Maximal determinants of Schrödinger operators on bounded intervals
; ;
Journal de l'École polytechnique — Mathématiques, Volume 7 (2020) , pp. 803-829.

We consider the problem of finding extremal potentials for the functional determinant of a one-dimensional Schrödinger operator defined on a bounded interval with Dirichlet boundary conditions under an L q -norm restriction (q1). This is done by first extending the definition of the functional determinant to the case of L q potentials and showing the resulting problem to be equivalent to a problem in optimal control, which we believe to be of independent interest. We prove existence, uniqueness and describe some basic properties of solutions to this problem for all q1, providing a complete characterisation of extremal potentials in the case where q is one (a pulse) and two (Weierstraß’s function).

On cherche les potentiels qui maximisent le déterminant fonctionnel d’un opérateur de Schrödinger sur un intervalle borné, avec conditions aux limites de Dirichlet et sous contrainte de norme L q (q1). On commence par étendre la définition du déterminant fonctionnel au cas de potentiels L q , en montrant que le problème de maximisation associé est équivalent à un problème de contrôle optimal. On prouve l’existence et l’unicité de solution de ce problème pour tout q1, et les principales propriétés de ces solutions sont étudiées. On donne une caractérisation complète des potentiels optimaux dans les cas q=1 (fonction créneau) et q=2 (fonction de Weierstraß).

Received: 2019-08-17
Accepted: 2020-04-28
Published online: 2020-05-18
DOI: https://doi.org/10.5802/jep.128
Classification: 11M36,  34L40,  49J15
Keywords: Functional determinant, extremal spectra, Pontryagin maximum principle, Weierstraß -function
@article{JEP_2020__7__803_0,
     author = {Clara L. Aldana and Jean-Baptiste Caillau and Pedro Freitas},
     title = {Maximal determinants of Schr\"odinger~operators on bounded intervals},
     journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques},
     publisher = {\'Ecole polytechnique},
     volume = {7},
     year = {2020},
     pages = {803-829},
     doi = {10.5802/jep.128},
     language = {en},
     url={jep.centre-mersenne.org/item/JEP_2020__7__803_0/}
}
Clara L. Aldana; Jean-Baptiste Caillau; Pedro Freitas. Maximal determinants of Schrödinger operators on bounded intervals. Journal de l'École polytechnique — Mathématiques, Volume 7 (2020) , pp. 803-829. doi : 10.5802/jep.128. https://jep.centre-mersenne.org/item/JEP_2020__7__803_0/

[1] A. A. Agrachev & Y. L. Sachkov - Control theory from the geometric viewpoint, Encyclopaedia of Math. Sciences, vol. 87, Springer-Verlag, Berlin, 2004 | Article | MR 2062547 | Zbl 1062.93001

[2] P. Albin, C. L. Aldana & F. Rochon - “Ricci flow and the determinant of the Laplacian on non-compact surfaces”, Comm. Partial Differential Equations 38 (2013) no. 4, p. 711-749 | Article | MR 3040681 | Zbl 1284.53060

[3] E. Aurell & P. Salomonson - “On functional determinants of Laplacians in polygons and simplicial complexes”, Comm. Math. Phys. 165 (1994) no. 2, p. 233-259 | Article | MR 1301847 | Zbl 0807.35102

[4] B. Bonnard & M. Chyba - Singular trajectories and their role in control theory, Math. & Applications, vol. 40, Springer-Verlag, Berlin, 2003 | MR 1996448 | Zbl 1022.93003

[5] D. Burghelea, L. Friedlander & T. Kappeler - “On the determinant of elliptic boundary value problems on a line segment”, Proc. Amer. Math. Soc. 123 (1995) no. 10, p. 3027-3038 | Article | MR 1301012 | Zbl 0848.34063

[6] G. Buttazzo, A. Gerolin, B. Ruffini & B. Velichkov - “Optimal potentials for Schrödinger operators”, J. Éc. polytech. Math. 1 (2014), p. 71-100 | Article | Numdam | Zbl 1306.49018

[7] L. Cesari - Optimization—theory and applications. Problems with ordinary differential equations, Applications of Math., vol. 17, Springer-Verlag, New York, 1983 | Article | Zbl 0506.49001

[8] E. A. Coddington & N. Levinson - Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955 | Zbl 0064.33002

[9] H. M. Edwards - Riemann’s zeta function, Dover Publications, Inc., Mineola, NY, 2001 | MR 1854455 | Zbl 1113.11303

[10] P. Freitas - “The spectral determinant of the isotropic quantum harmonic oscillator in arbitrary dimensions”, Math. Ann. 372 (2018) no. 3-4, p. 1081-1101 | Article | MR 3880293 | Zbl 1403.81013

[11] P. Freitas & J. Lipovsky - “The determinant of one-dimensional polyharmonic operators of arbitrary order”, 2020 | arXiv:2001.04703

[12] I. M. Gelfand & A. M. Jaglom - “Integration in functional spaces and its applications in quantum physics”, J. Math. Phys. 1 (1960), p. 48-69 | Article | MR 112604

[13] E. M. Harrell II - “Hamiltonian operators with maximal eigenvalues”, J. Math. Phys. 25 (1984) no. 1, p. 48-51, Erratum: Ibid. 27 (1986), no. 1, p. 419 | Article | MR 728885 | Zbl 0555.35098

[14] A. Henrot - Extremum problems for eigenvalues of elliptic operators, Frontiers in Math., Birkhäuser Verlag, Basel, 2006 | Zbl 1109.35081

[15] T. Kato - Perturbation theory for linear operators, Classics in Math., Springer-Verlag, Berlin, 1995 | Zbl 0836.47009

[16] M. Lesch - “Determinants of regular singular Sturm-Liouville operators”, Math. Nachr. 194 (1998), p. 139-170 | Article | MR 1653090 | Zbl 0924.58107

[17] M. Lesch & J. Tolksdorf - “On the determinant of one-dimensional elliptic boundary value problems”, Comm. Math. Phys. 193 (1998) no. 3, p. 643-660 | Article | MR 1624851 | Zbl 0920.47046

[18] S. Levit & U. Smilansky - “A theorem on infinite products of eigenvalues of Sturm-Liouville type operators”, Proc. Amer. Math. Soc. 65 (1977) no. 2, p. 299-302 | Article | MR 457836 | Zbl 0374.34016

[19] S. Minakshisundaram & Å. Pleijel - “Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds”, Canad. J. Math. 1 (1949), p. 242-256 | Article | MR 31145 | Zbl 0041.42701

[20] K. Okikiolu - “Critical metrics for the determinant of the Laplacian in odd dimensions”, Ann. of Math. (2) 153 (2001) no. 2, p. 471-531 | Article | MR 1829756 | Zbl 0985.58013

[21] B. Osgood, R. Phillips & P. Sarnak - “Extremals of determinants of Laplacians”, J. Funct. Anal. 80 (1988) no. 1, p. 148-211 | Article | MR 960228 | Zbl 0653.53022

[22] D. B. Ray & I. M. Singer - “R-torsion and the Laplacian on Riemannian manifolds”, Adv. Math. 7 (1971), p. 145-210 | Article | MR 295381 | Zbl 0239.58014

[23] B. Riemann - “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”, Monatsber. Berlin. Akad. (1859), p. 671-680, English translation in [9]

[24] A. M. Savchuk - “On the eigenvalues and eigenfunctions of the Sturm-Liouville operator with a singular potential”, Mat. Zametki 69 (2001) no. 2, p. 277-285 | Article | MR 1830226 | Zbl 0996.34023

[25] A. M. Savchuk & A. A. Shkalikov - “The trace formula for Sturm-Liouville operators with singular potentials”, Mat. Zametki 69 (2001) no. 3, p. 427-442 | Article | MR 1846840 | Zbl 1005.34077

[26] E. C. Titchmarsh - The theory of the Riemann zeta-function, The Clarendon Press, Oxford University Press, New York, 1986, Ed. by D. R. Heath-Brown | Zbl 0601.10026