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MAXIMAL DETERMINANTS OF

SCHRÖDINGER OPERATORS ON BOUNDED INTERVALS

by Clara L. Aldana, Jean-Baptiste Caillau & Pedro Freitas

Abstract. —We consider the problem of finding extremal potentials for the functional deter-
minant of a one-dimensional Schrödinger operator defined on a bounded interval with Dirichlet
boundary conditions under an Lq-norm restriction (q > 1). This is done by first extending the
definition of the functional determinant to the case of Lq potentials and showing the resulting
problem to be equivalent to a problem in optimal control, which we believe to be of independent
interest. We prove existence, uniqueness and describe some basic properties of solutions to this
problem for all q > 1, providing a complete characterisation of extremal potentials in the case
where q is one (a pulse) and two (Weierstraß’s ℘ function).

Résumé (Maximisation du déterminant d’opérateurs de Schrödinger sur un intervalle borné)
On cherche les potentiels qui maximisent le déterminant fonctionnel d’un opérateur de Schrö-

dinger sur un intervalle borné, avec conditions aux limites de Dirichlet et sous contrainte de
norme Lq (q > 1). On commence par étendre la définition du déterminant fonctionnel au cas
de potentiels Lq , en montrant que le problème de maximisation associé est équivalent à un
problème de contrôle optimal. On prouve l’existence et l’unicité de solution de ce problème
pour tout q > 1, et les principales propriétés de ces solutions sont étudiées. On donne une
caractérisation complète des potentiels optimaux dans les cas q = 1 (fonction créneau) et q = 2

(fonction ℘ de Weierstraß).
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Introduction

An important quantity arising in connection with self-adjoint elliptic operators is
the functional (or spectral) determinant. This has been applied in a variety of settings
in mathematics and in physics, and is based on the regularisation of the spectral zeta
function associated to an operator T with discrete spectrum. This zeta function is
defined by

(1) ζT (s) =

∞∑
n=1

λ−sn ,

where the numbers λn, n = 1, 2, . . . denote the eigenvalues of T and, for simplicity,
and without loss of generality from the perspective of this work as we will see below,
we shall assume that these eigenvalues are all positive and with finite multiplicities.
Under these conditions, and for many operators such as the Laplace or Schrödinger
operators, the above series will be convergent on a right half-plane, and may typically
be extended meromorphically to the whole of C. Furthermore, zero is not a singularity
and since, formally,

ζ ′T (0) = −
∞∑
n=1

log(λn),

the regularised functional determinant is then defined by

(2) det T = e−ζ
′
T (0),

where ζ ′T (0) should now be understood as referring to the meromorphic extension
mentioned above. This quantity appears in the mathematics and physics literature
in connection to path integrals, going back at least to the early 1960’s. Examples of
calculations of determinants for operators with a potential in one dimension may be
found in [5, 12, 18] and, more recently, for one-dimensional polyharmonic operators
of arbitrary order [11] and the harmonic oscillator in arbitrary dimension [10]. Some
of the regularising techniques for zeta functions which are needed in order to define
the above determinant were studied in [19], while the actual definition (2) was given
in [22]. Within such a context, it is then natural to study extremal properties of
these global spectral objects and this question has indeed been addressed by several
authors, mostly when the underlying setting is of a geometric nature [3, 21, 20, 2].

In this paper, we shall consider the problem of optimising the functional determi-
nant for a Schrödinger operator defined on a bounded interval together with Dirichlet
boundary conditions. More precisely, let TV be the operator associated with the
eigenvalue problem defined by

(3)
{
−φ′′ + V φ = λφ

φ(0) = φ(1) = 0,

where V is a potential in Lq[0, 1] (q > 1). For a given q and a positive constant A, we
are interested in the problem of optimising the determinant given by

(4) det TV −→ max, ‖V ‖q 6 A
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Maximal determinants of Schrödinger operators 805

where ‖·‖q denotes the norm on Lq[0, 1]. For smooth bounded potentials the determi-
nant of such operators is known in closed form and actually requires no computation
of the eigenvalues themselves. In the physics literature such a formula is sometimes
referred to as the Gelfand-Yaglom formula and a derivation may be found in [18],
for instance—see also [5]. More precisely, for the operator TV defined by (3) we have
det TV = 2y(1), where y is the solution of the initial value problem

(5)
{
−y′′ + V y = 0

y(0) = 0, y′(0) = 1.

We shall show that this expression for the determinant still holds for Lq potentials
and study the problem defined by (4). We then prove that (4) is well-posed and has
a unique solution for all q > 1 and positive A. In our first main result we consider
the L1 case where the solution is given by a piecewise constant function.

Theorem A (Maximal L1 potential). — Let q = 1. Then for any positive number A
the unique solution to problem (4) is the symmetric potential given by

VA(x) =
A

`(A)
χ`(A),

where χ`(A) denotes the characteristic function of the interval of length

`(A) =
A

(1 +
√

1 +A)2

centred at 1/2. The associated maximum value of the determinant is

max
‖V ‖1=A

det TV =
4

1 +
√

1 +A
exp
( A

1 +
√

1 +A

)
.

In the case of general q we are able to provide a similar result concerning existence
and uniqueness, but the corresponding extremal potential is now given as the solution
of a second order (nonlinear) ordinary differential equation.

Theorem B (Maximal Lq potential, q > 1). — For any q > 1 and any positive num-
ber A, there exists a unique solution to problem (4). This maximal potential is given by

VA =
q

4q − 2
q−1
√

Ψ,

where Ψ is the solution to

Ψ′′ − |Ψ|α + 2H = 0, α := q/(q − 1),

Ψ(0) = 0, Ψ′(0) = H − c(A, q).
Here c(A, q) := (1/2)(A(4q−2)/q)q, and H is a (uniquely defined) constant satisfying
H > c(A, q). The function Ψ is non-negative on [0, 1], and the maximal potential is
symmetric with respect to t = 1/2, smooth on (0, 1), strictly increasing on [0, 1/2],
with zero derivatives at t = 0 and t = 1 if 1 < q < 2, positive derivative at t = 0

(resp. negative derivative at t = 1) if q = 2, and vertical tangents at both endpoints if
q > 2.

J.É.P. — M., 2020, tome 7



806 C. L. Aldana, J.-B. Caillau & P. Freitas

The properties given in the above theorem provide a precise qualitative description
of the evolution of maximal potentials as q increases from 1 to +∞. Starting from
a rectangular pulse (q = 1), solutions become regular for q on (1, 2), having zero
derivatives at the endpoints. In the special case of L2, the maximising potential can be
written in terms of the Weierstraß elliptic function and has finite nonzero derivatives
at the endpoints. This marks the transition to potentials with singular derivatives at
the boundary for q larger than two, converging towards an optimal constant potential
in the limiting L∞ case.

Theorem C (Maximal L2 potential). — Let q = 2. Then for any positive number A
the unique solution to problem (4) is given by

VA(t) =
1

3
℘
(2t− 1

2
√

6
+ ω′

)
, t ∈ [0, 1],

where ℘ is the Weierstraß elliptic function associated to invariants

g2 = 24H, g3 = −6(H − 9A2/2)2,

and where ω′ is the corresponding imaginary half-period of the rectangular lattice of
periods. The corresponding (unique) value of H such that

℘
( 1

2
√

6
+ ω′

)
= 0

is in (9A2/2, h∗(A)), where h∗(A) is the unique root of the polynomial

128H3 − 9(H − 9A2/2)4

in (9A2/2,∞).

Concerning possible extensions of these results to higher dimensions, the under-
lying space geometry mentioned above may in fact impose certain restrictions that
will have to be taken into consideration when studying extremal problems for the
determinant. In dimensions higher than one, different issues from those in the more
standard situations analysed so far may also come into play. In particular, it is not
even guaranteed that, without further restrictions, such extrema do exist – compare
the results in the references above with the extremal problems related to the Laplace
and Schrödinger operators considered in [6, 13, 14], for instance. This would thus be
a first question to address when considering the problem of finding extremal poten-
tials in domains in higher dimensions, where furthermore no formula is known for the
determinant of a Schrödinger operator in general.

The paper is structured as follows. In the next section we show that the functional
determinant of Schrödinger operators with Dirichlet boundary conditions on bounded
intervals and with potentials in Lq is well-defined and we extend the formula from [18]
to this general case. The main properties of the determinant, namely boundedness
and monotonicity over Lq, are studied in Section 2. Having established these, we then
consider the optimal control problem (4) of maximising y(1) in (5) in Sections 3 and 4,
where the proofs of our main results Theorems A and B-C are given, respectively.

J.É.P. — M., 2020, tome 7



Maximal determinants of Schrödinger operators 807

1. The determinant of one-dimensional Schrödinger operators

We consider the eigenvalue problem defined by (3) associated to the operator TV

on the interval [0, 1] with potential V ∈ Lq[0, 1] for q > 1. Although no further restric-
tions need to be imposed on V at this point, for our purposes it will be sufficient to
consider V to be non-negative, as we will show in Proposition 9 below. This simplifies
slightly the definition of the associated zeta function given by (1) and thus also that of
the determinant. Hence, in the rest of this section we assume that V is a non-negative
potential.

For smooth potentials, and as was already mentioned in the Introduction, it is
known that the regularised functional determinant of TV is well-defined [5, 18], and
this has been extended to potentials with specific singularities [16, 17]. We shall now
show that this is also the case for general potentials in Lq[0, 1], for q > 1. We first
show that the zeta function associated with the operator TV as defined by (1) is
analytic at the origin and has as its only singularity in the half-plane Re(s) > −1/2

a simple pole at 1/2. This is done adapting one of the approaches originally used by
Riemann (see [23] and also [26, p. 21ff]). We then show that the method from [18] can
be used to prove that the determinant is still given by 2y(1), where y is the solution
of the initial value problem (5).

In order to show these properties of the determinant, it is useful to consider the
heat trace associated with TV , defined by

Tr(e−tTV ) =

∞∑
n=1

e−tλn .

Our first step is to show that the behaviour of the heat trace as t approaches zero for
any non-negative potential in Lq(0, 1) is the same as in the case of smooth potentials.

Proposition 1. — Let TV be the Schrödinger operator defined by problem (3) with
V ∈ Lq[0, 1], then

Tr(e−tTV ) =
1

2
√
πt
− 1

2
+ O(

√
t), as t −→ 0.

Proof. — For potentials which are the derivative of a function of bounded variation
it was proved in [25, §3] (see also [24, Th. 1]) that the eigenvalues behave asymptoti-
cally as
(6) λn = n2π2 + O(1), n = 1, 2, . . .

when n goes to ∞. For a potential in Lq we may thus assume the above asymptotics
which imply the existence of a positive constant c such that

π2n2 − c 6 λn 6 π2n2 + c

uniformly in n. For the zero potential the spectrum is given by π2n2 and the heat
trace associated with it becomes the Jacobi theta function defined by

ψ(t) =

∞∑
n=1

e−n
2π2t.

J.É.P. — M., 2020, tome 7



808 C. L. Aldana, J.-B. Caillau & P. Freitas

We are interested in the behaviour of the heat trace for potentials V for small pos-
itive t, and we will determine this behaviour by comparing it with that of ψ. For
simplicity, in what follows we write

ϕ(t) = Tr(e−tTV ).

We then have (
e−ct − 1

)
ψ(t) 6 ϕ(t)− ψ(t) 6

(
ect − 1

)
ψ(t),

and, since ψ satisfies the functional equation [26, p. 22]

ψ(t) =
1

2
√
πt
− 1

2
+

1√
πt

ψ
(
1/π2t

)
,

it follows that
1√
πt

ψ
(
1/π2t

)
+ (e−ct− 1)ψ(t) 6 ϕ(t)− 1

2
√
πt

+
1

2
6

1√
πt

ψ
(
1/π2t

)
+ (ect− 1)ψ(t).

Since 1√
πt
ψ
(
1/π2t

)
= O(e−C/t) for some C > 0 and

(ect − 1)ψ(t) = O(
√
t)

as t→ 0, it follows that

ϕ(t) =
1

2
√
πt
− 1

2
+ O(

√
t) as t −→ 0. �

Remark 2. — Note that although the heat trace for the zero potential ψ satisfies

ψ(t) =
1

2
√
πt
− 1

2
+ O(tα) as t −→ 0+

for any positive real number α, this will not be the case for general potentials, where
we can only ensure that the next term in the expansion will be of order

√
t.

We may now consider the extension of ζTV to a right half-plane containing the
origin.

Proposition 3. — The spectral zeta function associated with the operatorTV =−∆+V

with Dirichlet boundary conditions and potential V ∈ Lq[0, 1], q > 1, defined by (1)
may be extended to the half-plane Re(s) > −1/2 as a meromorphic function with a
simple pole at s = 1/2, whose residue is given by 1/(2π).

Proof. — We start from ∫ +∞

0

ts−1e−λntdt = Γ(s)λ−sn ,

which is valid for Re(s) > 0. Summing both sides in n from one to infinity yields

ζTV (s) =
1

Γ(s)

∫ +∞

0

ts−1ϕ(t)dt,

J.É.P. — M., 2020, tome 7



Maximal determinants of Schrödinger operators 809

where ϕ denotes the heat trace as above and the exchange between the sum and the
integral is valid for Re(s) > 1/2. By Proposition 1 we may write

ϕ(t) =
1

2
√
πt
− 1

2
+ f(t),

where f(t) = O(
√
t) as t approaches zero. Since, in addition, ϕ(t) = O(e−ct) as t

approaches infinity, for some c > 0, we have

ζTV (s) =
1

Γ(s)

[∫ 1

0

( 1

2
√
πt
− 1

2
+ f(t)

)
ts−1dt+

∫ +∞

1

ϕ(t)ts−1dt

]
=

1

Γ(s)

( π−1/2
2s− 1

− 1

2s

)
+ F (s),

which is valid for Re(s) > 1 and where F is an analytic function in the half-plane
Re(s) > −1/2. Due to the simple zero of 1/Γ(s) at zero we see that the expression in
the right-hand side is well-defined and meromorphic in the half-plane Re(s) > −1/2,
except for the simple pole at s = 1/2, showing that we may extend ζTV (s) to this
half-plane. The value of the residue is obtained by a standard computation. �

Remark 4. — It is clear from the proof that the behaviour on Re(s) 6 1/2 will depend
on the potential V . This may be seen from the simple example of a constant potential
V (x) ≡ a, for which the heat trace now satisfies

ϕ(t) = e−atψ(t).

From this we see that when a is nonzero ϕ(t) has an expansion for small t with terms
of the form t−(n−1)/2, for all non-negative integers n. These terms produce simple
poles at s = −(2n + 1)/2, n > 0 an integer, with residues depending on a. When a
vanishes we recover ζTV (s) = ζ(2s) and there are no poles other than the simple pole
at s = 1/2.

We are now ready to extend the result in [18] to the case of Lq potentials with q
greater than or equal to one.

Theorem 5. — The determinant of the operator TV = −∆ +V with Dirichlet bound-
ary conditions and potential V ∈ Lq[0, 1], q ∈ [1,+∞], is given by

(7) det TV = 2y(1),

where y is the solution of the initial value problem (5).

Proof. — We shall follow along the lines of the proof in [18, Th. 1] for smooth poten-
tials, which consists in building a one-parameter family of potentials, αV , connecting
the zero potential, for which the expression for the determinant may be computed
explicitly, with the potential V , and comparing the way these two quantities change.
More precisely, the main steps in this approach are as follows. For α ∈ [0, 1], we define

J.É.P. — M., 2020, tome 7



810 C. L. Aldana, J.-B. Caillau & P. Freitas

the family of operators Tα in L2[0, 1] by Tαu(α, t) := −u′′(α, t) + αV (t)u(α, t) and
consider the eigenvalue problem

(8)
{

Tαu(α, t) = λ(α)u(α, t)

u(α, 0) = 0, u(α, 1) = 0

with solutions λk(α), uk(α). We have that {Tα}α∈[0,1] is an analytic family in α

of type B in the sense of Kato. This follows from [15, Ex.VII.4.24], which covers a
more general case. Then, by [15, Rem.VII.4.22 & Th.VII.3.9], we obtain that the
eigenvalues λk(α) and its associated (suitably normalised) eigenfunction uk(α), for
any k > 1, are analytic functions of α. The corresponding ζ-function is given by

(9) ζTα(s) =

∞∑
j=1

λ−sj (α).

Although this series is only defined for Re(s) > 1/2, we know from Proposition 3 that
the spectral zeta function defined by it can be extended uniquely to a meromorphic
function on the half-plane Re(s) > −1/2 which is analytic at zero. We shall also define
y(α, t) to be the family of solutions of the initial value problemTαy(α, t) = 0

y(α, 0) = 0,
∂y

∂t
(α, 0) = 1.

By Proposition 7 in the next section the quantity 2y(α, 1) is well-defined for V ∈
Lq[0, 1]. The idea of the proof is to show that

(10) d

dα
log (det Tα) =

d

dα
log (y (α, 1))

for α ∈ [0, 1]. Since at α = 0, det T0 = 2y(0, 1), it follows that equality of the two
functions will still hold for α equal to one. The connection between the two derivatives
is made through the Green’s function of the operator. We shall first deal with the left-
hand side of identity (10), for which we need to differentiate the series defining the
spectral zeta function with respect to both α and s, and then take s = 0. We begin
by differentiating the series in equation (9) term by term with respect to α to obtain

(11) ∂

∂α
ζTα(s) = −s

∞∑
j=1

λ′j(α)

λs+1
j (α)

,

where the expression for the derivative of λj with respect to α is given by

λ′j(α) =

(∫ 1

0

V (x)u2j (α, x) dx

)(∫ 1

0

u2j (α, x) dx

)−1
.

For potentials in L1[0, 1] we have, as we saw above, that the corresponding eigen-
values of problem (8) satisfy the asymptotics given by (6), while the corresponding
eigenfunctions satisfy

uj(x) = sin(jπx) + rj(x),

J.É.P. — M., 2020, tome 7



Maximal determinants of Schrödinger operators 811

where rj(x) = O(1/j) uniformly in x — see [25, Rem. 2]. We thus have∫ 1

0

u2j (x) dx =

∫ 1

0

sin2(jπx) dx+ 2

∫ 1

0

rj(x) sin(jπx) dx+

∫ 1

0

r2j (x) dx

=
1

2
+ 2

∫ 1

0

rj(x) sin(jπx) dx+

∫ 1

0

r2j (x) dx =
1

2
+ O(1/j).

In a similar way, the numerator in the expression for λ′j(α) satisfies∫ 1

0

V (x)u2j (x) dx

=

∫ 1

0

V (x) sin2(jπx) dx+ 2

∫ 1

0

V (x)rj(x) sin(jπx) dx+

∫ 1

0

V (x)r2j (x) dx

=
1

2

∫ 1

0

V (x) [1− cos(2jπx)] dx+ O(1/j)

=
1

2

∫ 1

0

V (x) dx− 1

2

∫ 1

0

V (x) cos(2jπx) dx+ O(1/j)

=
1

2

∫ 1

0

V (x) dx+ o(1),

where the last step follows from the Riemann-Lebesgue Lemma. Combining the two
asymptotics we thus have

λ′j(α) =

∫ 1

0

V (x) dx+ o(1)

and so the term in the series (11) is of order O(j−2s−2). This series is thus absolutely
convergent (and uniformly convergent in α) for Re(s) > −1/2. This justifies the
differentiation term by term, and also makes it possible to now differentiate it with
respect to s to obtain

∂2

∂s∂α
ζTα(s) =

∞∑
j=1

[−1 + s log (λj(α))]
λ′j(α)

λs+1
j (α)

,

which is uniformly convergent for s in a neighbourhood of zero and α in [0, 1]. We thus
obtain

∂

∂α

∂

∂s
ζTα(s)

∣∣∣∣
s=0

= −
∞∑
j=1

λ′j(α)

λj(α)

and
d

dα
log [det Tα] =

∞∑
j=1

λ′j(α)

λj(α)
=

∞∑
j=1

λj(α)−1
∫ 1

0

uj(α, x)2

‖uj(α)‖2
V (t) dt

=

∫ 1

0

∞∑
k=1

λk(α)−1
uk(α, t)

‖uk(α)‖
uk(α, t)

‖uk(α)‖
V (t) dt

=

∫ 1

0

Gα(λ = 0, t, t)V (t) dt = Tr(T −1α V ).

J.É.P. — M., 2020, tome 7



812 C. L. Aldana, J.-B. Caillau & P. Freitas

Here, Gα(λ = 0, t, t) is the restriction to the diagonal of the Green’s function of the
boundary value problem (8) at λ = 0. The exchange between the integral and the
summation may be justified as above. We will now consider the right-hand side in (10).
Here we follow exactly the same computation as in [18]. For that we consider

z(α, t) =
∂y

∂α
(α, t).

Then z(α, t) is a solution to the initial value problem:Tαz(α, t) = −V (t)y(α, t)

z(α, 0) = 0,
∂z

∂t
(α, 0) = 0.

Using the variation of parameters formula, the solution of this problem is given by

z(α, t) =
1

W

[
y(α, t)

∫ t

0

y(α, r)ỹ(α, r)V (r) dr − ỹ(α, t)

∫ t

0

y(α, r)y(α, r)V (r) dr

]
,

where the Wronskian W = y(α, t)(∂ỹ/∂t)(α, t)− ỹ(α, t)(∂y/∂t)(α, t) is constant, and
ỹ(α, t) is the solution to the adjoint problemTαỹ(α, t) = 0

ỹ(α, 1) = 0,
∂ỹ

∂t
(α, 1) = 1.

Therefore we obtain

z(α, 1) = y(α, 1)
1

W

∫ 1

0

y(α, r)ỹ(α, r)V (r) dr = y(α, 1)

∫ 1

0

Gα(λ = 0, r, r)V (r) dr,

from which the identity (10) follows. Integrating this with respect to α yields

det Tα = cy(α, 1),

where c is a constant independent of α. Since det T0 = 2y(0, 1), the result follows. �

We shall finish this section with the example of the pulse potential, of which the
optimal potential in the L1 case is a particular case.

Example 6. — Let S = [x1, x2] ⊆ [0, 1] and m > 0. A long but straightforward
computation shows that the solution of

−y′′ +mχSy = 0, y(0) = 0, y′(0) = 1

is given by

y(t) =


t t ∈ [0, x1]

ae
√
mt + be−

√
mt t ∈ [x1, x2],

ct+ d t ∈ [x2, 1],

with

a =
1

2

(
x1 +

1√
m

)
e−
√
mx1 , b =

1

2

(
x1 −

1√
m

)
e
√
mx1 ,

c =
√
m
(
ae
√
mx2 − be−

√
mx2

)
, d = ae

√
mx2

(
1−
√
mx2

)
+ be−

√
mx2

(
1 +
√
mx2

)
.
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Maximal determinants of Schrödinger operators 813

Therefore the functional determinant of the operator T = −d2/dx2 + mχS with
Dirichlet boundary conditions is given by

det(∆ +mχR) = 2y(1) = e−
√
mx1e

√
mx2(x1 + 1/

√
m)(1 +

√
m−

√
mx2)

+ e
√
mx1e−

√
mx2(x1 − 1/

√
m)(1−

√
m+

√
mx2).

2. Some properties of the determinant

Let us denote D the operator mapping a potential V in Lq[0, 1] to DV := y(1),
where y is the solution of

−y′′ + V y = 0, y(0) = 0, y′(0) = 1.

Proposition 7. — The operator D is well-defined, Lipschitz on bounded sets of Lq
(hence continuous), and non-negative for non-negative potentials.

Proof. — For V ∈ Lq[0, 1], local existence and uniqueness holds by Carathéodory for
x′ = C(V )x with

(12) C(V ) :=

[
0 1

V 0

]
, x := (y, y′), x(0) = (0, 1).

Gronwall’s lemma implies that the solution is defined up to t = 1 and that

(13) |x(1)| 6 exp(1 + ‖V ‖1).

Let V1 and V2 in Lq[0, 1] be both of norm less or equal to A. Denote x1 and x2 the
corresponding solutions defined as in (12). One has

x′1 − x′2 = (C(V1)− C(V2))x1 + C(V2)(x1 − x2),

integrating one obtains

|x1(t)− x2(t)| 6 ‖x1‖∞‖V1 − V2‖1 +

∫ t

0

|C(V2(s))| · |x1(s)− x2(s)|ds.

By the integral version of Gronwall’s inequality we obtain

|x1(1)− x2(1)| 6 ‖x1‖∞‖V1 − V2‖1 exp(1 + ‖V2‖1)

6 e2(1+A)‖V1 − V2‖1,

implying that D is Lipschitz on bounded sets. Let finally V be non-negative, and as-
sume by contradiction that the associated y first vanishes at t > 0. As y(0) = y(t) = 0

and y′(0) > 0, the function must have a positive maximum at some τ ∈ (0, t). The
function y being continuously differentiable, y′(τ) = 0. Now,

y′(τ) = y′(0) +

∫ τ

0

y′′(t) dt,

while y′′ = V y > 0 since V > 0 and y > 0 on [0, τ ] ⊂ [0, t]. Then y′(τ) > 1,
contradicting the definition of τ . �
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Being Lipschitz on bounded sets, the operator D sends Cauchy sequences in Lq[0, 1]

to Cauchy sequences in R (Cauchy-continuity). So its restriction to the dense subset
of smooth functions has a unique continuous extension to the whole space. As this
restriction is equal to the halved determinant whose definition for smooth potentials
is recalled in Section 1 for the operator −∆ + V with Dirichlet boundary conditions,
DV is indeed the unique continuous extension of this determinant to Lq[0, 1] and, in
agreement with Theorem 5,

DV =
1

2
det TV .

We begin by proving a uniform upper bound on the maximum value of y(1) for the
control problem (5), and thus for the determinant of the original Schrödinger operator
given by (3).

Proposition 8. — Assume the potential V is in Lq[0, 1], q ∈ [1,∞]. Then

|DV − 1| 6
∞∑
m=1

‖V ‖m1
(m+ 1)m+1

.

Proof. — To prove the proposition it is enough to treat the case q = 1. The initial
value problem given by equation (5) is equivalent to the integral equation

y(t) = t+

∫ t

0

(t− s)V (s)y(s) ds.

We now build a standard iteration scheme defined by

(14)

ym+1(t) = t+

∫ t

0

(t− s)V (s)ym(s) ds,

y0(t) = t,

which converges to the solution of equation (5) — this is a classical result from the
theory of ordinary differential equations which may be found, for instance, in [8], and
which also follows from the computations below.

We shall now prove by induction that

(15) |ym(t)− ym−1(t)| 6 tm+1

(m+ 1)m+1

[∫ t

0

|V (s)|ds
]m

.

From (14) it follows that

y1(t)− y0(t) =

∫ t

0

(t− s)V (s)y0(s) ds,

and thus

|y1(t)− y0(t)| 6
∫ t

0

s(t− s)|V (s)|ds.

If we define the sequence of functions fm by

fm(s) = (t− s) sm+1

(m+ 1)m+1
,

J.É.P. — M., 2020, tome 7



Maximal determinants of Schrödinger operators 815

the above may be written as

|y1(t)− y0(t)| 6
∫ t

0

f0(s)|V (s)|ds.

Since f0(s) = s(t− s) 6 t2/4, we have that

|y1(t)− y0(t)| 6 t2

4

∫ t

0

|V (s)|ds,

and thus the induction hypothesis (15) holds for m = 1. Assume now that (15) holds.
It follows from (14) that

|ym+1(t)− ym(t)| =
∣∣∣∣∫ t

0

(t− s)V (s) [ym(s)− ym−1(s)] ds

∣∣∣∣
6
∫ t

0

(t− s) · |V (s)| · |ym(s)− ym−1(s)| ds,

and, using (15), we obtain

|ym+1(t)− ym(t)| 6
∫ t

0

(t− s)|V (s)| sm+1

(m+ 1)m+1

[∫ s

0

|V (r)|dr
]m

ds

=

∫ t

0

fm(s)|V (s)|
[∫ s

0

|V (r)|dr
]m

ds.

Differentiating fm(s) with respect to s and equating to zero, we obtain that this is
maximal for s = (m+ 1)t/(m+ 2), yielding

fm(s) 6
tm+2

(m+ 2)m+2
,

and so

|ym+1(t)− ym(t)| 6 tm+2

(m+ 2)m+2

[∫ t

0

|V (s)|ds
]m+1

as desired. Hence
∞∑
m=0

|ym+1(t)− ym(t)| 6
∞∑
m=0

tm+2

(m+ 2)m+2

[∫ t

0

|V (s)|ds
]m+1

.

On the other hand,
∞∑
m=0

[ ym+1(t)− ym(t) ] = −y0 + lim
m→∞

ym(t) = y(t)− t,

yielding

|y(t)− t| 6
∞∑
m=0

tm+2

(m+ 2)m+2

[∫ t

0

|V (s)|ds
]m+1

.

Taking t to be one finishes the proof. �

We shall finally present a proof of the fact that in order to maximise the determi-
nant it is sufficient to consider non-negative potentials. This is based on a comparison
result for linear second order ordinary differential equations which we believe to be
interesting in its own right, but which we could not find in the literature.
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816 C. L. Aldana, J.-B. Caillau & P. Freitas

Proposition 9. — Assume V is in Lq[0, T ], and let u and v be the solutions of the
initial value problems defined by{

−u′′(t) + |V (t)|u(t) = 0

u(0) = 0, u′(0) = 1
and

{
−v′′(t) + V (t)v(t) = 0

v(0) = 0, v′(0) = 1.

Then u(t) > v(t) for all 0 6 t 6 T .

Proof. — The proof is divided into two parts. We first show that if the potential V
does not remain essentially non-negative, then u must become larger than v at some
point, while never being smaller for smaller times. We then prove that once u is strictly
larger than v for some time t1, then it must remain larger for all t greater than t1.

We first note that solutions of the above problems are at least in AC2[0, T ], and thus
continuously differentiable on [0, T ]. Furthermore, u is always positive, since u(0) = 0,
u′(0) = 1 and u′′(0) > 0. Let now w = u − v. While V remains essentially non-
negative, v also remains positive and w vanishes identically. Assume now that there
exists a time t0 such that for t in (0, t0) the potential V is essentially non-negative
and on arbitrarily small positive neighbourhoods of t0 V takes on negative values
on sets of positive measure. Then w′′(t) = |V (t)|w(t) + [|V (t)| − V (t)] v close to t0
(and zero elsewhere on these small neighbourhoods of t0). Since w(t0) = w′(t0) = 0

and w′′ is non-negative and strictly positive on sets of positive measure contained
in these neighbourhoods, w will take on positive values on arbitrarily small positive
neighbourhoods of t0. Define now z(t) = (u2(t)− v2(t))/2. Then

z′(t) = u(t)u′(t)− v(t)v′(t),

z′′(t) = [u′(t)]
2

+ u(t)u′′(t)− [v′(t)]
2 − v(t)v′′(t)and

= [u′(t)]
2 − [v′(t)]

2
+ |V (t)|z(t) + [|V (t)| − V (t)] v2.

From the previous discussion above, we may assume the existence of a positive value t1
such that both z and z′ are positive at t1 (and thus in a small positive neighbourhood
(t1, t1 + δ)), while z is non-negative for all t in (0, t1). Letting

a(t) =
[u′(t)]2 − [v′(t)]2

u(t)u′(t)− v(t)v′(t)
,

which is well-defined and bounded on [t1, t1 + δ), we may thus write

z′′(t) = a(t)z′(t) + |V (t)|z(t) + [|V (t)| − V (t)] v2 > a(t)z′(t),

for t in [t1, t1 + δ). Then z′′(t)− a(t)z′(t) > 0 and upon multiplication by

e
−
∫ t
t1
a(s)ds

and integration between t1 and t we obtain

z′(t) > e
∫ t
t1
a(s)ds

z′(t1).

This yields the positivity of z′(t) (and thus of z(t)) for t greater than t1. Combining
this with the first part of the proof shows that z is never negative for positive t. �
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Henceforth, we restrict the search for maximising potentials to non-negative func-
tions. Besides, it is clear from the proof that the result may be generalised to the
comparison of two potentials V1 and V2 where V1 > V2, provided V1 is non-negative.

3. Maximization of the determinant over L1 potentials

By virtue of the analysis of the previous sections, problem (4) for q = 1 can be
recast as the following optimal control problem:

y(1) −→ max,(16)
−y′′ + V y = 0, y(0) = 0, y′(0) = 1,(17)

over all non-negative potentials V > 0 in L1[0, 1] such that

(18)
∫ 1

0

V (t) dt 6 A

for fixed positive A. In order to prove Theorem A, a family of auxiliary problems is
introduced: in addition to (17), the potentials are assumed essentially bounded and
such that

(19) 0 6 V (t) 6 B, a.a. t ∈ [0, 1],

for a fixed positive B. To avoid the trivial solution V ≡ B, we suppose B > A and
henceforth study the properties of problem (16)–(19).

Setting x := (y, y′, x3), the auxiliary problem can be rewritten −x1(1) → min

under the dynamical constraints

x′1 = x2,(20)
x′2 = V x1,(21)
x′3 = V,(22)

V measurable valued in [0, B], and the boundary conditions x(0) = (0, 1, 0), free x1(1)

and x2(1), x3(1) 6 A.

Proposition 10. — Every auxiliary problem has a solution.

Proof. — The set of admissible controls is obviously nonempty, the control is valued
in a fixed compact set, and the field of velocities

{(x2, V x1, V ), V ∈ [0, B]} ⊂ R3

is convex for any x ∈ R3; according to Filippov Theorem [1], existence holds. �

Let V be a maximising potential for (16)–(19), and let x = (y, y′, x3) be the
associated trajectory. According to Pontryagin maximum principle [1], there exists a
nontrivial pair (p0, p) 6= (0, 0), p0 6 0 a constant and p : [0, 1] → (R3)∗ a Lipschitz
covector function such that, a.e. on [0, 1],

(23) x′ =
∂H

∂p
(x, V, p), p′ = −∂H

∂x
(x, V, p),
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and

(24) H(x(t), V (t), p(t)) = max
v∈[0,B]

H(x(t), v, p(t)),

where H is the Hamiltonian function

H(x, V, p) := pf(x, V ) = p1x2 + (p2x1 + p3)V.

(There f(x, V ) denotes the dynamics (20)–(22) in compact form.) Moreover, in ad-
dition to the boundary conditions on x, the following transversality conditions hold:
p1(1) = −p0, p2(1) = 0, and p3(1) 6 0 with complementarity

(x3(1)−A) p3(1) = 0.

As is clear from (23), p3 is constant, p′1 = −p2 and

(25) − p′′2 + V p2 = 0.

The dynamical system (20)–(22) is bilinear in x and V ,

x′ = F0(x) + V F1(x), F0(x) =

x20
0

 , F1(x) =

 0

x1
1

 ,
so

H = H0 + V H1 with H0(x, p) = pF0(x), H1(x, p) = pF1(x).

Let Φ(t) := H1(x(t), p(t)) be the evaluation of H1 along the extremal (x, V, p); it is
a Lipschitz function, and the maximisation condition (24) implies that V (t) = 0

when Φ(t) < 0, V (t) = B when Φ(t) > 0. If Φ vanishes identically on some interval
of nonempty interior, the control is not directly determined by (24) and is termed
singular. Subarcs of the trajectory corresponding to V = 0, V = B and singular
control, are labelled γ0, γ+ and γs, respectively. Differentiating once, one obtains
Φ′(t) = H01(x(t), p(t)), where H01 = {H0, H1} is the Poisson bracket of H0 and H1;
Φ is so W 2,∞ and, differentiating again,

(26) Φ′′ = H001 + V H101

with length-three brackets H001 = {H0, H01}, H101 = {H1, H01}. Computing,

H01 = −p1x1 + p2x2, H001 = −2p1x2, H101 = 2p2x1.

In particular, using the definition of H,

(27) Φ′′ − 4V Φ = −2(H + p3V ), a.a. t ∈ [0, 1],

where H and p3 are constant along any extremal.
There are two possibilities for extremals depending on whether p′2(1) = p0 is zero

or not (so-called abnormal or normal cases).

Lemma 11. — The cost multiplier p0 is negative and one can set p′2(1) = −1.
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Proof. — Suppose by contradiction that p0 = 0. Then p2(1) = p′2(1) = 0, so (25)
implies that p2 (and p1) are identically zero. Since (p0, p) 6= (0, 0), p3 must be negative
so Φ = p2x1 + p3 = p3 < 0 and V is identically zero on [0, 1], which is impossible
(the zero control is admissible but readily not optimal). Hence p0 is negative, and one
can choose p0 = −1 by homogeneity in (p0, p). �

Lemma 12. — The constraint
∫ 1

0
V dt 6 A is strongly active (p3 < 0).

Proof. — Assume by contradiction that p3 = 0. Since −x′′1 +V x1 = 0 with x1(0) = 0,
x′1(0) = 1 and V > 0, x1 is non-negative on [0, 1] (see Proposition 7). Integrating, one
has x1(t) > t on [0, 1]. Symmetrically, −p′′2 + V p2 = 0 with p2(1) = 0, p′2(1) = −1,
so one gets that p2(t) > 1 − t on [0, 1]. Now, p3 = 0 implies Φ = p2x1 > t(1 − t), so
Φ > 0 on (0, 1): V = B a.e., which is impossible since B > A. �

As a result, since Φ(0) = Φ(1) = p3, Φ is negative in the neighbourhood of t = 0+

and t = 1−, so an optimal trajectory starts and terminates with γ0 arcs.

Lemma 13. — There is no interior γ0 arc.

Proof. — If such an interior arc existed, there would exist t ∈ (0, 1) such that Φ(t) = 0

and Φ′(t) 6 0 (Φ′(t) > 0 would imply Φ > 0 in the neighbourhood of t+, contradicting
V = 0); but then Φ′′ = −2H < 0 for t > t would result in Φ < 0 for t > t, preventing Φ

for vanishing again before t = 1. �

Lemma 14. — If H + p3B < 0, there is no interior γ+ arc.

Proof. — By contradiction again: there would exist t ∈ (0, 1) such that Φ(t) = 0 and
Φ′(t) > 0 (Φ′(t) < 0 would imply Φ < 0 in the neighbourhood of t+, contradicting
V = B); along γ+,

Φ′′ − 4BΦ = −2(H + p3B) > 0,

so

(28) Φ =
H + p3B

2B
(1− ch(2

√
B(t− t))) +

Φ′(t)

2
√
B

sh(2
√
B(t− t)),

and Φ > 0 if t > t, preventing Φ for vanishing again before t = 1. �

Along a singular arc, Φ ≡ 0 so (26) allows to determine the singular control
provided H101 6= 0 (“order one” singular). A necessary condition for optimality
(the Legendre-Clebsch condition) is that H101 > 0 along such an arc; order one
singular arcs such that H101 > 0 are called hyperbolic [4].

Lemma 15. — Singulars are of order one and hyperbolic; the singular control is con-
stant and equal to −H/p3.

Proof. — Φ = p2x1 + p3 ≡ 0 implies H101 = 2p2x1 = −2p3 > 0, so any singular is of
order one and hyperbolic; (27) then tells H + p3V = 0, hence the expression of the
singular control. �

Proposition 16. — A maximising potential is piecewise constant.
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Proof. — According to the maximum principle, the trajectory associated with an
optimal potential is the concatenation of (possibly infinitely many) γ0, γ+ and γs
subarcs. By Lemma 13, there are exactly two γ0 arcs; if V has an infinite number
of discontinuities, it is necessarily due to the presence of infinitely many switchings
between γ+ and γs subarcs with H + p3B < 0 (this quantity must be nonpositive to
ensure admissibility of the singular potential, V = −H/p3 6 B, and even negative
since otherwise γ+ and γs would be identical, generating no discontinuity at all).
By Lemma 14, there is no γ+ subarc if H + p3B < 0. There are thus only finitely
many switchings of the potential between the constant values 0, B and −H/p3. �

Corollary 17. — An optimal trajectory is either of the form γ0γ+γ0, or γ0γsγ0.

Proof. — There is necessarily some minimum t ∈ (0, 1) such that Φ(t) = 0 (other-
wise V ≡ 0 which would contradict the existence of solution). There are two cases,
depending on the order of the contact of the extremal with H1 = 0.

(i) Φ′(t) 6= 0 (“regular switch” case). Having started with Φ(0) = p3 < 0, necessar-
ily Φ′(t) > 0 and there is a switch from V = 0 to V = B at t. According to Lemma 14,
this is only possible if H + p3B > 0. Along γ+, Φ is given by (28) and vanishes again
at some t̃ ∈ (t, 1) as the trajectory terminates with a γ0 subarc. Since H + p3B > 0

and Φ′(t) < 0, Φ′(t̃) is necessarily negative, so Φ < 0 for t > t̃ and the structure is
γ0γ+γ0.

(ii) Φ′(t) = 0. The potential being piecewise continuous, Φ′′ has left and right
limits at t (see (26)). Having started with V = 0, Φ′′(t−) = −2H is negative; assume
the contact is of order two, that is Φ′′(t+) 6= 0 (“fold” case, [4]). Clearly, Φ′′(t+) < 0 is
impossible as it would imply Φ < 0 for t > t (and hence V ≡ 0 on [0, 1]). So Φ′′(t+) > 0

(“hyperbolic fold”, ibid.), and there is a switching from V = 0 to V = B. Along γ+,

Φ =
H + p3B

2B

(
1− ch(2

√
B(t− t))

)
by (28) again, and H + p3B must be negative for Φ′′(t+) > 0 to hold. Then Φ > 0

for t > t, which contradicts the termination by a γ0 subarc. So Φ′′(t+) = 0, that is V
jumps from 0 to singular, V = −H/p3, at t. As it must be admissible, H + p3B 6 0.
If H + p3B = 0, the singular control is saturating, V = B, and γ+ and γs arcs
are identical; there cannot be interior γ0 (Lemma 13), so the structure is γ0γsγ0
(= γ0γ+γ0, in this case). Otherwise, H + p3B < 0 and Lemma 14 asserts that γsγ+
connections are not possible: The structure is also γ0γsγ0. �

Proof of Theorem A. — The proof is done in three steps: first, existence and unique-
ness are obtained for each auxiliary problem (17)–(19) with bound V 6 B on the
potential, B large enough; then existence for the original problem (16)–(19) with
unbounded control is proved. Finally, uniqueness is obtained.

(i) As a result of Corollary 17, each auxiliary problem can be reduced to the fol-
lowing finite dimensional question: given B > A > 0, maximise y(1) = y(s, `) with
respect to s ∈ [0, 1], ` 6 2 min{s, 1 − s} and ` > A/B, where y(s, `) is the value at
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t = 1 of the solution of (17) generated by the potential equal to the characteristic
function of the interval [s − `/2, s + `/2] times A/` (the constraint (18) is active by
virtue of Lemma 12). Computing,

y(s, `) = (1− `) ch
√
A`+A[(s− s2) + (1/A− 1/2)`+ `2/4] shc

√
A`,

where shc(z) := (1/z) sh z. The function to be maximised is continuous on the compact
triangle defining the constraints on (s, `), so one retrieves existence. As we know that
an optimal arc must start and end with γ0 arcs, the solution cannot belong to the
part of the boundary corresponding to ` = 2 min{s, 1 − s}, extremities included; as
a result, ∂y/∂s must be zero at a solution, so s = 1/2 (potential symmetric with
respect to t = 1/2). Since one has y(s = 1/2, `) = (1+A/4)+A2`/24+o(`), too small
a ` cannot maximise the function; so, for B large enough, the point on the boundary
` = A/B cannot be solution, and one also has that

∂y

∂`
(s, `)|s=1/2 =

(A(`− 1)2 − 4`)(ch
√
A`− shc

√
A`)

8`

must vanish. As ` < 1, one gets ` = `(A) := A/(1 +
√

1 +A)2, hence the expected
value for the maximum determinant.

(ii) The mapping V 7→ −y(1) is continuous on L1[0, 1] by Proposition 7. Let C :=

{V ∈ L1[0, 1] | ‖V ‖1 6 A, V > 0 a.e.}; it is closed and nonempty. For k ∈ N, k > A

(A > 0 fixed), consider the sequence of auxiliary problems with essential bounds
V 6 k. For k large enough, the solution does not depend on k according to point (i),
hence the stationarity of the sequence of solutions to the auxiliary problems. The
sequence of subsets C ∩ {V ∈ L∞[0, 1] | ‖V ‖∞ 6 Bk} is increasing and dense in C, so
the lemma below ensures existence for the original problem.

Lemma 18. — Let f : E → R be continuous on a normed space E, and consider

f(x) −→ min, x ∈ C nonempty closed subset of E.

Assume that there exists an increasing sequence (Ck)k of subsets of C such that
(i)
⋃
k Ck is dense in C,

(ii) for each k ∈ N, there is a minimiser xk of f in Ck.
Then, if (xk)k is stationary, limk→∞ xk is a minimiser of f on E.

Proof. — Let x be the limit of the stationary sequence (xk)k; assume, by contradic-
tion, that f := f(x) > infC f (including the case infC f = −∞). Then there is y ∈ C
such that f(y) < f . By density, there is k ∈ N and yk ∈ Ck such that ‖y − yk‖ 6 ε

where, by continuity of f at y, ε > 0 is chosen such that

‖x− y‖ 6 ε =⇒ |f(x)− f(y)| 6 d/2 (d := f − f(y) > 0);

then f(yk) 6 f(y) + d/2 < f , which is contradictory as k can be taken large enough
in order that xk = x. So f(x) = infC f , whence existence. �
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End of proof of Theorem A

(iii) The Pontryagin maximum principle can be applied to (16)–(18) with an opti-
mal potential V in L1[0, 1] since the function f(x, V ) defining the dynamics (20)–(22)
has a partial derivative uniformly (with respect to x) dominated by an integrable
function (see [7, §4.2.C, Rem. 5]):∣∣∣∂f

∂x
(x, V (t))

∣∣∣ 6 1 + |V (t)|, a.a. t ∈ [0, 1].

The Hamiltonian is unchanged, but the constraint on the potential is now just V > 0;
as a consequence, Φ = p2x1 + p3 must be nonpositive because of the maximisation
condition. Normality is proved as in Lemma 11 and p2(1) can be set to −1. Regarding
strong activation of the L1 constraint (p3 < 0) the argument at the beginning of the
proof of Lemma 12 immediately implies that p3 must be negative as Φ cannot be
positive, now. So Φ(0) = Φ(1) = p3 < 0 and V is equal to 0 in the neighbourhood of
t = 0+ and t = 1−. Because existence holds, Φ must first vanish at some t ∈ (0, 1)

(otherwise V ≡ 0 which is obviously not optimal); necessarily, Φ′(t) = 0. One verifies
as before that there cannot be interior γ0 subarcs, which prevents accumulation of
γ0γs or γsγ0 switchings. In particular, V must be piecewise constant and the right
limit Φ′′(t+) exists. The same kind of reasoning as in the proof of Corollary 17 rules
out the fold case Φ′′(t+) nonzero; so Φ′′(t+) = 0 and V switches from 0 to singular
at t. The impossibility of interior γ0 subarcs implies a γ0γsγ0 structure, which is the
solution obtained before. �

Remark 19. — This proves in particular that the generalised “impulsive” potential
equal to A times the Dirac mass at t = 1/2 is not optimal, whatever A > 0, the
combination γ0γsγ0 giving a better cost. More precisely, the optimal value of the
determinant is 1 + A/4 + A3/192 + o(A3), so it is asymptotic when A tends to zero
to the value obtained for the Dirac mass (equal to 1 +A/4, as is clear from (i) in the
proof above).

4. Maximization of the determinant over Lq potentials, q > 1

We begin the section by proving that maximising the determinant over L1 poten-
tials is estimated by maximising the determinant over Lq, letting q tend to one.
To this end, we first establish the following existence result. (Note that the proof is
completely different from the existence proof in Theorem A.) Let A > 0, and consider
the following family of problems for q in [1,∞]:

(29) DV =
1

2
det(−∆ + V ) −→ max, ‖V ‖q 6 A.

Proposition 20. — Existence holds for q ∈ [1,∞].

Proof. — The case q =∞ is obvious, while Theorem A deals with q = 1. Let then q
belong to (1,∞). By using Gronwall lemma as in (13), it is clear that D is bounded on
the closed ball of radius A of Lq[0, 1]. So the value of the problem is finite. Let (Vk)k
be a maximising sequence. As ‖Vk‖q 6 A for any k, up to taking a subsequence one
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can assume the sequence to be weakly-∗ converging in Lq ' (Lr)∗ (1/q + 1/r = 1)
towards some V . Clearly, ‖V ‖q 6 A. Let xk be associated with Vk according to (12).
The sequence (xk)k so defined is bounded and equicontinuous as, for any t 6 s in [0, 1],

|xk(t)− xk(s)| 6
∫ s

t

|C(Vk(τ))| · |xk(τ)|dτ

6 ‖xk‖∞‖1 + |Vk|‖q|t− s|1/r

6 e1+A(1 +A)|t− s|1/r

by Hölder inequality. Using Ascoli’s Theorem (and taking a subsequence), (xk)k con-
verges uniformly towards some x. As x(1) = limk xk(1) is equal to the value of the
problem, it suffices to check that x′ = C(V )x to conclude. Being a bounded se-
quence, (C(Vk))k is equicontinuous in Lq ' (Lr)∗, and (xk · χ|[0,t])k converges to-
wards x · χ|[0,t] in Lr for any t in [0, 1] (χ|[0,t] denoting the characteristic function of
the interval [0, t]). So

x(t) = x(0) + lim
k

∫ t

0

C(Vk(τ))xk(τ) dτ

= x(0) +

∫ t

0

C(V (τ))x(τ) dτ, t ∈ [0, 1],

which concludes the proof. �

Remark 21. — The same proof also gives existence for the minimisation problem in
Lq[0, 1], q ∈ (1,∞).

Proposition 22. — For a fixed A > 0, the value function

vq := sup
‖V ‖q6A

DV , q ∈ [1,∞],

is decreasing and vq tends to v1 when q → 1+.

Proof. — Let 1 6 q 6 r 6 ∞. For V in Lr[0, 1] ⊂ Lq[0, 1], ‖V ‖q 6 ‖V ‖r so the ra-
dius A ball of Lr is included in the radius A ball of Lq. As a result of the inclusion of
the admissible potentials, vq > vr. Because of monotonicity, the limit v := limq→1+ vq
exists, and v 6 v1. Moreover, as proved in Theorem A, the unique maximising poten-
tial V1 for q = 1 is actually essentially bounded so

D(A · V1/‖V1‖q) 6 vq
for any q > 1. By continuity of D on L1, the left-hand side of the previous inequality
tends to DV1

= v1 when q → 1+, and one conversely gets that v1 6 v. �

Fix q > 1 and A > 0. As in Section 3, we set x := (y, y′, x3) to take into account
the Lq constraint. Then problem (29) can be rewritten −x1(1) → min under the
dynamical constraints

x′1 = x2,(30)
x′2 = V x1,(31)
x′3 = V q,(32)
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and the boundary conditions x(0) = (0, 1, 0), free x1(1) and x2(1), x3(1) 6 Aq.
The potential is measurable and can be assumed non-negative thanks to the com-
parison result from Proposition 9. For such an Lq optimal potential V , the Pon-
tryagin maximum principle holds for the same reason as in the proof of Theorem A
(see step (iii)). So there exists a nontrivial pair (p0, p) 6= (0, 0), p0 6 0 a constant and
p : [0, 1]→ (R3)∗ a Lipschitz covector function such that, a.e. on [0, 1],

x′ =
∂H

∂p
(x, V, p), p′ = −∂H

∂x
(x, V, p),

and
H(x(t), V (t), p(t)) = max

v>0
H(x(t), v, p(t))

where the Hamiltonian H is now equal to

H(x, V, p) := pf(x, V )

= p1x2 + p2x1V + p3V
q.

(With f(x, V ) denoting the dynamics (30)–(32) in compact form.) In addition to the
boundary conditions on x, the following transversality conditions hold (note that p3
is again a constant): p1(1) = −p0, p2(1) = 0, and p3 6 0 with complementarity

(x3(1)−Aq) p3 = 0.

Although the system is not bilinear in (x, V ) anymore, the adjoint equation

(33) − p′′2 + V p2 = 0

holds unchanged, and one proves normality and strong activation of the Lq constraint
similarly to the case q = 1.

Lemma 23. — The cost multiplier p0 is negative.

Proof. — By contradiction: if p0 = 0, one has p2 (and p1) identically zero by (33),
so p3 cannot also be zero and must be negative. Then,H = p3V

q and the maximisation
condition implies V = 0 a.e. since V is non-negative. This is contradictory as the zero
control is admissible but clearly not optimal. �

We will not set p0 = −1 but will use the fact that p3 is also negative to use a
different normalisation instead.

Lemma 24. — The constraint
∫ 1

0
V q dt 6 Aq is strongly active (p3 < 0).

Proof. — Observe that, as in Lemma 12, p2x1 is positive on (0, 1). Now, assume by
contradiction that p3 = 0: then H = p1x2+p2x1V , which would prevent maximisation
of H on a nonzero measure subset. �

Define Ψ := p2x1. As we have just noticed, it is positive on (0, 1), and Ψ(0) =

Ψ(1) = 0 because of the boundary and transversality conditions (x1(0) = 0 and
p2(1) = 0, respectively).
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Proposition 25. — One has

Ψ′′ − |Ψ|α + 2H = 0, α = q/(q − 1),

Ψ(0) = 0, Ψ(1) = 0,

and

(34) V =
q

4q − 2
q−1
√

Ψ.

Proof. — Because Ψ is non-negative, it is clear from the maximisation condition that

V (t) = q−1

√
Ψ(t)

−qp3
for all t ∈ (0, 1). Since Ψ is an absolutely continuous function, we can differentiate
once to get

Ψ′ = −p1x1 + p2x2,

and iterate to obtain

Ψ′′ = 2(p2x1V − p1x2) = 2(VΨ− p1x2).

Using the fact that the HamiltonianH is constant along an extremal, and substituting
p1x2 by H−VΨ−p3V q and V by its expression, the following second order differential
equation is obtained for Ψ:

Ψ′′ − Bq
q−1
√
−p3

|Ψ|q/(q−1) + 2H = 0

with
Bq =

4

q1/(q−1)
− 2

qq/(q−1)
·

We can normalise p3 in order that −p3 = Bq−1q , which gives the desired differential
equation for Ψ, as well as the desired expression for V . �

Corollary 26. — The function Ψ (and so V ) is symmetric with respect to t = 1/2,
and Ψ′(0) = H − c(A, q) with

c(A, q) =
1

2

(A(4q − 2)

q

)q
.

Proof. — As a result of the previous proposition, the quantity
1

2
Ψ′2 − 1

α+ 1
Ψ |Ψ|α + 2HΨ

is constant. In particular, Ψ(0) = Ψ(1) = 0 implies that Ψ′2(0) = Ψ′2(1). Now,
Ψ′(0) = p2(0) > 0 and Ψ′(1) = −x1(1) < 0 (same estimates as in Lemma 12), so
Ψ′(1) = −Ψ′(0). Setting Ψ̂(t) := Ψ(1− t), one then checks that both Ψ and Ψ̂ satisfy
the same differential equation, with the same initial conditions: Ψ̂ = Ψ and symmetry
holds. Finally, since the Lq constraint is active (Lemma 24),

Aq =

∫ 1

0

|V |q dt =
( q

4q − 2

)q ∫ 1

0

|Ψ|α dt,
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and one can replace |Ψ|α by Ψ′′ + 2H to integrate and obtain

Ψ′(1)−Ψ′(0) + 2H =
(A(4q − 2)

q

)q
.

Hence the conclusion using Ψ′(0)−Ψ′(1) = 2Ψ′(0). �

According to what has just been proved, t 7→ (Ψ(t),Ψ′(t)) parametrises the curve
y2 = f(x) where f (that depends on H, A and q) is

(35) f(x) =
2

α+ 1
x|x|α − 4Hx+ (H − c(A, q))2 (α = q/(q − 1)).

Since Ψ′(0) = H − c(A, q) is positive, H > c(A, q) > 0 and f has a local minimum
(resp. maximum) at x = α

√
2H (resp. − α

√
2H).

Lemma 27. — On (c(A, q),∞), there exists a unique H, denoted h(A, q), such that
α
√

2H is a double root of f .

Proof. — Evaluating,

f(
α
√

2H) = (H − c(A, q))2 − 2α

α+ 1
(2H)1+1/α =: g(H).

As g(c(A, q)) < 0 and g(H) → ∞ when H → ∞ (note that 1 + 1/α < 2), g has one
zero in (c(A, q),∞), and only one in this interval as is clear inspecting g′′. �

Proposition 28. — The value H of the Hamiltonian must belong to the nonempty
open interval (c(A, q), h(A, q)).

Proof. — As a result of the previous lemma, for H > c(A, q) there are three pos-
sibilities for the curve y2 = f(x) parametrised by (Ψ,Ψ′) depending on whether
(i) H belongs to (c(A, q), h(A, q)), (ii) H = h(A, q), (iii) H > h(A, q). As is clear from
Figure 1, given the boundary conditions Ψ(0) = Ψ(1) = 0, Ψ′(0) > 0 and Ψ′(1) < 0,
case (iii) is excluded. Now, in case (ii), the point (α

√
2h(A, q), 0) is a saddle equilib-

rium point, which prevents connexions between (Ψ,Ψ′) = (0, h(A, q) − c(A, q)) and
(0, c(A, q)− h(A, q)). �

Corollary 29. — The function ψ (and so V ) is strictly increasing on [0, 1/2].

Proof. — The derivative of ψ is strictly positive for t in (0, 1/2) as is clear from
Figure 1, case (i). As a consequence, ψ is strictly increasing on [0, 1/2], and so is V
by virtue of (34). �

Proof of Theorem B. — Let q > 1 and A > 0 be given. Optimal potentials exist by
Proposition 20. Such an optimal potential must be given by Ψ according to Propo-
sition 25. By virtue of Proposition 28, this function Ψ is obtained as the solution
Ψ(·, H) of

(36) Ψ′′ − |Ψ|α + 2H = 0, Ψ(0) = 0, Ψ′(0) = H − c(A, q),

for some H in (c(A, q), h(A, q)) such that Ψ(1, H) = 0. For any H in this interval,
let us first notice that (Ψ,Ψ′) define a parametrisation of the bounded component of
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Figure 1. Portraits of the curve y2 = f(x) parametrised by (Ψ,Ψ′).
From left to right: case (i) H ∈ (c(A, q), h(A, q)) (the red part cor-
responds to t ∈ [0, 1]), (ii) H = h(A, q) (phase portrait in green for
other boundary conditions close to the saddle equilibrium), (iii) H >

h(A, q).

the curve y2 = f(x) (see Figure 1). Accordingly, both Ψ and Ψ′ are bounded, and the
solution Ψ(·, H) of (36) is defined globally, for all t ∈ R. Hence, the function H 7→
Ψ(1, H) is well-defined on (c(A, q), h(A, q)). Proving that this mapping is injective
will entail uniqueness of an H such that Ψ(1, H) = 0, and thus uniqueness of the
optimal potential for the given q > 1 and positive Lq bound A. Now, this mapping
is differentiable, and (∂Ψ/∂H)(1, H) = Φ(1) where Φ is the solution of the following
linearised differential equation (note that α = q/(q − 1) > 1):

Φ′′ − αΨα−1Φ + 2 = 0, Φ(0) = 0, Φ′(0) = 1.

The function Φ is non-negative in the neighbourhood of t = 0+. Let us denote τ ∈
(0,∞] the first possible zero of Φ, and τ ′ := min{τ, 1} (remember that Ψ > 0 on
(0, 1)). On (0, τ ′),

Φ′′ = αΨα−1Φ− 2 > −2,

so Φ > t(1 − t) on (0, τ ′] by integration: necessarily, τ > 1. Then Φ(1) > 0, so the
mapping H 7→ Ψ(1, H) is strictly increasing on (c(A, q), h(A, q)) and uniqueness is
proved. Regarding the regularity of the optimal potential, it is clear that Ψ is smooth
on (0, 1). Besides, Ψ′(0) is positive and it suffices to write, for small enough t > 0,

Ψ1/(q−1)(t)− 0

t− 0
= t(2−q)/(q−1)

(Ψ(t)

t

)1/(q−1)
to evaluate the limit when t→ 0+ and obtain the desired conclusion for the tangen-
cies. (Note the bifurcation at q = 2.) Same proof when t→ 1−. �

Proof of Theorem C. — In the particular case q = 2, one has α = 2 and t 7→
(ψ(t), ψ′(t)) parametrises the elliptic curve (compare with (35))

y2 =
2

3
x3 − 4Hx+ (H − c(A, 2))2.

We know that this elliptic curve is not degenerate for H in (c(A, 2), h(A, 2)). The
value c(A, 2) = 9A2/2 is explicit (Corollary 26), while h∗(A) := h(A, 2) is implicitly
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defined Lemma 27. Using the birational change of variables u = x, v = y
√

6, the
elliptic curve can be put in Weierstraß form, v2 = 4u3 − g2u− g3, with

(37) g2 = 24H, g3 = −6(H − 9A2/2)2.

For H in (c(A, 2), h(A, 2)), the real curve has two connected components in the plane
and is parametrised by z 7→ (℘(z), ℘′(z)), where ℘ is the Weierstraß elliptic function
associated to the invariants (37). Since g2 and g3 are real, and since the curve has
two components, the lattice 2ωZ+ 2ω′Z of periods of ℘ is rectangular: ω is real, ω′ is
purely imaginary, and the bounded component of the curve is obtained for z ∈ R+ω′.
The curve degenerates for H = h∗(A), so h∗(A) can also be retrieved as the unique
root in (9A2/2,∞) of the discriminant

∆ = g32 − 27g23 = 3 · 62(128H3 − 9(H − 9A2/2)4)

of the cubic. We look for a time parametrisation z(t) such that ℘(z(t)) = ψ(t) (since
u = x), and ℘′(z(t)) = ψ′(t)

√
6 (since v = y

√
6).

Lemma 30. — z(t) =
2t− 1

2
√

6
+ ω′.

Proof. — One has dz/dt = 1/
√

6. Moreover, there exists a unique ξ0 in (0, ω) such
that ℘(ξ0 + ω′) = 0 (with ℘′(ξ0 + ω′) < 0); by symmetry, ℘(−ξ0 + ω′) = 0 (with
℘′(−ξ0 + ω′) > 0), so ψ(0) = 0 (with ψ′(0) > 0) implies z(0) = −ξ0 + ω′, that is
z(t) = t/

√
6− ξ0 + ω′. As ψ(1) = 0, necessarily z(1) = ξ0 + ω′, so ξ0 = 1/(2

√
6). �

Recalling Proposition 25, one eventually gets that the maximal potential for q = 2 is

V (t) =
1

3
Ψ(t) =

1

3
℘
(2t− 1

2
√

6
+ ω′

)
for the unique H in (9A2/2, h∗(A)) such that Ψ(1) = 0, that is

℘
( 1

2
√

6
+ ω′

)
= 0.

This proves Theorem C. �
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