Characterizing smooth affine spherical varieties via the automorphism group
Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 379-414.

Let G be a connected reductive algebraic group. We prove that for a quasi-affine G-spherical variety the weight monoid is determined by the weights of its non-trivial 𝔾 a -actions that are homogeneous with respect to a Borel subgroup of G. As an application we get that a smooth affine spherical variety that is non-isomorphic to a torus is determined by its automorphism group (considered as an ind-group) inside the category of smooth affine irreducible varieties.

Soit G un groupe réductif connexe. Nous montrons que le monoïde des poids d’une variété G-sphérique quasi-affine est déterminé par les poids de ses 𝔾 a -actions non triviales homogènes sous l’action d’un sous-groupe de Borel de G. Comme application, nous obtenons qu’une variété sphérique affine lisse non isomorphe à un tore est déterminée par son groupe des automorphismes (considéré comme un ind-groupe) dans la catégorie des variétés irréductibles affines lisses.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.149
Classification: 14R20, 14M27, 14J50, 22F50
Keywords: Automorphism groups of quasi-affine varieties, quasi-affine spherical varieties, root subgroups, quasi-affine toric varieties
Mot clés : Groupes des automorphismes des variétés quasi-affines, variétés sphériques quasi-affines, sous-groupes de racines, variétés toriques quasi-affines

Andriy Regeta 1; Immanuel van Santen 2

1 Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena Ernst-Abbe-Platz 2, DE-07743 Jena, Germany
2 Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2021__8__379_0,
     author = {Andriy Regeta and Immanuel van Santen},
     title = {Characterizing smooth affine spherical varieties via the automorphism group},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {379--414},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.149},
     mrnumber = {4218162},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.149/}
}
TY  - JOUR
AU  - Andriy Regeta
AU  - Immanuel van Santen
TI  - Characterizing smooth affine spherical varieties via the automorphism group
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 379
EP  - 414
VL  - 8
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.149/
DO  - 10.5802/jep.149
LA  - en
ID  - JEP_2021__8__379_0
ER  - 
%0 Journal Article
%A Andriy Regeta
%A Immanuel van Santen
%T Characterizing smooth affine spherical varieties via the automorphism group
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 379-414
%V 8
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.149/
%R 10.5802/jep.149
%G en
%F JEP_2021__8__379_0
Andriy Regeta; Immanuel van Santen. Characterizing smooth affine spherical varieties via the automorphism group. Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 379-414. doi : 10.5802/jep.149. https://jep.centre-mersenne.org/articles/10.5802/jep.149/

[AG10] I. V. Arzhantsev & S. A. Gaĭfullin - “Cox rings, semigroups, and automorphisms of affine varieties”, Mat. Sb. (N.S.) 201 (2010) no. 1, p. 3-24 | DOI | MR | Zbl

[AT03] A. Auslender & M. Teboulle - Asymptotic cones and functions in optimization and variational inequalities, Springer Monographs in Math., Springer-Verlag, New York, 2003 | Zbl

[BCF10] P. Bravi & S. Cupit-Foutou - “Classification of strict wonderful varieties”, Ann. Inst. Fourier (Grenoble) 60 (2010) no. 2, p. 641-681 | DOI | Numdam | MR | Zbl

[Ber03] F. Berchtold - “Lifting of morphisms to quotient presentations”, Manuscripta Math. 110 (2003) no. 1, p. 33-44 | DOI | MR | Zbl

[BP05] P. Bravi & G. Pezzini - “Wonderful varieties of type D, Represent. Theory 9 (2005), p. 578-637 | DOI | MR | Zbl

[Bra07] P. Bravi - “Wonderful varieties of type E, Represent. Theory 11 (2007), p. 174-191 | DOI | MR | Zbl

[Bri10] M. Brion - “Introduction to actions of algebraic groups”, in Actions hamiltoniennes: invariants et classification, vol. 1, Centre Mersenne, Grenoble, 2010, p. 1-22, https://ccirm.centre-mersenne.org/volume/CCIRM_2010__1/ | Zbl

[CF14] S. Cupit-Foutou - “Wonderful varieties: a geometrical realization”, 2014 | arXiv

[CLS11] D. A. Cox, J. B. Little & H. K. Schenck - Toric varieties, Graduate Studies in Math., vol. 124, American Mathematical Society, Providence, RI, 2011 | DOI | MR | Zbl

[CRX19] S. Cantat, A. Regeta & J. Xie - “Families of commuting automorphisms, and a characterization of the affine space”, 2019 | arXiv

[Dem70] M. Demazure - “Sous-groupes algébriques de rang maximum du groupe de Cremona”, Ann. Sci. École Norm. Sup. (4) 3 (1970), p. 507-588 | DOI | Numdam | Zbl

[FK] J.-P. Furter & H. Kraft - “On the geometry of the automorphism groups of affine varieties” | arXiv

[Fre17] G. Freudenburg - Algebraic theory of locally nilpotent derivations, Encyclopaedia of Math. Sciences, vol. 136, Springer-Verlag, Berlin, 2017 | DOI | MR | Zbl

[Ful93] W. Fulton - Introduction to toric varieties, Annals of Math. Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993 | DOI | MR | Zbl

[Gro61] A. Grothendieck - “Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes”, Publ. Math. Inst. Hautes Études Sci. 8 (1961), p. 1-222 | Numdam

[Gro97] F. D. Grosshans - Algebraic homogeneous spaces and invariant theory, Lect. Notes in Math., vol. 1673, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[Hum75] J. E. Humphreys - Linear algebraic groups, Graduate Texts in Math., vol. 21, Springer-Verlag, New York-Heidelberg, 1975 | MR | Zbl

[Kal05] S. Kaliman - “On a theorem of Ax”, Proc. Amer. Math. Soc. 133 (2005) no. 4, p. 975-977 | DOI | MR | Zbl

[Kno91] F. Knop - “The Luna-Vust theory of spherical embeddings”, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), p. 225-249 | Zbl

[Kno93] F. Knop - “Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins”, Math. Z. 213 (1993) no. 1, p. 33-36 | DOI | MR | Zbl

[Kra84] H. Kraft - Geometrische Methoden in der Invariantentheorie, Aspects of Math., vol. D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 | DOI | Zbl

[Kra17] H. Kraft - “Automorphism groups of affine varieties and a characterization of affine n-space”, Trans. Moscow Math. Soc. 78 (2017), p. 171-186 | DOI | MR | Zbl

[KRvS19] H. Kraft, A. Regeta & I. van Santen - “Is the affine space determined by its automorphism group?”, Internat. Math. Res. Notices (2019), article ID rny281, 21 pages | DOI | Zbl

[Lie10] A. Liendo - “Affine 𝕋-varieties of complexity one and locally nilpotent derivations”, Transform. Groups 15 (2010) no. 2, p. 389-425 | DOI | MR | Zbl

[Los09a] I. V. Losev - “Proof of the Knop conjecture”, Ann. Inst. Fourier (Grenoble) 59 (2009) no. 3, p. 1105-1134 | DOI | Numdam | MR | Zbl

[Los09b] I. V. Losev - “Uniqueness property for spherical homogeneous spaces”, Duke Math. J. 147 (2009) no. 2, p. 315-343 | DOI | MR | Zbl

[LRU19] A. Liendo, A. Regeta & C. Urech - “Characterization of affine surfaces with a torus action by their automorphism groups”, 2019 | arXiv

[Lun01] D. Luna - “Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. (2001) no. 94, p. 161-226 | DOI | Numdam | MR | Zbl

[Lun07] D. Luna - “La variété magnifique modèle”, J. Algebra 313 (2007) no. 1, p. 292-319 | DOI | MR | Zbl

[LV83] D. Luna & T. Vust - “Plongements d’espaces homogènes”, Comment. Math. Helv. 58 (1983) no. 2, p. 186-245 | DOI | Zbl

[Ram64] C. P. Ramanujam - “A note on automorphism groups of algebraic varieties”, Math. Ann. 156 (1964), p. 25-33 | DOI | MR | Zbl

[Reg17] A. Regeta - “Characterization of n-dimensional normal affine SL n -varieties”, 2017 | arXiv

[Ros56] M. Rosenlicht - “Some basic theorems on algebraic groups”, Amer. J. Math. 78 (1956), p. 401-443 | DOI | MR | Zbl

[Sha94] - Algebraic geometry. IV (I. R. Shafarevich, ed.), Encyclopaedia of Math. Sciences, vol. 55, Springer-Verlag, Berlin, 1994 | DOI | MR

[Tim11] D. A. Timashev - Homogeneous spaces and equivariant embeddings, Encyclopaedia of Math. Sciences, vol. 138, Springer, Heidelberg, 2011 | DOI | MR | Zbl

Cited by Sources: