges uniformly to a function F−(x) on M−. From the fact that the difference
between F+

n and F−n is small where defined, we deduce that F+ = F− on M+ ∩M−.
Let us define a function F on M −Σ, equal to F+ on M+ and to F− on M−. By the
above, we have

(5.5) |F+
n (x)−F (x)| 6 C/λεn for x ∈M+

n , |F−n (x)−F (x)| 6 C/λεn for x ∈M−n .

Moreover, the function F satisfies the coboundary equation (5.3), as F+ and F−

satisfy it respectively on M+ and M− by Lemma 5.1.
Let us show that F is continuous on M −Σ. Take x ∈M −Σ, for instance in M+.

Let δ > 0. Let n be large. The function F+
n is well defined and continuous on a

neighborhood of x. In particular, it oscillates by at most δ on a neighborhood of x.
As F differs from F+

n by C/λn, we deduce that F oscillates by at most δ + C/λn on
a neighborhood of x. This proves the continuity of F at x.

Finally, let us show that F extends continuously to Σ. It suffices to show that it
is uniformly continuous on M − Σ. For this, it suffices to show that it is uniformly
continuous on small horizontal segments close to a singularity, as uniform continuity
along vertical segments follows from the coboundary equation. Let (It)t∈(0,δ] be a
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family of vertical translates of horizontal segments such that I0 contains a singularity.
For x, y ∈ I0, we have

F (x)− F (y) = F (gtx)− F (gty) +

∫ t

0

(f(gsx)− f(gsy)) ds.

Thanks to the boundedness of Lhf , the last integral is small if x and y are close and t
is small, while the first difference is small if x and y are close enough thanks to the
continuity of F on It. Hence, F (x)−F (y) itself is small. This concludes the proof. �

To get further smoothness results, one needs to assume more cancellations for f .
The next theorem gives such conditions ensuring that F is C1.

Theorem 5.4. — Under the assumptions of Theorem 5.2, assume additionally that
f ∈ C3

h. Assume moreover that, for any ω ∈
⋃
|α|>λ−2 Eα∩kerLv, one has 〈ω, f〉 = 0.

Then the function F solving the cohomological equation (5.3) is C1 along the hori-
zontal direction, and LhF extends continuously to M .

The assumptions of the theorem make sense by (5.2). The distributions appearing
in the statement of the theorem have been completely classified in Theorem 1.4 and
its proof.

Let us start with a preliminary reduction.

Lemma 5.5. — To prove Theorem 5.4, it is sufficient to prove it assuming the stronger
condition that 〈ω, f〉 = 0 for all ω ∈

⋃
|α|>λ−2 Eα.

The difference with the assumptions in Theorem 5.4 is that our new assumption is
not restricted only to the vertically invariant distributions.

Proof. — Consider a function f ∈ C3
h such that

〈ω, f〉 = 0 for all ω ∈
⋃

|α|>λ−2

Eα ∩ kerLv.

We can not deduce from the assumptions of the lemma that f is a smooth coboundary,
as there might exist distributions ω ∈ Eα−kerLv with 〈ω, f〉 6= 0. We will bring these
quantities back to 0 by subtracting from f a suitable coboundary. The additional
distributions we have to handle belong to Eλ−2µi for some µi with |µi| ∈ [1, λ).
Denote by Fi a subspace of Eλ−2µi sent isomorphically by Lv to Eλ−1µi . Then

Eλ−2µi = Fi ⊕ (Eλ−2µi ∩ kerLv),

see (1.1).
Consider on

⊕
|µi|∈[1,λ)Eλ−1µi the linear form ω 7→ 〈L−1

v ω, f〉, where by L−1
v ω we

mean the unique ω̃ ∈
⊕
Fi with Lvω̃ = ω. As B−kh,kv is a space of distributions, any

linear form on a finite-dimensional subspace can be realized by a smooth function.
Hence, there exists g0 ∈ C∞c (M − Σ) such that, for any ω ∈

⊕
|µi|∈[1,λ)Eλ−1µi , then

〈L−1
v ω, f〉 = 〈ω, g0〉. Hence, for ω̃ ∈

⊕
Fi, applying the previous equality to ω = Lvω̃,

we have
〈ω̃, f〉 = 〈Lvω̃, g0〉 = −〈ω̃, Lvg0〉.
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This shows that the function f̃ = f + Lvg0 vanishes against any distribution in⊕
Fi. It also vanishes against any distribution on

⋃
|α|>λ−2 Eα ∩ kerLv, as this is the

case of f by assumption, and of Lvg0. Hence, it vanishes against all distributions in⋃
|α|>λ−2 Eα. Under the assumptions of the lemma, it follows that f + Lvg0 can be

written as LvF for some function F ∈ C1
h. Then f = Lv(F − g0), concluding the

proof. �

From this point on, we will assume that f satisfies the strengthened assumptions
of Lemma 5.5. To prove the theorem, we start with a stronger version of Lemma 5.3.

Lemma 5.6. — Under the assumptions of Lemma 5.5, there exists ε > 0 such that the
inequality ∣∣∣∣∫ τ

t=0

ϕ(t/τ)f(gtx) dt

∣∣∣∣ 6 C‖ϕ‖C3/τ1+ε

in (5.1) holds, with r = 3.

Proof. — The proof is the same as for Lemma 5.3, with the difference that the addi-
tional vanishing conditions in Lemma 5.5 give more vanishing terms in the spectral
decomposition of f , and thus a faster decay of Ť nf . �

Let us now prove that the function F given by Theorem 5.2 is Lipschitz along
horizontal segments. This is the main step of the proof.

Lemma 5.7. — Under the assumptions of Lemma 5.5, there exists C such that, for
any points x, y on the same horizontal segment, one has |F (x)− F (y)| 6 Cd(x, y).

Proof. — It suffices to prove the result for nearby points. Let δ > 0 be such that any
horizontal segment of size 6 δ can be completed above or below to form a rectangle
of vertical size 1, not containing any singularity. We will show the statement when
d = d(x, y) belongs to (0, δ/λ).

Let n > 1 be the integer such that λnd ∈ (δ/λ, δ]. Let I be the horizontal interval
between x and y. Assume for instance that TnI (which is of length 6 δ) can be
completed above by a rectangle of height 1 (otherwise, it can be completed below,
and the argument is the same but using F−n instead of F+

n ). In particular, there is no
singularity in the rectangle of height λn above I. Note first that∣∣F+

0 (x)− F+
0 (y)

∣∣ =

∣∣∣∣∫ 1

t=0

χ(t)
(
f(gtx)− f(gty)

)
dt

∣∣∣∣.
As Lhf is bounded by assumption and gtx and gty are at distance d along a horizontal
segment, we get

(5.6)
∣∣F+

0 (x)− F+
0 (y)

∣∣ 6 Cd.
Next, for 0 < k 6 n, we have

F+
k (x)− F+

k−1(x) =

∫ λk

t=0

ϕ(t/λk)f(gtx) dt,
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where ϕ(t) = χ(t)− χ(λt). Taking the difference, we get

(F+
k (x)− F+

k−1(x))− (F+
k (y)− F+

k−1(y)) =

∫ λk

t=0

ϕ(t/λk)(f(gtx)− f(gty)) dt

= λk
∫ 1

s=0

ϕ(s)(Ť kf(gsxk)− Ť kf(gsyk)) ds,

for xk = T kx and yk = T ky, as in (5.4). Since the points gsxk and gsyk are on the
same horizontal segment of length λkd, we can integrate by parts and get

(F+
k (x)− F+

k−1(x))− (F+
k (y)− F+

k−1(y)) = λk
∫ xk

u=yk

(∫ 1

s=0

ϕ(s)LhŤ kf(gsu) ds

)
du.

Each integral over s is an integral over a vertical segment, against a smooth function ϕ.
By the definition of B̌, it is bounded by C‖ϕ‖C3‖Ť kf‖B̌3,−3 . Moreover, the vanishing
conditions on f in the assumptions of Theorem 5.4 ensure that ‖Ť kf‖B̌3,−3 decays
like Cλ−(2+ε)k for some ε > 0. We get∣∣(F+

k (x)− F+
k−1(x))− (F+

k (y)− F+
k−1(y))

∣∣ 6 Cλk|xk − yk|λ−(2+ε)k

= Cλk · λkd · λ−(2+ε)k = Cdλ−εk.

As the geometric series λ−εk is summable, we get starting from (5.6) and summing
over k from 1 to n the inequality

(5.7)
∣∣F+
n (x)− F+

n (y)
∣∣ 6 Cd.

Moreover, by (5.5) (but with ε replaced by 1 + ε thanks to Lemma 5.6), we have∣∣F+
n (x)− F (x)

∣∣ 6 C/λ(1+ε)n 6 Cλ−n 6 C(λd/δ),

thanks to the inequality λnd > δ/λ. This is bounded by Cd. In the same way,
|F+
n (y)− F (y)| 6 Cd. Together with (5.7), this gives |F (x)− F (y)| 6 Cd. �

Remark 5.8. — Under the weaker assumptions of Theorem 5.2, then the same proof
goes through to prove that |F (x)−F (y)| 6 Cd(x, y)ε, where ε comes from Lemma 5.3.
Hence, the solution F to the cohomological equation is automatically Hölder contin-
uous, without any further assumption. This corresponds in a different (but closely
related) setting to the main result of [MY16].

Proof of Theorem 5.4. — Consider a function f satisfying the assumptions of Lem-
ma 5.5. We have to show that it is a C1 coboundary. Let F be the solution to the
coboundary equation given by Theorem 5.2. By Lemma 5.7, along any horizontal
segment, it is differentiable almost everywhere, and equal to the primitive of its de-
rivative. We get a bounded measurable function Fh such that, for every horizontal
interval I, for every x, y ∈ I, one has

(5.8) F (y)− F (x) =

∫ y

x

Fh(u) du.

The difficulty is that we do not know if Fh is continuous and well defined everywhere.
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The function Lhf belongs to C2
h. Moreover, it satisfies

〈ω,Lhf〉 = 0 for ω ∈
⋃

|α|>λ−1

Eα,

as this is equal to −〈Lhω, f〉, which vanishes under the assumptions of Lemma 5.5 as
Lhω ∈

⋃
|α|>λ−2 Eα. It follows that Lhf satisfies all the assumptions of Theorem 5.2.

Hence, there exists a continuous function G on M such that∫ τ

0

Lhf(gtx) = G(x)−G(gτx)

for all x and τ .
Consider two points x and y on a small horizontal interval, and τ > 0 so that there

is no singularity between the orbits (gsx)s6τ and (gsy)s6τ . Then one can compute∫ y

u=x

(G− Fh)(u)− (G− Fh)(gτu) du

=

∫ y

u=x

∫ τ

0

Lhf(gtu) dtdu− (F (y)− F (x)) + (F (gτy)− F (gτx))

=

∫ τ

0

f(gty)− f(gtx) dt− (F (y)− F (x)) + (F (gτy)− F (gτx)) = 0.

Since this also holds along any subsegment [x′, y′] of [x, y], it follows that

(G− Fh)(u)− (G− Fh)(gτu)

vanishes almost everywhere on the segment [x, y]. One deduces that, for almost every
τ > 0 and almost every u ∈M , one has (G− Fh)(gτu) = (G− Fh)(u). By ergodicity
of the vertical flow, it follows that G−Fh is almost everywhere constant, and we can
even assume that this constant vanishes by subtracting it from G if necessary.

By Fubini, for almost every horizontal interval I one has Fh = G almost everywhere
on I. On such an interval, we deduce from (5.8) the equality F (y)−F (x) =

∫ y
x
G(u) du.

By continuity of F and G, this equality extends to all horizontal intervals. It follows
from this formula that F is differentiable in the horizontal direction, with derivative G.
As G is continuous on M , this concludes the proof of the theorem. �

The following theorem is the precise version of Theorem 1.7 on Ck solutions to the
cohomological equation.

Theorem 5.9. — Under the assumptions of Theorem 5.2, assume additionally that
f ∈ Ck+2

h . Assume moreover that, for any ω ∈
⋃
|α|>λ−k−1 Eα ∩ kerLv, one has

〈ω, f〉 = 0. Then the function F solving the cohomological equation (5.3) is Ck along
the horizontal direction, and LjhF extends continuously to M for all j 6 k.

The assumptions of the theorem make sense by (5.2). As explained after that equa-
tion, the assumptions of the theorem could even be weakened to f ∈ Ck+1+ε

h . The loss
of 1 + ε derivatives corresponds in this setting to the result of Forni on the regularity
loss in the cohomological equation on almost every translation surface [For07]. The
conclusion can also be strengthened as the k-th derivative is also Hölder continuous
for some small exponent, see Remark 5.8.
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Proof. — We argue by induction on k, the cases k = 0 and k = 1 being true thanks
to Theorems 5.2 and 5.4. Assume k > 2. By Theorem 5.4, there exists a function F
solving the cohomological equation for f , such that LhF is well defined and continu-
ous. Differentiating horizontally, one gets that LhF is a continuous function, solving
the cohomological equation for Lhf .

Moreover, the function Lhf satisfies all the assumptions of the theorem for the
smoothness degree k − 1. By the inductive assumption, there exists a function G

solving the cohomological equation for Lhf , such that LihG is well defined for i 6 k−1.
The functions G and LhF solve the same cohomological equation. Hence, G − LhF
is constant along orbits of the vertical flow. As this flow is minimal, it follows that
G−LhF is constant. Therefore, LhF has k−1 continuous horizontal derivatives. This
concludes the proof. �

6. When orientations are not preserved

6.1. Orientable foliations whose orientations are not preserved. — Consider a
translation surface (M,Σ), and a linear pseudo-Anosov map T on M which does not
necessarily preserve the orientations of the horizontal and vertical foliations. There
are two global signs εh and εv indicating respectively if T preserves the orientations
of the horizontal and the vertical foliations. Then the spectrum of T ∗ on H1(M) is
given by εhλ, by εvλ−1, and by Ξ = {µ1, . . . , µ2g−2} with |µi| ∈ (λ−1, λ) (where this
last property follows from the same result for the map T 2, which preserves orienta-
tions). One can describe the Ruelle spectrum exactly as we did in the orientations
preserving case, with the only difference that the commutation relations between the
composition operator T and the horizontal and vertical derivatives are not the same:
Proposition 3.3 should be replaced by the equalities

T ◦ Lv = εvλLv ◦ T , T ◦ Lh = εhλ
−1Lh ◦ T

on appropriate spaces. On the other hand, the definition of the Banach spaces B−kh,kv
need not be changed (their very definition in Section 2 is independent of the existence
of a pseudo-Anosov map on the surface).

The largest eigenvalues of T , in addition to 1, are given by εhλ
−1µi. Then, to

build new eigenfunctions from such an eigenfunction, one can either differentiate in
the horizontal direction, or integrate in the vertical direction. When εh 6= εv, this
gives rise to two different eigenvalues, while when they coincide one obtains the same
eigenvalue again. In general, choosing to apply k − 1 horizontal derivatives and `

vertical integrations (with k > 1 and ` > 0) gives an eigenfunction for the eigenvalue
εkhε

`
vλ
−k−`µi. Hence, one obtains the following description of the spectrum:

Theorem 6.1. — Let T be a linear pseudo-Anosov map on a translation sur-
face of genus g, with orientable horizontal and vertical foliations. Denoting by
λ > 1 its expansion factor, then the spectrum of T ∗ on H1(M) has the form
{εhλ, εvλ−1, µ1, . . . , µ2g−2} with |µi| ∈ (λ−1, λ) for all i = 1, . . . , 2g − 2. Then T has
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a Ruelle spectrum on C = C∞c (M − Σ), given (with multiplicities) by

{1} ∪
2g−2⋃
i=1

⋃
k>1

⋃
`>0

{εkhε`vλ−k−`µi}.

For εh = εv = 1, one recovers Theorem 1.4.
One can also obtain a full description of the vertically invariant distributions, and

solve the cohomological equation for the vertical flow. However, the simplest way to
do this is certainly to apply the results of the previous sections to the map T 2, which
preserves orientations, so we will not discuss these results any further.

It is more interesting to check that the trace formula of Theorem 1.8 still holds in
this more general context.

Theorem 6.2. — Let T be a linear pseudo-Anosov map on a compact surface with
orientable horizontal and vertical foliations. Then, for all n,

(6.1) tr[(T n) =
∑
α

dαα
n,

where the sum is over all Ruelle resonances α of T , and dα denotes the multiplicity
of α.

Proof. — We follow the proof of Theorem 1.8, with appropriate modifications. The
Lefschetz fixed-point formula gives∑

Tnx=x

indTn x = tr((Tn)∗|H0(M))− tr((Tn)∗|H1(M)) + tr((Tn)∗|H2(M))

= 1−
(
εnhλ

n + εnvλ
−n +

2g−2∑
i=1

µni

)
+ εnhε

n
v ,

where {µ1, . . . , µ2g−2} denote the eigenvalues of T ∗ on the subspace of H1(M) or-
thogonal to [dx] and [dy], as in the statement of Theorem 1.4. The last term εnhε

n
v is

equal to 1 if Tn preserves orientation, −1 if it reverses orientation.
We can also compute the right hand side of (6.1), using the description of Ruelle

resonances: By Theorem 6.1,
∑
dαα

n is given by

1+

2g−2∑
i=1

∞∑
k=1

∞∑
`=0

(εkhλ
−k)n(ε`vλ

−`)nµni = 1 +

2g−2∑
i=1

εnhλ
−n

1− εnhλ−n
· 1

1− εnvλ−n
· µni

= 1−
2g−2∑
i=1

µni
(1− εnhλn) · (1− εnvλ−n)

=
(1− εnhλn) · (1− εnvλ−n)−

∑2g−2
i=1 µni

(1− εnhλn) · (1− εnvλ−n)

=
1−

(
εnhλ

n + εnvλ
−n +

∑2g−2
i=1 µni

)
+ εnhε

n
v

(1− εnhλn) · (1− εnvλ−n)
.

Combining the two formulas with the definition of the flat trace, we get the conclusion
of the theorem. �
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6.2. Non-orientable foliations. — Consider a pseudo-Anosov map T on a half-
translation surface M , but such that the horizontal and vertical foliations are not
orientable. Note that, with our Definition 1.2, a half-translation surface is always ori-
entable as x 7→ −x preserves orientation in R2. Hence, if the horizontal foliation is not
orientable, then neither is the vertical foliation, and conversely. In this case, one can
not argue directly in M as the differentiation operators Lh and Lv do not make sense
anymore: there is a sign ambiguity regarding the direction of differentiation. (On the
other hand, the squares L2

h and L2
v of these operators are well defined.)

Let M be the two fold orientation (ramified) covering of M : away from singular-
ities, an element of M is a pair (x, v), where x ∈ M − Σ and v is an orientation of
the horizontal foliation at x (equivalently, it is a horizontal unit-norm vector). Let
π : M → M be the covering projection, and write Σ = π−1(Σ). Then (M,Σ) is
a translation surface. Let i : M → M be the involution i(x, v) = (x,−v). It is a
homeomorphism of M .
T lifts to two pseudo-Anosov maps T and i ◦ T of M and the homeomorphism i

commutes with T . Let us consider εh, εv, where εh, εv ∈ {±1} indicate whether T fixes
or reverses the orientation in the horizontal (resp. vertical) direction, as in Section 6.1.
Obviously the corresponding pair associated to the other lift i ◦ T is (−εh,−εv).

The action of i∗ gives rise to a splitting of H1(M) as the direct sum of the two sub-
spaces H1

±(M) = {h ∈ H1(M) : i∗h = ±h}. The invariant part H1
+(M) corresponds

to classes that are lifts of classes in H1(M). On the other hand, [dx] and [dy] belong
to the anti-invariant part. If f is a function onM , then f ◦π ·dx if also anti-invariant.

The spectrum of T ∗ on H1
+(M) is equal to the spectrum of T on H1(M), given

by 2g eigenvalues that we denote by µ+
1 , . . . , µ

+
2g. Let us denote the spectrum of T ∗

on H1
−(M) by εhλ, εvλ−1 and µ−1 , . . . , µ

−
2g−−2. The Ruelle spectrum of T is expressed

in terms of all these data as in Theorem 6.1, but the Ruelle spectrum of T is a strict
subset of the Ruelle spectrum of T as one should only consider those distributions in
the spectrum that do not vanish on functions coming from the basis.

Theorem 6.3. — In this setting, T has a Ruelle spectrum on C = C∞c (M −Σ), given
(with multiplicities) by

{1} ∪
2g⋃
i=1

⋃
k>1,`>0
k+` even

{εkhε`vλ−k−`µ+
i } ∪

2g−−2⋃
i=1

⋃
k>1,`>0
k+` odd

{εkhε`vλ−k−`µ−i }.

It is remarkable that, in this theorem only mentioning the correlations of functions
in M , all the eigenvalues of T ∗ appear: both the invariant and anti-invariant parts of
the cohomology can be read off the correlations of functions in M .

This statement does not depend on the choice of the lift of T . Indeed, if one chooses
the other lift i ◦ T of T , then the µ+

i do not change, but εh, εv and µ−i are replaced
by their opposites, so that the above spectrum is not modified.

Proof. — Among the distributions constructed in the proof of Theorem 6.1, one
should understand which are orthogonal to functions from the basis, and which come
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from the basis. First, for the cohomology classes, one writes them as h = f dx for
some f in the Banach space B−kh,kv . As dx is anti-invariant, it follows that f is
invariant if and only if h is anti-invariant. Hence, the eigenvalues µ−i give rise to dis-
tributions coming from the base, for the eigenvalue εhλ−1µ−i . On the other hand, the
eigendistributions for εhλ−1µ+

i are anti-invariant, and do not appear in the Ruelle
spectrum of T . Then, in M , differentiating with respect to Lh or integrating with re-
spect to Lv exchanges the invariant and anti-invariant subspaces. The full description
of the spectrum follows. �

In this context, the trace formula of Theorem 1.8 still holds.

Theorem 6.4. — Let T be a linear pseudo-Anosov map. Then, for all n,

(6.2) tr[(T n) =
∑
α

dαα
n,

where the sum is over all Ruelle resonances α of T , and dα denotes the multiplicity
of α.

Proof. — We have already proved this result when the foliations are orientable, in
Theorem 6.2. Hence, we can assume that the foliations are not orientable. In this case,
the Ruelle spectrum is given in Theorem 6.3.

Let x be a fixed point of Tn. Denote by x1 and x2 its two lifts. They are either fixed
or exchanged by Tn. We say that x is positively fixed if its lifts are fixed by Tn, and
negatively fixed if they are exchanged by Tn, i.e., fixed by i ◦ Tn. Let Fix+(Tn) and
Fix−(Tn) denote respectively the set of positively and negatively fixed points of Tn.
Around a positively fixed point, the local picture of Tn is the same as the local picture
of Tn around the lifts. In particular, det(I −DTn) is equal to (1− εnhλn)(1− εnvλn).
If x is negatively fixed, on the other hand, the local picture of Tn is the same as that
of i ◦ Tn, hence locally

det(I −DTn) = (1 + εnhλ
n)(1 + εnvλ

n).

With the definition of the flat trace, we get

(6.3) tr[(T n) =
∑

x∈Fix+(Tn)

indTn x

(1− εnhλn)(1− εnvλ−n)

+
∑

x∈Fix−(Tn)

indTn x

(1 + εnhλ
n)(1 + εnvλ

−n)

To proceed, we note that to one point in Fix+(Tn) correspond two fixed points of Tn,
with the same Lefschetz index. Therefore,

2
∑

x∈Fix+(Tn)

indTn(x) =
∑

T
n
y=y

indTn(y).
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We can apply Lefschetz index formula for Tn to the last sum, yielding
2

∑
x∈Fix+(Tn)

indTn(x) = tr((T
n
)∗|H0(M)

)− tr((T
n
)∗|H1(M)

) + tr((T
n
)∗|H2(M)

)

= 1−
(
εnhλ

n + εnvλ
−n +

2g∑
i=1

(µ+
i )n +

2g−−2∑
i=1

(µ−i )n
)

+ εnhε
n
v

= (1− εnhλn)(1− εnvλ−n)−
2g∑
i=1

(µ+
i )n −

2g−−2∑
i=1

(µ−i )n.

A point in Fix−(Tn) corresponds to two fixed points of i◦Tn. Applying the Lefschetz
formula to i ◦ Tn, we get in the same way

2
∑

x∈Fix−(Tn)

indTn(x) = (1 + εnhλ
n)(1 + εnvλ

−n)−
2g∑
i=1

(µ+
i )n +

2g−−2∑
i=1

(µ−i )n,

as the eigenvalues of i ◦ Tn in cohomology are −εnhλn, −εnvλn, (µ+
i )n and −(µ−i )n.

Combining these two formulas with (6.3), we obtain

(6.4) tr[(T n)

= 1− 1

2

∑
(µ+
i )n

( 1

(1− εnhλn)(1− εnvλ−n)
+

1

(1 + εnhλ
n)(1 + εnvλ

−n)

)
− 1

2

∑
(µ−i )n

( 1

(1− εnhλn)(1− εnvλ−n)
− 1

(1 + εnhλ
n)(1 + εnvλ

−n)

)
.

Let us expand
1

(1− εnhλn)(1− εnvλ−n)
= −εnhλ−n

1

1− εnhλ−n
· 1

1− εnvλ−n

= −εnhλ−n
(∑
k>0

(εnhλ
−n)k

)(∑
k>0

(εnvλ
−n)`

)
= −

∑
k>1,`>0

(εkhε
`
vλ
−k−`)n

and analogously
1

(1 + εnhλ
n)(1 + εnvλ

−n)
= −

∑
k>1,`>0

(−1)k+`(εkhε
`
vλ
−k−`)n

Therefore, when one computes the terms in (6.4), there comes out a factor
(1 + (−1)k+`)/2 on the first line, which is 1 when k + ` is even and 0 other-
wise, and a factor (1 − (−1)k+`)/2 on the second line, which is 1 when k + ` is odd
and 0 otherwise. We finally get

tr[(T n) = 1 +

2g∑
i=1

∑
k>1,`>0
k+` even

(εkhε
`
vλ
−k−`µ+

i )n +

2g−−2∑
i=1

∑
k>1,`>0
k+` odd

(εkhε
`
vλ
−k−`µ+

i )n.

In view of the expression for the Ruelle spectrum given in Theorem 6.3, this is the
desired result. �
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