[Sur la catégorie -homotopique rationnelle]
Dans ce travail, nous étudions la structure de la catégorie -homotopique stable rationnelle sur une base arbitraire. Notre première famille de résultats concerne les six opérations : nous prouvons la pureté absolue, la stabilité des objets constructibles et la dualité de Grothendieck-Verdier pour cette catégorie. Dans un deuxième temps, nous prouvons que la catégorie -homotopique stable rationnelle est canoniquement SL-orientée et la comparons à la catégorie des motifs rationnels de Milnor-Witt. Cela permet de calculer les groupes d’-homotopie stable bivariants en termes des groupes de Chow-Witt supérieurs. Ces résultats s’obtiennent à partir d’énoncés analogues pour la partie négative de la catégorie -homotopique stable 2-localisée.
We study the structure of the rational motivic stable homotopy category over general base schemes. Our first class of results concerns the six operations: we prove absolute purity, stability of constructible objects, and Grothendieck–Verdier duality for . Next, we prove that is canonically -oriented; we compare with the category of rational Milnor–Witt motives; and we relate the rational bivariant -theory to Chow–Witt groups. These results are derived from analogous statements for the minus part of .
Accepté le :
Publié le :
Keywords: Motivic homotopy, motivic cohomology, six operations, Chow-Witt groups, K-theory, hermitian K-theory
Mots-clés : Théorie $\mathbb{A}^1$-homotopique, cohomologie motivique, six opérations, groupes de Chow-Witt, K-théorie, K-théorie hermitienne
Frédéric Déglise 1 ; Jean Fasel 2 ; Fangzhou Jin 3 ; Adeel A. Khan 4
@article{JEP_2021__8__533_0, author = {Fr\'ed\'eric D\'eglise and Jean Fasel and Fangzhou Jin and Adeel A. Khan}, title = {On the rational motivic homotopy category}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {533--583}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.153}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.153/} }
TY - JOUR AU - Frédéric Déglise AU - Jean Fasel AU - Fangzhou Jin AU - Adeel A. Khan TI - On the rational motivic homotopy category JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 533 EP - 583 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.153/ DO - 10.5802/jep.153 LA - en ID - JEP_2021__8__533_0 ER -
%0 Journal Article %A Frédéric Déglise %A Jean Fasel %A Fangzhou Jin %A Adeel A. Khan %T On the rational motivic homotopy category %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 533-583 %V 8 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.153/ %R 10.5802/jep.153 %G en %F JEP_2021__8__533_0
Frédéric Déglise; Jean Fasel; Fangzhou Jin; Adeel A. Khan. On the rational motivic homotopy category. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 533-583. doi : 10.5802/jep.153. https://jep.centre-mersenne.org/articles/10.5802/jep.153/
[AGV73] - Théorie des topos et cohomologie étale des schémas, Lect. Notes in Math., vol. 269, 270, 305, Springer-Verlag, 1972–1973, Séminaire de Géométrie Algébrique du Bois–Marie 1963–64 (SGA 4)
[ALP17] - “Witt sheaves and the -inverted sphere spectrum”, J. Topology 10 (2017) no. 2, p. 370-385 | DOI | MR | Zbl
[Ana19] - “-oriented cohomology theories”, 2019 | arXiv
[Ayo07] - Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, Astérisque, vol. 314-315, Société Mathématique de France, Paris, 2007 | Numdam | Zbl
[Ayo14] - “La réalisation étale et les opérations de Grothendieck”, Ann. Sci. École Norm. Sup. (4) 47 (2014) no. 1, p. 1-145 | DOI | Zbl
[Bac18] - “Motivic and real étale stable homotopy theory”, Compositio Math. 154 (2018) no. 5, p. 883-917 | DOI | MR | Zbl
[Bal01] - “Witt cohomology, Mayer-Vietoris, homotopy invariance and the Gersten conjecture”, -Theory 23 (2001) no. 1, p. 15-30 | DOI | MR | Zbl
[Bal05] - “Witt groups”, in Handbook of -theory. Vol. 1, 2, Springer, Berlin, 2005, p. 539-576 | DOI | MR | Zbl
[BBD82] - “Faisceaux pervers”, in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Société Mathématique de France, Paris, 1982, p. 5-171 | MR | Zbl
[BCD + 20] - “Milnor-Witt motives”, 2020 | arXiv
[BD17] - “Dimensional homotopy t-structures in motivic homotopy theory”, Adv. Math. 311 (2017), p. 91-189 | DOI | MR | Zbl
[BF18] - “On the effectivity of spectra representing motivic cohomology theories”, 2018 | arXiv
[BGPW02] - “The Gersten conjecture for Witt groups in the equicharacteristic case”, Doc. Math. 7 (2002), p. 203-217 | MR | Zbl
[BH21] - Norms in motivic homotopy theory, Astérisque, Société Mathématique de France, Paris, 2021, to appear
[BO74] - “Gersten’s conjecture and the homology of schemes”, Ann. Sci. École Norm. Sup. (4) 7 (1974) no. 4, p. 181-201 | DOI | MR | Zbl
[Bon14] - “Weights for relative motives: relation with mixed complexes of sheaves”, Internat. Math. Res. Notices (2014) no. 17, p. 4715-4767 | DOI | MR | Zbl
[BW02] - “A Gersten-Witt spectral sequence for regular schemes”, Ann. Sci. École Norm. Sup. (4) 35 (2002) no. 1, p. 127-152 | DOI | Numdam | MR | Zbl
[CD15] - “Integral mixed motives in equal characteristics”, Doc. Math. (2015), p. 145-194, Extra volume: Alexander S. Merkurjev’s sixtieth birthday | MR | Zbl
[CD16] - “Étale motives”, Compositio Math. 152 (2016) no. 3, p. 556-666 | DOI | Zbl
[CD19] - Triangulated categories of mixed motives, Springer Monographs in Math., Springer, Cham, 2019 | DOI | Zbl
[CDH + 20a] - “Hermitian -theory for stable -categories I: Foundations”, 2020 | arXiv
[CDH + 20b] - “Hermitian -theory for stable -categories II: Cobordism categories and additivity”, 2020 | arXiv
[CDH + 20c] - “Hermitian -theory for stable -categories III: Grothendieck-Witt groups of rings”, 2020 | arXiv
[CF14] - “Finite Chow-Witt correspondences”, 2014 | arXiv
[Cis19] - “Cohomological methods in intersection theory” (2019), arXiv:1905.03478
[CTHK97] - “The Bloch-Ogus-Gabber theorem”, in Algebraic -theory (Toronto, ON, 1996), Fields Inst. Commun., vol. 16, American Mathematical Society, Proovidence, RI, 1997, p. 31-94 | MR | Zbl
[Del77] - Cohomologie étale, Lect. Notes in Math., vol. 569, Springer-Verlag, 1977, Séminaire de Géométrie Algébrique du Bois–Marie SGA
[Del87] - “Le déterminant de la cohomologie”, in Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67, American Mathematical Society, Providence, RI, 1987, p. 93-177 | DOI | Zbl
[DF20] - “The Borel character”, 2020 | arXiv
[DFJK19] - “Borel isomorphism and absolute purity”, 2019 | arXiv
[DJK21] - “Fundamental classes in motivic homotopy theory”, J. Eur. Math. Soc. (JEMS) (2021), to appear
[Dég18a] - “Bivariant theories in motivic stable homotopy”, Doc. Math. 23 (2018), p. 997-1076 | MR | Zbl
[Dég18b] - “Orientation theory in arithmetic geometry”, in -Theory—Proceedings of the International Colloquium (Mumbai, 2016), Hindustan Book Agency, New Delhi, 2018, p. 239-347 | Zbl
[EHK + 20] - “Modules over algebraic cobordism”, Forum Math. Pi 8 (2020), article ID e14, 44 pages | DOI | MR
[EK20a] - “Perfection in motivic homotopy theory”, Proc. London Math. Soc. (3) 120 (2020) no. 1, p. 28-38 | DOI | MR | Zbl
[EK20b] - “On modules over motivic ring spectra”, Ann. -Theory 5 (2020) no. 2, p. 327-355 | DOI | MR | Zbl
[EKM08] - The algebraic and geometric theory of quadratic forms, AMS Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008 | MR | Zbl
[Fas08] - Groupes de Chow-Witt, Mém. Soc. Math. France (N.S.), vol. 113, Société Mathématique de France, Paris, 2008 | Numdam | MR | Zbl
[Fel19] - “Morel homotopy modules and Milnor-Witt cycle modules”, 2019 | arXiv
[Fel20] - “Milnor-Witt cycle modules”, J. Pure Appl. Algebra 224 (2020) no. 7, p. 41 | DOI | MR | Zbl
[FS09] - “Chow-Witt groups and Grothendieck-Witt groups of regular schemes”, Adv. Math. 221 (2009) no. 1, p. 302-329 | DOI | MR | Zbl
[Fuj02] - “A proof of the absolute purity conjecture (after Gabber)”, in Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, Tokyo, 2002, p. 153-183 | DOI | MR | Zbl
[Ful98] - Intersection theory, Ergeb. Math. Grenzgeb. (3), vol. 2, Springer-Verlag, Berlin, 1998 | MR | Zbl
[Gar19] - “Reconstructing rational stable motivic homotopy theory”, Compositio Math. 155 (2019) no. 7, p. 1424-1443 | DOI | MR | Zbl
[Gil07] - “A graded Gersten-Witt complex for schemes with a dualizing complex and the Chow group”, J. Pure Appl. Algebra 208 (2007) no. 2, p. 391-419 | DOI | MR | Zbl
[Gro64] - “Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I”, Publ. Math. Inst. Hautes Études Sci. 20 (1964), p. 5-259 | DOI
[Gro77] - Cohomologie -adique et fonctions , Lect. Notes in Math., vol. 589, Springer-Verlag, 1977, Séminaire de Géométrie Algébrique du Bois–Marie 1965–66 (SGA 5)
[Har66] - Residues and duality, Lect. Notes in Math., vol. 20, Springer-Verlag, Berlin-New York, 1966 | MR | Zbl
[Hoy14] - “A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula”, Algebraic Geom. Topol. 14 (2014) no. 6, p. 3603-3658 | DOI | MR | Zbl
[Héb11] - “Structure de poids à la Bondarko sur les motifs de Beilinson”, Compositio Math. 147 (2011) no. 5, p. 1447-1462 | DOI | MR | Zbl
[ILO14] - Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents (L. Illusie, Y. Laszlo & F. Orgogozo, eds.), Astérisque, vol. 363-364, Société Mathématique de France, Paris, 2014 | Zbl
[Jac17] - “Real cohomology and the powers of the fundamental ideal in the Witt ring”, Ann. -Theory 2 (2017) no. 3, p. 357-385 | DOI | MR | Zbl
[Jin16] - “Borel–Moore motivic homology and weight structure on mixed motives”, Math. Z. 283 (2016) no. 3, p. 1149-1183 | DOI | MR | Zbl
[Kha16] - Motivic homotopy theory in derived algebraic geometry, Ph. D. Thesis, Universität Duisburg-Essen, 2016
[Kha19] - “Virtual fundamental classes of derived stacks I”, 2019 | arXiv
[Kha21] - “Voevodsky’s criterion for constructible categories of coefficients” (2021), Preprint, available at https://www.preschema.com/papers/six.pdf
[Kne77] - “Symmetric bilinear forms over algebraic varieties”, in Conference on Quadratic Forms—1976 (Kingston, Ont., 1976), Queen’s Papers in Pure and Appl. Math., vol. 46, 1977, p. 103-283 | Zbl
[Lam05] - Introduction to quadratic forms over fields, Graduate Studies in Math., vol. 67, American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[Lur09] - Higher topos theory, Annals of Math. Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009 | DOI | MR | Zbl
[Lur12] - “Higher algebra” (2012), Preprint, available at https://www.math.ias.edu/~lurie/papers/HigherAlgebra.pdf
[Lur18] - “Spectral algebraic geometry” (2018), Preprint, available at https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
[Mor04] - “On the motivic of the sphere spectrum”, in Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., 2004, p. 219-260 | DOI | MR
[Mor06] - “Rational stable splitting of Grassmannians and rational motivic sphere spectrum”, 2006
[Mor12] - -algebraic topology over a field, Lect. Notes in Math., vol. 2052, Springer, Heidelberg, 2012
[MV99] - “-homotopy theory of schemes”, Publ. Math. Inst. Hautes Études Sci. (1999) no. 90, p. 45-143 | DOI | MR
[Pan10] - “Homotopy invariance of the sheaf and of its cohomology”, in Quadratic forms, linear algebraic groups, and cohomology, Dev. Math., vol. 18, Springer, New York, 2010, p. 325-335 | DOI | MR | Zbl
[PW19] - “On the motivic commutative ring spectrum BO”, St. Petersburg Math. J. 30 (2019) no. 6, p. 933–972 | MR | Zbl
[Rob15] - “-theory and the bridge from motives to noncommutative motives”, Adv. Math. 269 (2015), p. 399-550 | DOI | MR | Zbl
[RØ08] - “On modules over motivic ring spectra”, Adv. Math. 219 (2008) no. 2, p. 689–727 | Zbl
[Sch94] - Real and étale cohomology, Lect. Notes in Math., vol. 1588, Springer-Verlag, Berlin, 1994 | Zbl
[Sch00] - “Integral elements in -theory and products of modular curves”, in The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., 2000, p. 467-489 | MR | Zbl
[Sch17] - “Hermitian -theory, derived equivalences and Karoubi’s fundamental theorem”, J. Pure Appl. Algebra 221 (2017) no. 7, p. 1729-1844 | DOI | MR | Zbl
[Spi99] - “A new proof of D. Popescu’s theorem on smoothing of ring homomorphisms”, J. Amer. Math. Soc. 12 (1999) no. 2, p. 381-444 | DOI | MR | Zbl
[Spi18] - A commutative -spectrum representing motivic cohomology over Dedekind domains, Mém. Soc. Math. France (N.S.), vol. 157, Société Mathématique de France, Paris, 2018 | DOI | MR | Zbl
[ST15] - “Geometric models for higher Grothendieck-Witt groups in -homotopy theory”, Math. Ann. 362 (2015) no. 3-4, p. 1143-1167 | DOI | MR | Zbl
[Sta21] - “The Stacks project”, https://stacks.math.columbia.edu, 2021
[Tho84] - “Absolute cohomological purity”, Bull. Soc. math. France 112 (1984) no. 3, p. 397-406 | DOI | Numdam | MR | Zbl
[TT90] - “Higher algebraic -theory of schemes and of derived categories”, in The Grothendieck Festschrift, Vol. III, Progress in Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, p. 247-435 | DOI | MR
Cité par Sources :