We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve and the stability of the sheaf of logarithmic vector fields along , the freeness of the divisor and the Torelli properties of (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.
Nous étudions les relations entre les syzygies de l’idéal jacobien associé à l’équation définissant une courbe plane et la stabilité du faisceau des champs de vecteurs logarithmiques le long de , la liberté du diviseur et les propriétés de Torelli de (au sens de Dolgachev-Kapranov). Nous montrons en particulier que les courbes ayant un petit nombre de points doubles et de cusps ont la propriété de Torelli.
Accepted:
Published online:
DOI: 10.5802/jep.10
Keywords: Syzygy, plane curve, logarithmic vector fields, stable bundle, free divisor, Torelli property
Mot clés : Syzygie, courbe plane, champ de vecteurs logarithmique, fibré stable, diviseur libre, propriété de Torelli
Alexandru Dimca 1; Edoardo Sernesi 2
@article{JEP_2014__1__247_0, author = {Alexandru Dimca and Edoardo Sernesi}, title = {Syzygies and logarithmic vector fields along plane curves}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {247--267}, publisher = {\'Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.10}, mrnumber = {3322789}, zbl = {1327.14049}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.10/} }
TY - JOUR AU - Alexandru Dimca AU - Edoardo Sernesi TI - Syzygies and logarithmic vector fields along plane curves JO - Journal de l’École polytechnique — Mathématiques PY - 2014 SP - 247 EP - 267 VL - 1 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.10/ DO - 10.5802/jep.10 LA - en ID - JEP_2014__1__247_0 ER -
%0 Journal Article %A Alexandru Dimca %A Edoardo Sernesi %T Syzygies and logarithmic vector fields along plane curves %J Journal de l’École polytechnique — Mathématiques %D 2014 %P 247-267 %V 1 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.10/ %R 10.5802/jep.10 %G en %F JEP_2014__1__247_0
Alexandru Dimca; Edoardo Sernesi. Syzygies and logarithmic vector fields along plane curves. Journal de l’École polytechnique — Mathématiques, Volume 1 (2014), pp. 247-267. doi : 10.5802/jep.10. https://jep.centre-mersenne.org/articles/10.5802/jep.10/
[1] - “Logarithmic bundles of hypersurface arrangements in ” (2013), arXiv:1304.5709
[2] - Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, vol. 267, Springer-Verlag, New York, 1985 | DOI | MR | Zbl
[3] - Singularities of differentiable maps. Vol. II, Monographs in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988 | DOI | MR
[4] - “New free divisors from old”, J. Commut. Algebra 5 (2013) no. 1, p. 17-47, arXiv:1211.4327 | DOI | MR | Zbl
[5] - Topics on real and complex singularities, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1987 | DOI | Zbl
[6] - “Syzygies of Jacobian ideals and defects of linear systems”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 56(104) (2013) no. 2, p. 191-203 | MR | Zbl
[7] - “Graded Koszul cohomology and spectrum of certain homogeneous polynomials” (2012), arXiv:1212.1081
[8] - “Generalization of theorems of Griffiths and Steenbrink to hypersurfaces with ordinary double points” (2014), arXiv:1403.4563 | Zbl
[9] - “Some remarks on limit mixed Hodge structures and spectrum”, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 22 (2014) no. 2, p. 69-78 | MR | Zbl
[10] - “Koszul complexes and pole order filtrations”, Proc. Edinburgh Math. Soc. (2), to appear, arXiv:1108.3976 | MR | Zbl
[11] - “Chebyshev curves, free resolutions and rational curve arrangements”, Math. Proc. Cambridge Philos. Soc. 153 (2012) no. 3, p. 385-397 | DOI | MR | Zbl
[12] - “Syzygies of Jacobian ideals and weighted homogeneous singularities” (2014), arXiv:1407.0168 | Zbl
[13] - “Arrangements of hyperplanes and vector bundles on ”, Duke Math. J. 71 (1993) no. 3, p. 633-664 | DOI | MR | Zbl
[14] - “Linear free divisors and the global logarithmic comparison theorem”, Ann. Inst. Fourier (Grenoble) 59 (2009) no. 2, p. 811-850 | DOI | Numdam | MR | Zbl
[15] - Algebraic Geometry, Graduate Texts in Math., vol. 52, Springer-Verlag, 1977 | Zbl
[16] - “Stable rank- vector bundles on with odd”, Math. Ann. 242 (1979) no. 3, p. 241-266 | DOI | Zbl
[17] - “Singularities of pairs”, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, American Mathematical Society, Providence, RI, 1997, p. 221-287 | DOI | MR | Zbl
[18] - “Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors”, in Singularities I, Contemp. Math., vol. 474, Amer. Math. Soc., Providence, RI, 2008, p. 245-269 | DOI | MR | Zbl
[19] - Vector bundles on complex projective spaces, Progress in Math., vol. 3, Birkhäuser, Boston, Mass., 1980 | MR | Zbl
[20] - Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[21] - “Einfach-elliptische Singularitäten”, Invent. Math. 23 (1974), p. 289-325 | DOI | Zbl
[22] - “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980) no. 2, p. 265-291 | MR | Zbl
[23] - Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften, vol. 334, Springer-Verlag, Berlin, 2006 | MR | Zbl
[24] - “The local cohomology of the Jacobian ring”, Doc. Math. 19 (2014), p. 541-565 | MR | Zbl
[25] - “Homology of homogeneous divisors”, Israel J. Math. 200 (2014) no. 1, p. 449-487, arXiv:1207.5862 | DOI | MR | Zbl
[26] - “Free divisors versus stability and coincidence thresholds” (2014), arXiv:1401.1843 | DOI
[27] - “Logarithmic vector fields along smooth divisors in projective spaces”, Hokkaido Math. J. 38 (2009) no. 3, p. 409-415 | DOI | MR | Zbl
[28] - “Nombre maximal d’hyperplans instables pour un fibré de Steiner”, Math. Z. 233 (2000) no. 3, p. 507-514 | DOI | MR | Zbl
[29] - “Deformations of plane curves with nodes and cusps”, Amer. J. Math. 96 (1974), p. 529-577 | DOI | MR | Zbl
[30] - “Freeness of hyperplane arrangements and related topics”, Ann. Fac. Sci. Toulouse Math. (6) 23 (2014) no. 2, p. 483-512, arXiv:1212.3523 | DOI | Numdam | MR | Zbl
Cited by Sources: