[Caractérisation des variétés sphériques affines lisses par le groupe des automorphismes]
Soit un groupe réductif connexe. Nous montrons que le monoïde des poids d’une variété -sphérique quasi-affine est déterminé par les poids de ses -actions non triviales homogènes sous l’action d’un sous-groupe de Borel de . Comme application, nous obtenons qu’une variété sphérique affine lisse non isomorphe à un tore est déterminée par son groupe des automorphismes (considéré comme un ind-groupe) dans la catégorie des variétés irréductibles affines lisses.
Let be a connected reductive algebraic group. We prove that for a quasi-affine -spherical variety the weight monoid is determined by the weights of its non-trivial -actions that are homogeneous with respect to a Borel subgroup of . As an application we get that a smooth affine spherical variety that is non-isomorphic to a torus is determined by its automorphism group (considered as an ind-group) inside the category of smooth affine irreducible varieties.
Accepté le :
Publié le :
DOI : 10.5802/jep.149
Keywords: Automorphism groups of quasi-affine varieties, quasi-affine spherical varieties, root subgroups, quasi-affine toric varieties
Mots-clés : Groupes des automorphismes des variétés quasi-affines, variétés sphériques quasi-affines, sous-groupes de racines, variétés toriques quasi-affines
Andriy Regeta 1 ; Immanuel van Santen 2
@article{JEP_2021__8__379_0, author = {Andriy Regeta and Immanuel van Santen}, title = {Characterizing smooth affine spherical varieties via the automorphism group}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {379--414}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.149}, mrnumber = {4218162}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.149/} }
TY - JOUR AU - Andriy Regeta AU - Immanuel van Santen TI - Characterizing smooth affine spherical varieties via the automorphism group JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 379 EP - 414 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.149/ DO - 10.5802/jep.149 LA - en ID - JEP_2021__8__379_0 ER -
%0 Journal Article %A Andriy Regeta %A Immanuel van Santen %T Characterizing smooth affine spherical varieties via the automorphism group %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 379-414 %V 8 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.149/ %R 10.5802/jep.149 %G en %F JEP_2021__8__379_0
Andriy Regeta; Immanuel van Santen. Characterizing smooth affine spherical varieties via the automorphism group. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 379-414. doi : 10.5802/jep.149. https://jep.centre-mersenne.org/articles/10.5802/jep.149/
[AG10] - “Cox rings, semigroups, and automorphisms of affine varieties”, Mat. Sb. (N.S.) 201 (2010) no. 1, p. 3-24 | DOI | MR | Zbl
[AT03] - Asymptotic cones and functions in optimization and variational inequalities, Springer Monographs in Math., Springer-Verlag, New York, 2003 | Zbl
[BCF10] - “Classification of strict wonderful varieties”, Ann. Inst. Fourier (Grenoble) 60 (2010) no. 2, p. 641-681 | DOI | Numdam | MR | Zbl
[Ber03] - “Lifting of morphisms to quotient presentations”, Manuscripta Math. 110 (2003) no. 1, p. 33-44 | DOI | MR | Zbl
[BP05] - “Wonderful varieties of type ”, Represent. Theory 9 (2005), p. 578-637 | DOI | MR | Zbl
[Bra07] - “Wonderful varieties of type ”, Represent. Theory 11 (2007), p. 174-191 | DOI | MR | Zbl
[Bri10] - “Introduction to actions of algebraic groups”, in Actions hamiltoniennes: invariants et classification, vol. 1, Centre Mersenne, Grenoble, 2010, p. 1-22, https://ccirm.centre-mersenne.org/volume/CCIRM_2010__1/ | Zbl
[CF14] - “Wonderful varieties: a geometrical realization”, 2014 | arXiv
[CLS11] - Toric varieties, Graduate Studies in Math., vol. 124, American Mathematical Society, Providence, RI, 2011 | DOI | MR | Zbl
[CRX19] - “Families of commuting automorphisms, and a characterization of the affine space”, 2019 | arXiv
[Dem70] - “Sous-groupes algébriques de rang maximum du groupe de Cremona”, Ann. Sci. École Norm. Sup. (4) 3 (1970), p. 507-588 | DOI | Numdam | Zbl
[FK] - “On the geometry of the automorphism groups of affine varieties” | arXiv
[Fre17] - Algebraic theory of locally nilpotent derivations, Encyclopaedia of Math. Sciences, vol. 136, Springer-Verlag, Berlin, 2017 | DOI | MR | Zbl
[Ful93] - Introduction to toric varieties, Annals of Math. Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993 | DOI | MR | Zbl
[Gro61] - “Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes”, Publ. Math. Inst. Hautes Études Sci. 8 (1961), p. 1-222 | Numdam
[Gro97] - Algebraic homogeneous spaces and invariant theory, Lect. Notes in Math., vol. 1673, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[Hum75] - Linear algebraic groups, Graduate Texts in Math., vol. 21, Springer-Verlag, New York-Heidelberg, 1975 | MR | Zbl
[Kal05] - “On a theorem of Ax”, Proc. Amer. Math. Soc. 133 (2005) no. 4, p. 975-977 | DOI | MR | Zbl
[Kno91] - “The Luna-Vust theory of spherical embeddings”, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), p. 225-249 | Zbl
[Kno93] - “Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins”, Math. Z. 213 (1993) no. 1, p. 33-36 | DOI | MR | Zbl
[Kra84] - Geometrische Methoden in der Invariantentheorie, Aspects of Math., vol. D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 | DOI | Zbl
[Kra17] - “Automorphism groups of affine varieties and a characterization of affine -space”, Trans. Moscow Math. Soc. 78 (2017), p. 171-186 | DOI | MR | Zbl
[KRvS19] - “Is the affine space determined by its automorphism group?”, Internat. Math. Res. Notices (2019), article ID rny281, 21 pages | DOI | Zbl
[Lie10] - “Affine -varieties of complexity one and locally nilpotent derivations”, Transform. Groups 15 (2010) no. 2, p. 389-425 | DOI | MR | Zbl
[Los09a] - “Proof of the Knop conjecture”, Ann. Inst. Fourier (Grenoble) 59 (2009) no. 3, p. 1105-1134 | DOI | Numdam | MR | Zbl
[Los09b] - “Uniqueness property for spherical homogeneous spaces”, Duke Math. J. 147 (2009) no. 2, p. 315-343 | DOI | MR | Zbl
[LRU19] - “Characterization of affine surfaces with a torus action by their automorphism groups”, 2019 | arXiv
[Lun01] - “Variétés sphériques de type ”, Publ. Math. Inst. Hautes Études Sci. (2001) no. 94, p. 161-226 | DOI | Numdam | MR | Zbl
[Lun07] - “La variété magnifique modèle”, J. Algebra 313 (2007) no. 1, p. 292-319 | DOI | MR | Zbl
[LV83] - “Plongements d’espaces homogènes”, Comment. Math. Helv. 58 (1983) no. 2, p. 186-245 | DOI | Zbl
[Ram64] - “A note on automorphism groups of algebraic varieties”, Math. Ann. 156 (1964), p. 25-33 | DOI | MR | Zbl
[Reg17] - “Characterization of -dimensional normal affine -varieties”, 2017 | arXiv
[Ros56] - “Some basic theorems on algebraic groups”, Amer. J. Math. 78 (1956), p. 401-443 | DOI | MR | Zbl
[Sha94] - Algebraic geometry. IV (I. R. Shafarevich, ed.), Encyclopaedia of Math. Sciences, vol. 55, Springer-Verlag, Berlin, 1994 | DOI | MR
[Tim11] - Homogeneous spaces and equivariant embeddings, Encyclopaedia of Math. Sciences, vol. 138, Springer, Heidelberg, 2011 | DOI | MR | Zbl
Cité par Sources :