On donne une catégorification de l’évaluation symétrique des toiles en utilisant les mousses. On en déduit des théories homologiques d’entrelacs qui catégorifient les invariants quantiques d’entrelacs associés aux puissances symétriques de la représentation standard de . Ces théories sont obtenues dans un cadre équivariant. On montre qu’il existe des suites spectrales de l’homologie triplement graduée de Khovanov-Rozansky vers ces homologies symétriques. On donne aussi une interpretation des bimodules de Soergel en terme de mousses.
We provide a finite-dimensional categorification of the symmetric evaluation of -webs using foam technology. As an output we obtain a symmetric link homology theory categorifying the link invariant associated to symmetric powers of the standard representation of . The construction is made in an equivariant setting. We prove also that there is a spectral sequence from the Khovanov-Rozansky triply graded link homology to the symmetric one and provide along the way a foam interpretation of Soergel bimodules.
@article{JEP_2020__7__573_0, author = {Louis-Hadrien Robert and Emmanuel Wagner}, title = {Symmetric Khovanov-Rozansky link homologies}, journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques}, pages = {573--651}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.124}, language = {en}, url = {jep.centre-mersenne.org/item/JEP_2020__7__573_0/} }
Louis-Hadrien Robert; Emmanuel Wagner. Symmetric Khovanov-Rozansky link homologies. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020) , pp. 573-651. doi : 10.5802/jep.124. https://jep.centre-mersenne.org/item/JEP_2020__7__573_0/
[BHMV95] - “Topological quantum field theories derived from the Kauffman bracket”, Topology 34 (1995) no. 4, p. 883-927 | Article | MR 1362791 | Zbl 0887.57009
[Bla10] - “An oriented model for Khovanov homology”, J. Knot Theory Ramifications 19 (2010) no. 2, p. 291-312 | Article | MR 2647055 | Zbl 1195.57024
[BLS18] - “Koszul calculus”, Glasgow Math. J. 60 (2018) no. 2, p. 361-399, Addendum: Ibid. 61 (2019), no. 1, p. 249 | Article | MR 3784054 | Zbl 06861814
[BN05] - “Khovanov’s homology for tangles and cobordisms”, Geom. Topol. 9 (2005), p. 1443-1499 | Article | MR 2174270 | Zbl 1084.57011
[Bro82] Cohomology of groups, Graduate Texts in Math., vol. 87, Springer-Verlag, New York-Berlin, 1982 | Zbl 0584.20036
-[BW08] - “Categorification of the colored Jones polynomial and Rasmussen invariant of links”, Canad. J. Math. 60 (2008) no. 6, p. 1240-1266 | Article | MR 2462446 | Zbl 1171.57010
[Cau15] - “Clasp technology to knot homology via the affine Grassmannian”, Math. Ann. 363 (2015) no. 3-4, p. 1053-1115 | Article | MR 3412353 | Zbl 1356.57013
[Cau17] - “Remarks on coloured triply graded link invariants”, Algebraic Geom. Topol. 17 (2017) no. 6, p. 3811-3836 | Article | MR 3709661 | Zbl 1381.57010
[CH15] - “An exceptional collection for Khovanov homology”, Algebraic Geom. Topol. 15 (2015) no. 5, p. 2659-2707 | Article | MR 3426689 | Zbl 1348.57046
[CK08a] - “Knot homology via derived categories of coherent sheaves. I. The -case”, Duke Math. J. 142 (2008) no. 3, p. 511-588 | Article
[CK08b] - “Knot homology via derived categories of coherent sheaves. II: case”, Invent. Math. 174 (2008) no. 1, p. 165-232 | Article
[CK12] - “Categorification of the Jones-Wenzl projectors”, Quantum Topol. 3 (2012) no. 2, p. 139-180 | Article | MR 2901969 | Zbl 1362.57015
[CKW09] - “Regular sequences of symmetric polynomials”, Rend. Sem. Mat. Univ. Padova 121 (2009), p. 179-199 | Article | Numdam | MR 2542141 | Zbl 1167.05051
[Dow17] - “A categorification of the HOMFLY-PT polynomial with a spectral sequence to knot Floer homology”, 2017 | arXiv:1703.01401
[ES02] - “Some remarks on Chow varieties and Euler-Chow series”, J. Pure Appl. Algebra 166 (2002) no. 1, p. 67 -81 | Article | MR 1868539 | Zbl 1056.14005
[EST17] - “The Blanchet-Khovanov algebras”, in Categorification and higher representation theory, Contemp. Math., vol. 683, American Mathematical Society, Providence, RI, 2017, p. 183-226 | Article | MR 3611714 | Zbl 1419.57024
[ETW18] - “Functoriality of colored link homologies”, Proc. London Math. Soc. (3) 117 (2018) no. 5, p. 996-1040 | Article | MR 3877770 | Zbl 1414.57010
[FSS12] - “Categorifying fractional Euler characteristics, Jones-Wenzl projectors and -symbols”, Quantum Topol. 3 (2012) no. 2, p. 181-253 | Article | Zbl 1256.17006
[Ful07] - “Equivariant Cohomology in Algebraic Geometry”, Eilenberg lectures, 2007, https://people.math.osu.edu/anderson.2804/eilenberg/
[GGS18] - “Quadruply-graded colored homology of knots”, Fund. Math. 243 (2018) no. 3, p. 209-299 | Article | MR 3863060 | Zbl 06970463
[Kas04] - “Homology and cohomology of associative algebras — A concise introduction to cyclic homology”, Notes of a course given in the Advanced School on Non-commutative Geometry at ICTP, 2004, 37 pages, http://www-irma.u-strasbg.fr/~kassel/Kassel-ICTPnotes2004.pdf
[Kau13] Knots and physics, World Scientific, Singapore, 2013 | Zbl 1266.57001
-[Kho04] - “sl(3) link homology”, Algebraic Geom. Topol. 4 (2004), p. 1045-1081 | Article | MR 2100691 | Zbl 1159.57300
[Kho05] - “Categorifications of the colored Jones polynomial”, J. Knot Theory Ramifications 14 (2005) no. 1, p. 111-130 | Article | MR 2124557 | Zbl 1083.57019
[Kho07] - “Triply-graded link homology and Hochschild homology of Soergel bimodules”, Internat. J. Math. 18 (2007) no. 8, p. 869-885 | Article | MR 2339573 | Zbl 1124.57003
[KR08] - “Matrix factorizations and link homology. II”, Geom. Topol. 12 (2008) no. 3, p. 1387-1425 | Article | MR 2421131 | Zbl 1146.57018
[Kra10a] - “Equivariant -link homology”, Algebraic Geom. Topol. 10 (2010) no. 1, p. 1-32 | Article | MR 2580427
[Kra10b] - “Integral HOMFLY-PT and -link homology”, Internat. J. Math. Math. Sci. (2010), article ID 896879, 25 pages | Article | MR 2726290
[Lan02] Algebra, Graduate Texts in Math., vol. 211, Springer-Verlag, New York, 2002 | Article | Zbl 0984.00001
-[Lod98] Cyclic homology, Grundlehren Math. Wiss., vol. 301, Springer-Verlag, Berlin, 1998 | Article | MR 1600246 | Zbl 0885.18007
-[LQR15] - “Khovanov homology is a skew Howe 2-representation of categorified quantum ”, Algebraic Geom. Topol. 15 (2015) no. 5, p. 2517-2608 | Article
[Lus10] Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010, Reprint of the 1994 edition | Article | Zbl 1246.17018
-[Mac15] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015
-[MOY98] - “Homfly polynomial via an invariant of colored plane graphs”, Enseign. Math. (2) 44 (1998) no. 3-4, p. 325-360 | MR 1659228 | Zbl 0958.57014
[MS09] - “A combinatorial approach to functorial quantum knot invariants”, Amer. J. Math. 131 (2009) no. 6, p. 1679-1713 | Article
[MSV09] - “-link homology using foams and the Kapustin-Li formula”, Geom. Topol. 13 (2009) no. 2, p. 1075-1128 | Article
[MSV11] - “The -coloured HOMFLY-PT link homology”, Trans. Amer. Math. Soc. 363 (2011) no. 4, p. 2091-2124 | Article
[MW18] - “Categorified skew Howe duality and comparison of knot homologies”, Adv. Math. 330 (2018), p. 876-945 | Article | MR 3787560 | Zbl 06893251
[QR16] - “The foam 2-category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality”, Adv. Math. 302 (2016), p. 1251-1339 | Article | MR 3545951
[QR18] - “Sutured annular Khovanov-Rozansky homology”, Trans. Amer. Math. Soc. 370 (2018) no. 2, p. 1285-1319 | Article | MR 3729501 | Zbl 06814525
[QRS18] - “Annular evaluation and link homology”, 2018 | arXiv:1802.04131
[Ras15] - “Some differentials on Khovanov-Rozansky homology”, Geom. Topol. 19 (2015) no. 6, p. 3031-3104 | Article | MR 3447099 | Zbl 1419.57027
[Rou17] - “Khovanov-Rozansky homology and 2-braid groups”, in Categorification in geometry, topology, and physics, Contemp. Math., vol. 684, American Mathematical Society, Providence, RI, 2017, p. 147-157 | Article | MR 3611725 | Zbl 1365.57021
[Roz14] - “An infinite torus braid yields a categorified Jones-Wenzl projector”, Fund. Math. 225 (2014) no. 1, p. 305-326 | Article | MR 3205575 | Zbl 1336.57025
[RT16] - “Symmetric webs, Jones-Wenzl recursions, and -Howe duality”, Internat. Math. Res. Notices 2016 (2016) no. 17, p. 5249-5290 | Article
[RW16] - “Deformations of colored link homologies via foams”, Geom. Topol. 20 (2016) no. 6, p. 3431-3517 | Article
[RW17] - “A closed formula for the evaluation of -foams”, 2017, To appear in Quantum Topology | arXiv:1702.04140
[Soe92] - “The combinatorics of Harish-Chandra bimodules”, J. reine angew. Math. 429 (1992), p. 49-74 | Article | MR 1173115 | Zbl 0745.22014
[SS14] - “Categorified Jones-Wenzl projectors: a comparison”, in Perspectives in representation theory, Contemp. Math., vol. 610, American Mathematical Society, Providence, RI, 2014, p. 333-351 | Article | MR 3220633 | Zbl 1329.17014
[ST19] - “Webs and -Howe dualities in types BCD”, Trans. Amer. Math. Soc. 371 (2019) no. 10, p. 7387-7431 | Article | Zbl 07051088
[Sto08] - “Hochschild homology of certain Soergel bimodules”, 2008 | arXiv:0810.3578
[Str04] - “A structure theorem for Harish-Chandra bimodules via coinvariants and Golod rings”, J. Algebra 282 (2004) no. 1, p. 349-367 | Article | MR 2097586 | Zbl 1119.17004
[Sus07] Category O and sl(k) link invariants, Ph. D. Thesis, Yale University, Ann Arbor, MI, 2007 | arXiv:math/0701045 | MR 2710319
-[TVW17] - “Super -Howe duality and web categories”, Algebraic Geom. Topol. 17 (2017) no. 6, p. 3703-3749 | Article | Zbl 1422.57030
[Vaz08] A categorification of the quantum sl(N)-link polynomials using foams, Ph. D. Thesis, Universidade do Algarve, 2008 | arXiv:0807.2658
-[Web17] Knot invariants and higher representation theory, Mem. Amer. Math. Soc., vol. 250, no. 1191, American Mathematical Society, Providence, RI, 2017 | Article | MR 3709726 | Zbl 07000045
-[Wed19] - “Exponential growth of colored HOMFLY-PT homology”, Adv. Math. 353 (2019), p. 471-525 | Article | MR 3982970 | Zbl 07096528
[Wil11] - “Singular Soergel bimodules”, Internat. Math. Res. Notices 2011 (2011) no. 20, p. 4555-4632 | Article | MR 2844932 | Zbl 1236.18009
[Wu13] - “Colored Morton-Franks-Williams inequalities”, Internat. Math. Res. Notices 2013 (2013) no. 20, p. 4734-4757 | Article | MR 3118874 | Zbl 1302.57050
[Wu14] - “A colored homology for links in ”, Dissertationes Math. (Rozprawy Mat.) 499 (2014), p. 1-217 | Article
[WW17] - “A geometric construction of colored HOMFLYPT homology”, Geom. Topol. 21 (2017) no. 5, p. 2557-2600 | Article | MR 3687104 | Zbl 1427.17016
[Yon11] - “Quantum link invariant and matrix factorizations”, Nagoya Math. J. 204 (2011), p. 69-123 | Article | MR 2863366