We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.
Nous étudions les éclatements d’espaces de configuration. Ces espaces ont une structure de variété que nous appelons d’Orlik-Solomon ; elle permet de calculer la cohomologie d’intersection de certaines connexions plates avec singularités logarithmiques à l’aide de complexes de formes logarithmiques du type d’Aomoto. En utilisant cette construction, nous donnons une réalisation géométrique de la résolution de Bernstein–Gelfand–Gelfand pour comme un complexe d’Aomoto.
Accepted:
Published online:
DOI: 10.5802/jep.9
Keywords: Configuration space, normal-crossing divisor, resolution, residue, local system, cohomology, Orlik-Solomon algebra, Aomoto complex, BGG resolution
Mot clés : Espace de configuration, diviseur à croisements normaux, résolution, résidu, système local, cohomologie, algèbre d’Orlik-Solomon, complexe d’Aomoto, résolution BGG
Michael Falk 1; Vadim Schechtman 2; Alexander Varchenko 3
@article{JEP_2014__1__225_0, author = {Michael Falk and Vadim Schechtman and Alexander Varchenko}, title = {BGG resolutions via configuration spaces}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {225--245}, publisher = {\'Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.9}, mrnumber = {3322788}, zbl = {1323.55013}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.9/} }
TY - JOUR AU - Michael Falk AU - Vadim Schechtman AU - Alexander Varchenko TI - BGG resolutions via configuration spaces JO - Journal de l’École polytechnique — Mathématiques PY - 2014 SP - 225 EP - 245 VL - 1 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.9/ DO - 10.5802/jep.9 LA - en ID - JEP_2014__1__225_0 ER -
%0 Journal Article %A Michael Falk %A Vadim Schechtman %A Alexander Varchenko %T BGG resolutions via configuration spaces %J Journal de l’École polytechnique — Mathématiques %D 2014 %P 225-245 %V 1 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.9/ %R 10.5802/jep.9 %G en %F JEP_2014__1__225_0
Michael Falk; Vadim Schechtman; Alexander Varchenko. BGG resolutions via configuration spaces. Journal de l’École polytechnique — Mathématiques, Volume 1 (2014), pp. 225-245. doi : 10.5802/jep.9. https://jep.centre-mersenne.org/articles/10.5802/jep.9/
[AV12] - “Intersection cohomology of a rank one local system on the complement of a hyperplane-like divisor”, in Configuration spaces. Geometry, combinatorics and topology (A. Bjorner, F. Cohen, C. De Concini & M. Salvetti, eds.), Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, vol. 14, Edizioni della Normale, Pisa, 2012, p. 49-53, arXiv:1106.5732 | MR
[BB81] - “Localisation de -modules”, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) no. 1, p. 15-18 | MR
[BFS98] - Factorizable sheaves and quantum groups, Lect. Notes in Math., vol. 1691, Springer-Verlag, Berlin, 1998 | MR | Zbl
[BG92] - “Infinitesimal structure of moduli spaces of -bundles”, Internat. Math. Res. Notices (1992) no. 4, p. 63-74 | DOI | MR | Zbl
[BGG75] - “Differential operators on the base affine space and a study of -modules”, in Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), Halsted, New York, 1975, p. 21-64 | Zbl
[DCP95] - “Wonderful models of subspace arrangements”, Selecta Math. (N.S.) 1 (1995) no. 3, p. 459-494 | DOI | MR | Zbl
[Dim92] - Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992 | DOI | Zbl
[ESV92] - “Cohomology of local systems on the complement of hyperplanes”, Invent. Math. 109 (1992) no. 3, p. 557-561, Erratum: Ibid. 112 (1993), p. 447 | DOI | MR | Zbl
[Kem78] - “The Grothendieck-Cousin complex of an induced representation”, Adv. in Math. 29 (1978) no. 3, p. 310-396 | DOI | MR | Zbl
[KS97] - “Factorizable -modules”, Math. Res. Lett. 4 (1997) no. 2-3, p. 239-257 | DOI | MR
[KV06] - “Quiver -modules and homology of local systems over an arrangement of hyperplanes”, IMRP Int. Math. Res. Pap. (2006), Art. ID 69590 | MR | Zbl
[OT92] - Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[STV95] - “Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors”, J. Pure Appl. Algebra 100 (1995) no. 1-3, p. 93-102 | DOI | MR | Zbl
[SV91] - “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math. 106 (1991) no. 1, p. 139-194 | DOI | MR | Zbl
[Var95] - Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Advanced Series in Mathematical Physics, vol. 21, World Scientific Publishing Co., Inc., River Edge, NJ, 1995 | DOI | MR | Zbl
Cited by Sources: