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SYMMETRIC KHOVANOV-ROZANSKY LINK HOMOLOGIES

by Louis-Hadrien Robert & Emmanuel Wagner

Abstract. —We provide a finite-dimensional categorification of the symmetric evaluation of
slN -webs using foam technology. As an output we obtain a symmetric link homology theory
categorifying the link invariant associated to symmetric powers of the standard representation
of slN . The construction is made in an equivariant setting. We prove also that there is a spectral
sequence from the Khovanov-Rozansky triply graded link homology to the symmetric one and
provide along the way a foam interpretation of Soergel bimodules.

Résumé (Homologies d’entrelacs de Khovanov–Rozansky symétriques). — On donne une caté-
gorification de l’évaluation symétrique des toiles slN en utilisant les mousses. On en déduit des
théories homologiques d’entrelacs qui catégorifient les invariants quantiques d’entrelacs associés
aux puissances symétriques de la représentation standard de slN . Ces théories sont obtenues
dans un cadre équivariant. On montre qu’il existe des suites spectrales de l’homologie triple-
ment graduée de Khovanov-Rozansky vers ces homologies symétriques. On donne aussi une
interpretation des bimodules de Soergel en terme de mousses.
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574 L.-H. Robert & E. Wagner

1. Introduction

In [RW17], we provided a combinatorial evaluation of the foams underlying the
(exterior) colored Khovanov-Rozansky link homologies [CK08a, CK08b, MS09, Sus07,
MSV09, Wu14, Yon11]. See [MW18] for an overview. This formula was the keystone
to provide a down-to-earth treatment of these homologies, completely similar to the
one in Khovanov’s original paper [Kho05] or in his sl3 paper [Kho04]. Immediate
consequences of this formula were used by Ehrig-Tubbenhauer-Wedrich [ETW18] to
prove functoriality of these homologies.

The present paper grew up as an attempt to provide a similar formula for foams
underlying link homologies categorifying the Reshetikhin-Turaev invariants of links
corresponding to symmetric powers of the standard representation of quantum slN .
Providing manageable definitions of these link homologies is one of the keys of the
program aiming at categorifying quantum invariants of 3-manifolds.

The first such link homologies were provided by Khovanov for the colored Jones
polynomial [Kho05] (see as well [BW08]). There are nowadays many definitions of
link homologies, e.g. using categorified projectors [SS14, FSS12, CK12, Roz14, Cau15,
CH15] or using spectral sequences [Cau17] (see below for more details concerning this
last one). They also fit in the higher representations techniques developed by Webster
[Web17].

In addition, it has been conjectured in [GGS18] that there exist symmetries be-
tween the categorification of Reshetikhin-Turaev invariants arising from exterior pow-
ers and symmetric powers of the standard representation of quantum slN . It has been
proved by Tubbenhauer-Vaz-Wedrich at a decategorified level [TVW17]. Moreover the
work of Rose-Tubbenhauer [RT16], Queffelec-Rose [QR18] and Queffelec-Rose-Sartori
[QRS18] made clear that the planar graphical calculus underlying the description of
the symmetric powers of the standard representation of quantum slN is for a large
part similar to the one for to the exterior powers. In the exterior case it was devel-
oped by Murakami-Ohtsuki-Yamada [MOY98] (called in this paper the exterior MOY
calculus). Queffelec, Rose and Sartori proved that the invariants only differ by the
initializations on colored circles [QR18, QRS18]. They work in an annular setting. We
call it the symmetric MOY calculus.

An attentive reader may have noticed that we spoke about an attempt. Let us
explain why one cannot provide such a formula in the symmetric case at the level of
generality we had in [RW17] and therefore need to restrict the setup.

Foams are 2-dimensional CW-complexes which are naturally cobordisms between
trivalent graphs (see below for an example). The closed formula of [RW17] provided
a singular TQFT using the universal construction [BHMV95]. In this construction a
facet of the foam is decorated with elements of a Frobenius algebra which is attached
to the circle colored with the same color. Since the work of Bar-Natan and Khovanov
the existence of the non-degenerate pairing on the algebra is rephrased in a topological
type relation, known as the neck-cutting relation. Moreover, the TQFT feature also
forces the evaluation of a planar graph times a circle to be the dimension of the vector
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Symmetric Khovanov-Rozansky link homologies 575

space, the universal construction associates to the planar graph. We emphasized in
[RW17] that if such a construction works, not only circles are associated Frobenius
algebras but all planar graphs which have a symmetry axis. In addition, the co-unit,
for degree reasons, should be non-zero only on the maximal degree elements. All the
previous properties would be forced if one could obtain a closed formula providing a
categorification of the symmetric MOY calculus. Elementary computations show that
a functor categorifying the symmetric MOY calculus cannot satisfy such properties
essentially for degree reasons.

This is why we work in an annular setting. The drawback is that we cannot deal
with general link diagrams. The benefit is that we can use part of the technology
developed by Queffelec-Rose [QR18]. We obtain an evaluation in this restricted case
and apply a restricted universal construction to obtain the following result:

Theorem. — There exists a finite-dimensional categorification of the symmetric MOY
calculus yielding a categorification of the Reshetikhin-Turaev invariants of links cor-
responding to symmetric powers of the standard representation of quantum slN .

We call these link homologies symmetric (colored) Khovanov-Rozansky link ho-
mologies. The construction applies in particular to the case where the representation
is the standard representation of quantum slN . As shown on an example (Section 6.3),
it provides in this case a different categorification of the (uncolored)-slN -link invari-
ants than those of Khovanov and Khovanov-Rozansky. This observation is due to
Queffelec-Rose-Sartori; actually they discuss in [QRS18] how the annular link homolo-
gies constructed by Queffelec and Rose in [QR18] can be specialized to be invariant
under Reidemeister I and give link invariants in the 3-sphere.

Whereas the definition of the link homologies can be made only using the language
of foams and symmetric polynomial, the proof of invariance at the moment requires a
more algebraic treatment. This algebraic treatment uses Soergel bimodules and makes
explicit the comparison with the work of Cautis [Cau17].(1) Cautis constructs a dif-
ferential dN on the Hochschild homology of Soergel bimodules compatible with the
differential of the Rickard complex such that the total homology provides a categori-
fication of Reshetikhin-Turaev invariants of links corresponding to symmetric powers
of the standard representation of quantum slN . We provide here an explicit version
of the additional differential in an equivariant setting. The non-equivariant case is
studied by Cautis [Cau17] and investigate by Queffelec-Rose-Sartori [QRS18]. Hence,
one consequence of our proof of invariance is the following.

Theorem. — There exists a spectral sequence whose first page is isomorphic to
the (unreduced) colored triply graded link homology converging to the symmetric
Khovanov-Rozansky link homologies.

(1)This strategy of proof was discussed with H. Queffelec and D. Rose.
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576 L.-H. Robert & E. Wagner

We would like to stress that one can also see on the same picture the spectral
sequences converging to the (exterior) colored Khovanov-Rozansky link homology
[Ras15, Wed19]. Hence in some sense the only differential missing from the perspective
of the work of Dunfield-Gukov-Rasmussen is d0 which seems to be tackled by Dowlin
[Dow17].

The definition of the link homologies in this paper, starts with the links presented
as closures of braids, hence regarding functoriality questions it only makes sense to
consider braid-like movie moves. It is an immediate consequence of our definitions
and the work of Ehrig-Tubbenhauer-Wedrich concerning functoriality of the (exterior)
colored Khovanov-Rozansky link homologies that the following holds.

Theorem. — The symmetric Khovanov-Rozansky link homologies are functorial with
respect to braid-like movie moves.

One very important feature it that our construction works in an equivariant setting
and will allow with a little more work to define Rasmussen type invariants for braids.
In another direction, the fact that we are restricted to braid closures naturally sug-
gest that one will obtain Morton-Franks-Williams type inequalities in this case (see
Wu [Wu13]). The interactions between the two previous directions seem to us worth
pursuing.

To conclude, the construction is done over rationals and we think the following
question deserves attention.

Question. — Can one make the content of this paper work over integers?

The main obstruction so far is that in our proof of invariance we need to invert 2,
just like for the stabilization in the triply graded homology [Rou17, WW17]. The
strategy adopted by Krasner [Kra10b] might be a starting point.

Outline of the paper. — The paper is divided as follows. In the Section 2 we develop
the symmetric MOY calculus. In the Section 3 we provide the needed definitions
of the restricted class of foams we will be working with: disk-like and vinyl foams.
We also give an overview on foams and the closed formula of [RW17]. In Section 4
we explain how to think of Soergel bimodules as spaces of disk-like foams and part of
their homologies as vinyl foams. In Section 5 we define an evaluation of vinyl foams,
providing a categorification of the symmetric MOY calculus. The rest of the section
is devoted to rephrasing it in terms of an additional differential on the Hochschild
homology of Soergel bimodules. The algebraic description is used in Section 6 to prove
the invariance of the link homologies. The link homologies are constructed using the
well-known Rickard complexes.

There are as well three appendices. The first one deals with the representation
theory of quantum glN . The second is a reminder on Koszul resolutions and contains
some technical homological lemmas. The third one present some inspiring algebraic
geometry.
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2. MOY graphs

Definition 2.1 ([MOY98]). — An abstract MOY graph is a finite oriented graph
Γ = (VΓ, EΓ) with a labeling of its edges : ` : EΓ → N>0 such that:

– the vertices are either univalent (we call this subset of vertices the boundary of Γ

and denote it by ∂Γ) or trivalent (these are the internal vertices),
– the flow given by labels and orientations is preserved along the trivalent vertices,

meaning that every trivalent vertex follows one of the two models (merge and split
vertices) drawn here.

a+ b

a b

a+ b

a b

The univalent vertices are either sinks or sources. We call the first positive boundary
points and the later negative boundary points.

Remark 2.2
(1) Sometimes it will be convenient to allow edges labeled by 0. However, this

edges should be thought as “irrelevant”. We simply delete them to recover the original
definition.

(2) Each internal vertex has three adjacent edges. The label of one of these edges
is strictly greater than the other two. This edge is called the big edge relative to this
vertex. The two other edges are called the small edges relative to this vertex.

Definition 2.3. — A MOY graph is the image of an abstract MOY graph Γ by a
smooth embedding in the [0, 1]× [0, 1] such that:

– All the oriented tangent lines at vertices are equal.(2)

a+ b

a b

a+ b

a b

– The boundary of Γ is contained in [0, 1]× {0, 1}.
– ]0, 1[×{0, 1} ∩ Γ = ∂Γ.
– the tangent lines at the boundary points of Γ are vertical, (that is, collinear

with ( 0
1 )).

(2)In pictures which follows we may forget about this technical condition, since it is clear that we
can always deform the embedding locally so that this condition is fulfilled.
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578 L.-H. Robert & E. Wagner

In what follows it will be convenient to speak about the tangent vector at a point p
of the graph Γ (or more precisely of its image in [0, 1]× [0, 1]). By this we mean the
only vector which is tangent to Γ, has norm 1 and whose orientation agrees with
the one of Γ. Note that the condition on the embedding on vertices ensure that it is
well-defined everywhere.

Notation 2.4. — In what follows, k always denotes a finite sequence of integers (the
empty sequence is allowed). If k = (k1, . . . , k`), ` is the length of k and

∑`
i=1 ki is the

level of k. If k is a sequence of length 1 and level k, we abuse notation and write k
instead of k.

If we want to specify the boundary of a MOY graph Γ, we will speak about k1-MOY
graph-k0 (see the example in Figure 1 to understand the notations). If a MOY graph
has an empty boundary we say that it is closed.

If Γ is an k1-MOY graph-k0, we denote by −Γ the (−k1)-MOY graph-(−k0), which
is obtained from Γ by reversing all orientations.

Remark 2.5. — MOY graphs are regarded up to ambient isotopy fixing the boundary.
This fits into a category where objects are finite sequences of signed and labeled
points in ]0, 1[, and morphisms are MOY graphs. The composition is then given by
concatenation and rescaling (see Figure 1).

2 3

1

2

5

6

4

2

4

3 1

4

3 1

4

6 1

2
37

2 5

2 3 1

2
5

6

4

2

4

3 1

4

6 1

2 37

2 5

Figure 1. Examples of a MOY graphs: a (4, 3, 1)-MOY graph-
(2, 3, 1, 2), a (−2, 2, 5, 3)-MOY graph-(4, 3, 1) and their concatena-
tion.

Definition 2.6. — Let Γ be a closed MOY graph. The rotational of Γ is the sum of
the rotational of the oriented circles appearing in the cabling of Γ. The rotational of a
circle is +1 if it winds counterclockwisely and −1 if it winds clockwisely. It is denoted
by rot(Γ). This definition is illustrated in Figure 2.

2.1. MOY calculi. — In their seminal paper, Murakami, Ohtsuki and Yamada
[MOY98] gave a combinatorial definition of the colored Uq(slN ) framed link in-
variant. For clarity we refer to this construction as exterior MOY calculus since it
calculates the Reshetikhin-Turaev invariant of a framed link labeled with exterior
powers of V the standard representation of Uq(slN ). We denote by 〈•〉N this invariant
(or simply by 〈•〉 when there is no ambiguity about N). This goes in two steps.
We consider a framed link diagram labeled with integers between 0 and N (one
J.É.P. — M., 2020, tome 7
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Γ

4

4

31 22

Figure 2. The rotational of the closed MOY graph depicted on the
left is equal to 2− 2 = 0.

should think about an integer a as representing ΛaqV ) and we replace every crossing
by a formal Z[q, q−1]-linear combination of planar graphs following the formulas:

〈
m n

〉
=

m∑
k=max(0,m−n)

(−1)m−kqk−m

〈
n

n

m

m

n + k −m

k

n + k m− k

〉
(2.1)

〈
nm

〉
=

m∑
k=max(0,m−n)

(−1)m−kqm−k

〈
n

n

m

m

n + k −m

k

n + k m− k

〉
(2.2)

The first crossing in the formula is said to have type (m,n,+), the second to have
type (m,n,−).

Finally we can evaluate these planar graphs (which are closed MOY graphs) using
the following identities and their mirror images:〈

k

〉
=

[
N

k

]
(2.3)

〈
i + j + k

i

j + k

j k 〉
=

〈
i + j + k

k

i + j

i j 〉
(2.4)

〈
m + n

m + n

nm

〉
=

[
m+ n

m

]〈
m + n

〉
(2.5)

〈
m

m

nm + n

〉
=

[
N −m
n

]〈
m

〉
(2.6)

〈
1

m

1

m

1

m

m + 1

m + 1

〉
=

〈
1 m

〉
+ [N −m− 1]

〈
1 m

m− 1

m1 〉
(2.7)
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580 L.-H. Robert & E. Wagner

〈
1

` + n

`

m + `− 1

m− n

m

n

` + n− 1

〉
=

[
m− 1

n

]〈
1 m + `− 1

`− 1

m` 〉
+

[
m− 1

n− 1

]〈
1 m + `− 1

` +m

m` 〉
(2.8)

〈
n

n + k

m

m + `

m + `− k

n + `

n + k −m

k

〉
=

m∑
j=max (0,m−n)

[
`

k − j

]〈
n

m− j

m

m + `

n + ` + j

n + `

j

n + j −m

〉
(2.9)

In the previous formulas, we used quantum integers and quantum binomials. These
are symmetric Laurent polynomials in q defined by [k] := qk−q−k

q−q−1 and[
`

k

]
=

∏k−1
i=0 [`− i]

[k]!
where [i]! =

i∏
j=1

[j].

The first formal proof that these relations are enough to compute has been written
by Wu [Wu14] and is based on a result of Kauffman and Vogel [Kau13, App. 4]. In
particular, this shows that there is a unique evaluation of MOY graphs which satisfies
these relations. The coherence of these relations follows from the representation theo-
retic point of view. For more details we refer to [MOY98, MS09] and to Appendix A.

As pointed out by [TVW17], a similar story applies when one think about the
integers labeling the strands of a link (which are now only required to be positive)
as representing q-symmetric powers of V (i.e., Sym•q V ). We denote by ⟪•⟫N this
invariant (or simply by ⟪•⟫N when there is no ambiguity about N). This yields what
we call the symmetric MOY calculus.

⟪
m n

⟫
N

=

m∑
k=max(0,m−n)

(−1)m−kqk−m⟪

n

n

m

m

n + k −m

k

n + k m− k⟫

N

(2.10)

⟪
nm

⟫
N

=

m∑
k=max(0,m−n)

(−1)m−kqm−k ⟪

n

n

m

m

n + k −m

k

n + k m− k⟫

N

(2.11)

The formulas for evaluating MOY graphs become:

⟪ k⟫
N

=

[
N + k − 1

k

]
(2.12)

J.É.P. — M., 2020, tome 7
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⟪
i + j + k

i

j + k

j k

⟫

N

= ⟪
i + j + k

k

i + j

i j

⟫

N

(2.13)

⟪
m + n

m + n

nm ⟫
N

=

[
m+ n

m

]
⟪ m + n ⟫

N

(2.14)

⟪
m

m

nm + n ⟫
N

=

[
N +m+ n− 1

n

]
⟪ m ⟫

N

(2.15)

⟪
1

m

1

m

1

m

m + 1

m + 1

⟫

N

= ⟪ 1 m ⟫
N

+ [N +m+ 1]⟪
1 m

m− 1

m1

⟫

N

(2.16)

(2.17) ⟪

1

` + n

`

m + `− 1

m− n

m

n

` + n− 1

⟫

N

=

[
m− 1

n

]
⟪

1 m + `− 1

`− 1

m`

⟫

N

+

[
m− 1

n− 1

]
⟪

1 m + `− 1

` +m

m`

⟫

N

(2.18) ⟪

n

n + k

m

m + `

m + `− k

n + `

n + k −m

k

⟫

N

=

m∑
j=max (0,m−n)

[
`

k − j

]
⟪

n

m− j

m

m + `

n + ` + j

n + `

j

n + j −m

⟫

N

Remark 2.7
(1) The proof of computability and uniqueness of Wu [Wu14] still works in the sym-

metric case. As before consistency follows from the representation theoretic point of
view. We describe explicitly in Appendix A the Uq(glN )-intertwiners between products
of symmetric powers of the standard Uq(glN )-module. One can check by brute force
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582 L.-H. Robert & E. Wagner

computation that these morphisms satisfy the identities defining the symmetric MOY
calculus.

(2) We choose a normalization making the polynomial associated by the symmetric
MOY calculus with any planar graph a Laurent polynomial with positive coefficients.
The skein formula we use for the crossings is not compatible with the choices made
for the exterior MOY calculus. The braiding in the exterior MOY calculus is given
by an R matrix of Uq(slN ), while for the symmetric MOY calculus it is given by
its inverse. Hence the two calculi we present here cannot be merge into one bicolor
calculus as it is done in [TVW17].

(3) In [TVW17], there is an overall sign which we choose to remove here. For
recovering this sign one should multiply our symmetric evaluation of a MOY graph Γ

by (−1)rot(Γ) (see Definition 2.6).
(4) Up to this sign the formulas are actually the same as the ones of the exterior

MOY calculus applied to −N . Since they do not involve N , the identities (2.4), (2.5),
(2.8) and (2.9) of the exterior MOY calculus are the same as the identities (2.13),
(2.14), (2.17) and (2.18) of the symmetric MOY calculus.

(5) In order to turn the framed invariants 〈•〉N and ⟪•⟫N into invariants of un-
framed links, one needs to renormalize them. For any link diagram D, we define:

RTΛ
N (D) = (−1)e(D)qk

Λ(D) 〈D〉N
RTSN (D) = qk

S(D) ⟪D⟫N ,and

where e(D) (resp. kΛ(D), resp. kS(D)) is the sum over all crossing x of D of ex
(resp. kΛ

x , resp. kSx ) defined by:

(kΛ
x , k

S
x , ex) =


(m(N + 1−m),−m(m+N − 1),−m) if x is of type (m,m,+),
(−m(N + 1−m),m(m+N − 1),+m) if x is of type (m,m,−),
(0, 0, 0) else.

While the case N = 1 is trivial in the exterior MOY calculus, it is not in the
symmetric MOY calculus. However, the symmetric evaluation of a MOY graph Γ for
N = 1 is especially simple.

Lemma 2.8. — Let Γ be a MOY graph. For every vertex v of Γ, let us denote by W (v)

the element of N[q, q−1] given by the formulas:

W


a+ b

a b

 :=

[
a+ b

a

]
=: W


a+ b

a b

 .

The following identities hold in Z[q, q−1]:

⟪Γ⟫N=1 =
∏
v split

W (v) =
∏

v merge
W (v) =

( ∏
v vertex of Γ

W (v)

)1/2

.
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Sketch of the proof.. — We only treat the “merge” part of the statement. Since there
is a unique polynomial satisfying the symmetric MOY calculus for N = 1. It is
enough to check that W (Γ) :=

∏
v merge W (v) satisfies the symmetric MOY calculus

of N = 1. For instance, to prove that W satisfies identity (2.18), one shows the
following q-binomial identity:[

n+ k

m

] [
m+ `

k

]
=

n∑
j=max(0,m−n)

[
`

k − j

] [
n

m− j

] [
n+ `+ j

j

]
which can be done by induction on n+m. �

Another identity holds both in the exterior and the symmetric MOY calculi.

Lemma 2.9. — The following local identities and their mirror images hold:

〈
k + s

k

k − r

`− s

`

` + r

r

s

〉
=

[
r + s

s

]〈
k + s

k − r

`− s

` + r

r + s

〉
(2.19)

⟪

k + s

k

k − r

`− s

`

` + r

r

s

⟫

N

=

[
r + s

s

]
⟪

k + s

k − r

`− s

` + r

r + s
⟫

N

(2.20)

Sketch of proof. — For the exterior calculus: it is a consequence of identity (2.4), its
mirror image and identity (2.5). For the symmetric calculus: it is a consequence of
identity (2.13), its mirror image and identity (2.14). �

2.2. Braid-like MOY graphs. — In this section we introduce a special class of MOY
graphs which contains in particular the ones appearing in the expansion of braids
when using identities (2.1) and (2.2) to get rid of crossings. We call these graphs
braid-like.

Definition 2.10. — A MOY graph Γ is braid-like if the scalar products of all its
tangent vectors with ( 0

1 ) are strictly positive. In Figure 1, the leftmost MOY graph
is braid-like, while the two others are not.

Remark 2.11
(1) Braid-like MOY graphs are regarded up to ambient isotopy fixing the boundary

and preserving the braid-like property. They fit into a category which is a non-full
subcategory of the one described in Remark 2.5.

(2) The braid-likeness of a MOY graph Γ implies that boundary points of Γ on
]0, 1[×{0} are negative, while the one on ]0, 1[×{1} are positive.
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(3) Every braid-like MOY graph can be obtained as vertical concatenation of MOY
graphs of type:

a+ b

a b

. . .. . . and
a+ b

a b

. . .. . .

(4) If Γ is a k1-MOY graph-k0, then the sum of the element of k1 is equal to the
sum of the element of k0, we call the number the level of Γ.

The following lemma, although quite elementary and completely combinatorial, is
one of the keystones of this paper.

Lemma 2.12. — Let k be a positive integer and k be a finite collection of positive
integers of level k. We considerM the Z[q, q−1] module generated by braid-like k-MOY
graphs-(k) and modded out by ambient isotopy and relations (2.4) and (2.5) (or (2.13)
and (2.14)). The module M is generated by a braid-like tree. Moreover all braid-like
trees are equal in M .

Proof. — Let T be a braid-like k-tree-k, that is, a braid-like k-MOY graph-k which is
a tree. Thanks to the relation (2.4), it is clear(3) that all braid-like k-tree-k are equal
in M .

It is enough to show that any braid-like k-MOY graph-k Γ is equal in M to P
(a Laurent polynomial in q) times a braid-like k-tree-k. We show this simultaneously
on all finite sequences of integers of level k by induction on the number of merge
vertices. If there is no merge then Γ is a tree and there is nothing to show. If Γ

contains a merge, we cut Γ horizontally into two parts, just below its highest merge.
We obtain Γtop and Γbot. The latter is a k′-MOY graph-k and has one merge vertex
less than Γ. Hence we can use the induction hypothesis to write Γbot = P (q)T and
choose the tree T to have a split vertex on its top part which is symmetric to the
merge vertex below which we cut Γ. We now stack Γtop onto T , and reduce the digon
thanks to the relation (2.5), we obtain that Γ is equal in M to a Laurent polynomial
times a braid-like k-tree-k. �

Remark 2.13
(1) Note that with the representation theoretic interpretation of MOY-graph, this

results should be interpreted as: the multiplicity of ΛkqV (resp. Symk
q V ) in

⊗`
i=1 Λkiq V

(resp.
⊗`

i=1 Symki
q V ) is one (see Appendix A).

(2) This lemma says, that for any braid-like (k1, . . . , k`)-MOY graph-(k) Γ, there
exists a Laurent polynomial r(Γ), such that Γ = r(Γ)T in the skein module, where T

(3)This is similar to saying that the associativity of a product allows to remove parentheses in
arbitrary long product. Indeed the first relation can be seen as an associativity property and a tree
as a (big) product.
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is a braid-like tree. From the proof, one deduces that

r(Γ) =
∏

v∈V (Γ)
v merge of type (a, b, a+ b)

[
a+ b

a

]
.

For a latter use it will be convenient to have a preferred tree.

Definition 2.14. — Let k be a finite sequence of positive integers which add up to k.
We denote by Tk the braid like k-tree-k which is obtained by this inductive definition:

– Tk is a single vertical strand,
– T(k1,...,k`) is obtained from T(k1,...,k`−2,k`−1+k`) by splitting its rightmost strand

into two strands labeled by k`−1 and k`.
This is probably better understood with the following figure:

2.3. Vinyl graphs. — We denote by A the annulus {x ∈ R2|1 < ‖x‖ < 2} and for
all x = ( x1

x2
) in A , we denote by tx the vector

(−x2
x1

)
. A ray in R2 is a half-line which

starts at O, the origin of R2.

Definition 2.15. — A vinyl graph is the image of an abstract closed MOY graph Γ

in A by a smooth(4) embedding such that for every point x in the image of Γ, the
tangent vector at this point has a positive scalar product with tx. The set of vinyl
graphs is denoted by V . We define the level of a vinyl graph to be the rotational of
the underlying MOY graph. If k is a non-negative integer, we denote by Vk the set
of vinyl graph with rotational equal to k. Vinyl graphs are regarded up to ambient
isotopy preserving A .

1

6

4

2 3

4
1

5

2

2

1 1

5

1

2

Figure 3. A vinyl record and a vinyl graph of level 7.

(4)The smoothness condition is the same as the one of Definition 2.3.
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Remark 2.16. — Let Γ be a vinyl graph with rotational k, and D be a ray which does
no contain any vertices of Γ. Then the condition on the tangent vectors of Γ, implies
that:

– the intersection points of the ray D with Γ are all transverse and positive,
– the sum of the labels of edges which intersects Γ is equal to k.

Informally, the level counts the numbers of tracks of a vinyl graph.

Of course, a natural way to obtain vinyl graphs is by closing braid-like MOY graphs.

Notation 2.17. — Let k be a finite sequence of integers and Γ be a braid-like k-MOY
graph-k. Then we denote by Γ̂ the vinyl graph obtained by closing up Γ. The level
of Γ equals the level of k.

Γ  Γ̂

Figure 4. The vinyl graph Γ̂ is obtained by closing up the braid-like
MOY graph Γ.

The following theorem from Queffelec and Rose shows that the MOY relations (2.3),
(2.4), (2.5), (2.9) and (2.19) (resp. (2.12), (2.13), (2.14), (2.18) and (2.20)) defines
uniquely the exterior (resp. symmetric) MOY calculus for vinyl graphs.

Theorem 2.18 ([QR18, Lem. 5.2]). — Let Sk be the Z[q, q−1]-module generated by
vinyl graphs of level k modded out by the relations (2.4), (2.5), (2.9) and (2.19). The
module Sk is generated by vinyl graphs which are collections of circles of level k.

The proof of this result is constructive. Queffelec and Rose give an algorithm
which reduces a vinyl graph using (2.4), (2.5), (2.9) and (2.19). Their algorithm
produces a linear combination of collection of circles. Hence adding relation (2.3)
(resp. relation (2.12)) we obtain the exterior (resp. symmetric) evaluation of any vinyl
graph.

In what follows we categorify the symmetric MOY calculus of vinyl graphs. We
construct a category TLFN whose objects are vinyl graphs. Suppose that F is a functor
from the category TLFN to a category C with a grading, such that the relations (2.4),
(2.5), (2.9) and (2.19) are compatible with F (i.e., linear combinations translates into
directs sums of objects with degree shifts). From the algorithm of Queffelec and Rose,
we can deduce the following proposition:
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Proposition 2.19 ([QR18, Proof of Prop. 5.1]). — For any vinyl graph Γ, there exist
two N[q, q−1]-linear combinations of collections of circles

∑
i aiCi and

∑
j bjC

′
j such

that:
F (Γ)⊕

⊕
i

F (Ci){ai} '
⊕
j

F (C ′j){bj}.

In particular, if C is a category of modules over an algebra A and collections of circles
are mapped to finitely generated projective modules, then F (Γ) is finitely generated
and projective. Moreover, if A is a polynomial algebra, then F (Γ) is free and rela-
tions (2.4), (2.5), (2.9) and (2.19) are satisfied by the graded rank of the modules.

3. Foams

Foams have been introduced in the realm of link homologies by Khovanov [Kho04].
They have been used by Blanchet [Bla10] to fix functoriality of link homologies. They
are now widely used [QR16, LQR15, EST17].

3.1. Definitions. — In the first two subsections we summarize some of the results of
[RW17]. However we think that familiarity with [RW17] is essential to fully understand
the constructions done in Sections 3.3, 3.4 and 5.1.1. We fix a positive integer N .

Definition 3.1. — An abstract foam F is a finite collection of facets F (F ) = (Σi)i∈I ,
that is, a finite set of oriented connected surfaces with boundary, together with the
following data:

– A labeling ` : (Σi)i∈I → {0, . . . , N},
– A “gluing recipe” of the facets along their boundaries such that when glued

together using the recipe a neighborhood of a point of the foam has three possible
local models:

a

a+ b

a
b

a+ b+ c

a+ b
c

a

b

b+ c

The letter appearing on a facet indicates the label of this facet. That is we have facets,
bindings (which are compact oriented 1-manifolds) and singular points. Each binding
carries:

– an orientation which agrees with the orientations of the facets with labels a
and b and disagrees with the orientation of the facet with label a+ b.

– a cyclic ordering of the three facets around it. When a foam is embedded
in R3, we require this cyclic ordering to agree with the left-hand rule(5) with

(5)This agrees with Khovanov’s convention [Kho04].

J.É.P. — M., 2020, tome 7



588 L.-H. Robert & E. Wagner

respect to its orientation (the dotted circle in the middle indicates that the
orientation of the binding points to the reader, a crossed circle indicates the
other orientation, see Figure 6):

The cyclic orderings of the different bindings adjacent to a singular point should be
compatible. This means that a neighborhood of the singular point is embeddable in R3

in a way that respects the left-hand rule for the four bindings adjacent to this singular
point.

Remark 3.2. — Les us explain shortly what is meant by “gluing recipe”. The bound-
aries of the facets forms a collection of circles. We denote it by S . The gluing recipe
consists of:

– For a subset S ′ of S , a subdivision of each circle of S ′ into a finite number of
closed intervals. This gives us a collection I of closed intervals.

– Partitions of I ∪ (S r S ′) into subsets of three elements. For every subset
(X1, X2, X3) of this partition, three diffeomorphisms φ1 : X2 → X3, φ2 : X3 → X1,
φ3 : X1 → X2 such that φ3 ◦ φ2 ◦ φ1 = IdX2 .
A foam is obtained by gluing the facets along the diffeomorphisms, provided that the
conditions given in the previous definition are fulfilled.

Definition 3.3. — A decoration of a foam F is a map f 7→ Pf which associates
with any facet f of F an homogeneous symmetric polynomial Pf in `(f) variables.
A decorated foam is a foam together with a decoration.

From now on all foams are decorated.

Definition 3.4. — A closed foam is a smoothly embedded abstract foam in R3.
Smoothness means that the facets are smoothly embedded and the different oriented
tangent planes agree on bindings and singular points as depicted here

a+ b

a
b

a

b b+ c

a+ b+ ca+ b
c

.

Just like for MOY graphs (see Definition 2.3), we will usually not care too much about
the smoothness on bindings and singular points when drawing foams.

J.É.P. — M., 2020, tome 7



Symmetric Khovanov-Rozansky link homologies 589

3

2

5

3

2

1

Figure 5. Example of a foam. The cyclic ordering on the central
binding is (5, 2, 3).

The notion of foam extends naturally to the notion of foam with boundary. The
boundary of a foam has a structure of a MOY graph. We require that the facets and
bindings are locally orthogonal to the boundary to be able to glue them together.
Probably the most local framework is given by the concept of canopolis of foams. We
refer to [BN05, ETW18] for more details about this approach. In what follows we will
consider:

– Foams in R2 × [0, 1] where the boundary is contained in R2 × {0, 1} (see Defini-
tion 3.5);

– Foams in the cube [0, 1]3, where the boundary is contained in [0, 1]2 × {0, 1} ∪
{0, 1} × [0, 1]2 (see Section 3.3);

– Foams in the thickened annulus A × [0, 1] where the boundary is contained in
A × {0, 1} (see Section 3.4).

Definition 3.5. — The category Foam consists of the following data:
– Objects are closed MOY graphs,
– Morphisms from Γ0 to Γ1 are (ambient isotopy classes relatively to the bound-

ary of) foams in R2 × [0, 1] whose boundary is contained in R2 × {0, 1}. The part of
the boundary in R2 × {0} (resp. R2 × {1}) is required to be equal to −Γ0 (resp. Γ1).
Composition of morphisms is given by stacking foams and rescaling in the vertical
direction.

Definition 3.6. — If F is a foam (possibly with boundary), a sub-surface is a collec-
tion of oriented facets F such that their union is a smooth oriented surface Σ whose
boundary is contained in the boundary of F .

3.2. Reminder on the exterior evaluation of foams. — The combinatorial evalua-
tion can be thought of as a higher dimensional state sum formula of the state sum of
Murakami-Ohtsuki-Yamada [MOY98] for evaluating MOY graphs.

Definition 3.7. — A pigment is an element of P = {1, . . . , N}. The set P is endowed
with the natural order.

A coloring of a foam F is a map c : F (F )→P(P), such that
– For each facet f , the number of elements #c(f) of c(f) is equal to `(f).
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– For each binding joining a facet f1 with label a, a facet f2 with label b, and a
facet f3 with label a + b, we have c(f1) ∪ c(f2) = c(f3). This condition is called the
flow condition.

A colored foam is a foam together with a coloring. For a given foam F , the set of all
its colorings is denoted colN (F ).

A careful inspection of the local behavior of colorings in the neighborhood of bind-
ings and singular points gives the following lemma:

Lemma 3.8

(1) If (F, c) is a colored foam and i is an element of P, the union (with the iden-
tification coming from the gluing procedure) of all the facets which contain i in their
colors is a surface. It is called the monochrome surface of (F, c) associated with i and
is denoted by Fi(c). The restriction we imposed on the orientations of facets ensure
that Fi(c) is oriented.

(2) If (F, c) is a colored foam and i and j are two distinct elements of P, the
union (with the identification coming from the gluing procedure) of all the facets which
contain i or j but not both in their color set is a surface. It is called the bichrome
surface of (F, c) associated with i, j. This the symmetric difference of Fi(c) and Fj(c)
and is denoted by Fij(c). The restriction imposed on the orientations of facets ensures
that Fij(c) can be oriented via taking the orientation of facets containing i and the
reverse orientations on facets containing j.

(3) Let i < j and consider a binding joining the facets f1, f2 and f3. Suppose that
i ∈ c(f1), j ∈ c(f2) and {i, j} ⊆ c(f3). We say that the binding is positive with respect
to (i, j) if the cyclic order on the binding is (f1, f2, f3) and negative with respect to
(i, j) otherwise. The set Fi(c)∩Fj(c)∩Fij(c) is a collection of disjoint circles. Each of
these circles is a union of bindings; for every circle the bindings are either all positive
or all negative with respect to (i, j).

Please note that the previous lemma contains the definition of monochrome and
bichrome surfaces.

Example 3.9 ([RW17, Ex. 2.7]). — Suppose N = 4 (and therefore P = {1, 2, 3, 4})
and consider the colored foam (F, c) given by the figure below

3

3

1

2

{1, 2, 4}

{1}

{1, 2, 4}{2, 4}
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where the big digits represent labels. Note that the orientation of every facet can be
deduced from the orientations of the bindings. Tables 1 and 2 describe the mono-
chrome and bichrome surfaces as well as the values of θ+

ij(c) for this colored foam.

i ∈ P Monochrome Surface Fi(c) In words

1 Sphere (on the right)

2 Sphere (on the left)

3 Empty set

4 Sphere (on the left)

Table 1. The monochrome surfaces of Example 3.9.

(i, j) ∈
P 1 2 3 4

1 Torus Sphere
(on the right) Torus

2 2 Sphere
(on the left) Empty set

3 0 0 Sphere
(on the left)

4 2 0 0

Table 2. The bichrome surfaces (top right) and the θ+
ij (bottom left)

of Example 3.9.

Remark 3.10. — Monochrome surfaces of (F, c) are sub-surfaces of F while, in general,
bichrome surfaces are not in the sense of Definition 3.6.

Definition 3.11. — Let (F, c) be a colored foam and i < j be two pigments. A circle
in Fi(c) ∩ Fj(c) ∩ Fij(c) is positive (resp. negative) with respect to (i, j) if it consists
of positive (resp. negative) bindings. We denote by θ+

ij(c)F (resp. θ−ij(c)F ) or simply
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θ+
ij(c) (resp. θ−ij(c)) the number of positive (resp. negative) circles with respect to

(i, j). We set as well θij(c) = θ+
ij(c) + θ−ij(c). See Figure 6 for a pictorial definition.

{i, j}

i

j
negative

{i, j}

j

i
negative

{i, j}

i

j
positive

{i, j}

j

i
positive

Figure 6. A pictorial definition of the signs of the circle, we assume
i < j. Recall that a dotted circle in the middle indicates that the
orientation of the binding points to the reader and a crossed circle
indicates the other orientation.

Definition 3.12. — The degree degΛ
N of a foam F is the sum of the following contri-

butions:
– For each facet f with label a, set deg(f) = a(N −a)χ(f), where χ stands for the

Euler characteristic;
– For each interval binding e (i.e., not circle-like binding) surrounded by three

facets with labels a, b and a+ b, set deg(e) = ab+ (a+ b)(N − a− b);
– For each singular point p surrounded with facets with labels a, b, c, a+ b, b+ c,

a+ b+ c, set deg(p) = ab+ bc+ cd+ da+ ac+ bd with d = N − a− b− c;
– Thus,

degΛ
N (F ) = −

∑
f

deg(f) +
∑
e

deg(e)−
∑
p

deg(p) +
∑
f

deg(Pf ),

where the variables of the polynomials P• have degree 2.

Remark 3.13
(1) The degree is additive with respect to the composition of foam. This is the same

degree as in [QR16], but since we are not in a 2-categorical setting, the contributions
of Γ0 and Γ1 to the degree are equal to 0.

(2) The degree can be thought of as an analogue of the Euler characteristic. The
degree of the foam of Figure 5 is equal to −16 when N = 6.

Definition 3.14. — If (F, c) is a colored foam, define:

s(F, c) =

N∑
i=1

iχ(Fi(c))/2 +
∑

16i<j6N

θ+
ij(F, c),

P (F, c) =
∏

f facet of F
Pf (c(f)), Q(F, c) =

∏
16i<j6N

(xi − xj)χ(Fij(c))/2

〈F, c〉 = (−1)s(F,c)
P (F, c)

Q(F, c)
.
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In the definition of P (F, c), Pf (c(f)) means the polynomial P evaluated on the vari-
ables {xi}i∈c(f). Since the polynomial Pf is symmetric, the order of the variables does
not matter. A facet f is called trivially decorated, if Pf = 1. Define the evaluation of
the foam F by:

〈F 〉 :=
∑

c coloring of F
〈F, c〉 .

Remark 3.15. — Let F be a foam and denote by λ the product of all decorations
of facets of label 0. Consider F ′ the foam obtained from F by removing the facets
with label 0. There is a one-one correspondence between the colorings of F and the
colorings of F ′. For every coloring c of F and its corresponding coloring c′ of F ′, we
have 〈F, c〉 = λ 〈F ′, c′〉, and consequently 〈F 〉 = λ 〈F ′〉.

Proposition 3.16 ([RW17]). — Let F be a foam, then 〈F 〉 is an homogeneous element
of Q[x1, . . . , xN ]SN of degree degΛ

N (F ).

Proposition 3.17 ([RW17]). — The following local identities and their mirror images
hold:

〈
b

c

a

a+b+c

a
+
b

〉
=

〈
b

a

c
a+b+c

a+
b

a+
b

b+c

〉
,(3.1)

〈 a 〉
=

∑
α∈T (a,N−a)

(−1)|α̂|+N(N+1)/2

〈 a

a

N−a
πα̂

πα

N

〉
,(3.2)

〈
a+b

b

a

πλ

〉
=
∑
α,β

cλαβ

〈
a+b

b

πα

πβ

a

〉
,(3.3)
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〈 a+
b

a+
b

a

b

〉
=

∑
α∈T (a,b)

(−1)|α̂|

〈
a+
b

a

b

a

b πα̂

πα 〉
,(3.4)

〈
a

a

b

a+b

〉
=

∑
α∈T (b,N−a−b)

(−1)|α|

〈
a

b

a+b

b

a+b
N−a−bN−a−b

πα̂

πα

〉
,(3.5)

〈
k+s

k
−
r

k r
s

`
`−s

`+r

〉
=

∑
α∈T (r,s)

(−1)|α̂|

〈
k+s

k
−
r

k

k

πα

πα̂

r

r

s

s

r+s

`

`

`−
s `+r

〉
,(3.6)

〈
n+k

m+`−k

m

n+`n+k−m

n k m+`

〉
=

∑
j=max(0,m−n),...,m
α∈T (k−j,`−k+j)

(−1)|α|+(`−k+j)(m−j) 〈F jα〉 ,

(3.7)
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where

F jα
def
=
∑
β1,β2
γ1,γ2

cαβ1β2
cα̂γ1γ2

m−j

n+k

πγ2

πβ1

n+k

n+`+j

m+`−k

m+`−k

j

πγ1

m

n+`n+k−m

n+k−m

n

k

k

n+k−m+j

n+k−m+j

m+`

n+j−m

πβ2

.

Moreover, in identities (3.1), (3.4), (3.5), (3.6) and (3.7), the terms on the right-hand
sides are mutually orthogonal idempotents. In the previous formulas T (a, b) denotes
the set of all Young diagram contained in the rectangle of size a × b, πλ denotes the
Schur polynomial associated with λ and c••• denote the Littlewood-Richardson constant.
Further explanations of notations and conventions can be found in [RW17, App. 1].

In identity (3.7), 〈•〉 needs to be extended linearly to formal Q-linear combinations
of foams.

Using this evaluation and the universal construction idea (see [BHMV95]), we
define a functor FN from the category of foams to the category of Q[x1, . . . , xN ]SN -
module.

If Γ is a MOY graph, consider the free graded Q[x1, . . . , xN ]SN -module spanned
by HomFoam(∅,Γ). We mod this space out by

⋂
G∈HomFoam(Γ,∅)

Ker
(HomFoam(∅,Γ) −→ Q[x1, . . . , xN ]SN

F 7−→ 〈G ◦ F 〉

)
.

We define FN (Γ) to be this quotient. The definition of FN on morphisms follows.
From Proposition 3.17, we deduce that the functor FN categorifies the exterior MOY
calculus.

Corollary 3.18 ([RW17]). — Let Γ be a closed MOY graph, then FN (Γ) is a free
graded Q[x1, . . . , xN ]SN -module of graded rank equal to 〈Γ〉N .

In Sections 3.3 and 3.4 we will work with elements of FN (Γ). Such elements are
represented by Q[x1, . . . , xN ]SN -linear combination of foams bounding Γ. Since it is
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more convenient to work with representatives of classes than with the classes them-
selves, we introduce the following terminology.

Definition 3.19
(1) Let

∑
i λiFi and

∑
j µjGj be two elements of the free graded Q[x1, . . . , xN ]SN -

module spanned by HomFoam(∅,Γ). We say that they are N -equivalent if they repre-
sent the same element in FN (Γ).

(2) Let
∑
i λiFi and

∑
j µjGj two elements of the graded Q-vector space generated

by HomFoam(∅,Γ). We say that they are ∞-equivalent if they are N -equivalent for
all N in N.

(3) Define F∞(Γ) the graded Q-vector space generated by HomFoam(∅,Γ) modded
out by ∞-equivalence.

Remark 3.20. — The local identities (3.1), (3.3), (3.4), (3.6) and (3.7) can be trans-
lated into∞-equivalences, while the local identities (3.2) and (3.5) can only be trans-
lated into N -equivalences.

3.3. Disk-like foams (or HOMPLYPT foams). — For this section we fix a non-
negative integer. We will work in R3 and we denote by P the plane spanned by(

1
0
0

)
and

(
0
0
1

)
.

We consider the cube C = [0, 1]3 and will use the following parametrization of its
boundary:

sf

sh

sr
s`

st

sb

x2
x1

x3

sb = [0, 1]2 × {0}
st = [0, 1]2 × {1}
sf = [0, 1]× {0} × [0, 1]

sh = [0, 1]× {1} × [0, 1]

s` = {0} × [0, 1]2

sr = {1} × [0, 1]2

The symbols s• denote the 6 squares of the boundary of C and the letters
f, h, `, r, b, t stand for front, hidden, left, right, bottom and top. The plan P is
parallel to the square sf and sh.

Definition 3.21. — Let F be a foam with boundary embedded in C. Suppose that
the boundary of F is contained in s` ∪ sr ∪ sb ∪ st, and that the MOY-graphs F ∩ sf ,
F ∩ sh, F ∩ sb and F ∩ st are all braid-like. We say that F is disk-like if for every
point x of F , the normal line of the foam F at x is not parallel to P .

We say that F is a rooted Γ-foam of level k if additionally:
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– the restriction of F on sb is a single strand labeled k,
– the restriction of F on st is a braid-like MOY graph Γ,
– the restriction of F on s` and sr are standard trees (see Definition 2.14).

Remark 3.22. — The notion of level (see Remark 2.11) extends to disk-like foams.

The name disk-like comes from the following lemma.

Lemma 3.23. — Let F be a disk-like foam. Every non-empty connected subsurface
of F is a disk whose boundary circle intersects each of the four squares s`, sr, sb
and st non-trivially.

Proof. — We consider a non-empty subsurface Σ of F . The condition on the normal
vector of disk-like foams implies that the projection on the second (resp. the third)
coordinate provides a Morse function with no critical points. This implies that Σ

is diffeomorphic to its intersection with s` (resp. sb) times the interval. Since Σ is
non-empty and connected s` ∩ Σ is an interval. Finally, Σ is a disk which intersects
non-trivially the four squares s`, sr, sb and st. �

Remark 3.24. — Let F be a disk-like foam. The condition on the normal vector
implies that for all t in [0, 1] the intersection of {t}× [0, 1]2 (resp. [0, 1]×{t}) with F
is transverse. Moreover, if {t}× [0, 1]2 (resp. [0, 1]×{t}) does not contain any singular
point of F , {t}× [0, 1]2 ∩F (resp. [0, 1]×{t} ∩F ) is a braid-like MOY graph. A very
similar result (Corollary 3.37) is given a proper proof in the next subsection.

Definition 3.25. — Let us fix a non-negative integer k. The 2-category DLFk of
disk-like foams of level k consists of the following data:

– Objects are finite sequences of positive integers of level k.
– A 1-morphism from k0 to k1 is a braid-like k1-MOY graph-k0 (it has level k).

Composition is given by concatenation of braid-like MOY graphs.
– A 2-morphism from a braid-like k1-MOY graph-k0 Γbot to a braid-like k1-MOY

graph-k0 Γtop is an ambient isotopy class (relative to the boundary) of a disk-like
foam F in the cube C such that:

– the intersection of F with sb is equal to −Γbot,
– the intersection of F with st is equal to Γtop,
– the intersection of F with s` is equal to −k0 × [0, 1],
– the intersection of F with sr is equal to k1 × [0, 1].

Compositions are given by stacking disk-like foams and re-scaling. This is illustrated
in Figure 7.
The 2-category D̂LFk is constructed as follows:

– Start from the 2-category DLFk.
– Linearize the 2-hom-spaces over Q.
– Mod out every 2-homspace by ∞-equivalence (disk-like foams are considered as

foams from ∅ to the boundary vinyl graph).
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◦1 =

◦0 =

Figure 7. Vertical (top) and horizontal (bottom) compositions of
2-morphisms in DLFk.

Definition 3.26. — Let k0 and k1 be two objects of the DLFk and Γbot and Γtop two
1-morphism from k0 to k1. The degree of a 2-morphism F : Γbot → Γtop is given by
formula

degD(F ) = degΛ
0 (F )− ||k0||2 + ||k1||2

2
,

where degΛ
0 (F ) is the degree of F as an exterior 0-foam (see Definition 3.12) and if

k := (k1, . . . , k`) is a finite sequence of non-negative integers, ||k||2 :=
∑`
i=1 k

2
i .

Let Γ a 1-morphism from k0 to k1. The degree of a rooted Γ-foam F is given by:

degr(F ) = degΛ
0 (F )− ||k0||2 + ||k1||2 + 2k2

4
.

Remark 3.27. — One easily checks that with these definition the degree of 2-mor-
phisms is additive with respect to vertical and horizontal compositions. In particular,
the degrees of identity 2-morphisms are 0. Since the relations defining the ∞-equi-
valence are homogeneous, this degree induces a grading on the 2-homspaces of D̂LFk.
Moreover, the composition of a rooted Γbot-foam with an element of hom(Γbot,Γtop)

is a rooted Γtop-foam, and the degree is additive with respect to this composition.

Definition 3.28. — Let Γ be a braid-like MOY-graph, and F be a rooted Γ-foam.
We say that F is tree-like, if {t} × [0, 1]2 ∩ F is a tree for all t in [0, 1]. In particular,
if {t} × [0, 1]2 does not contain any singular point of F , then {t} × [0, 1]2 ∩ F is a
braid-like tree.

From Lemma 2.12 we derive the following lemma which tells us that disk-like foams
are combinatorially very simple:

Lemma 3.29. — Let k be a non-negative integer, Γ be the braid-like k-MOY graph-k
consisting of one single strand labeled by k and F be a rooted Γ-foam (that is, a
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disk-like foam which bound a circle with label k). Then F is ∞-equivalent to a disk
with label k decorated by (−1)k(k+1)/2

〈
F̂
〉
k
, where F̂ is the foam obtained from F by

capping it with a disk labeled by k.

Note that this makes sense since
〈
F̂
〉
k
is a symmetric polynomial in k variables.

Proof. — Let us denote by D the disk with label k decorated by (−1)k(k+1)/2
〈
F̂
〉
k
.

It follows directly from the definition of the slk-evaluation of foams, that F is k-
equivalent to D. The sign comes from the term

∑k
i=1 iχ(Fi(c))/2 in the definition of

s(F, c) (see Definition 3.14). If N < k, then both D and F are N -equivalent to 0.
If N > k, we will see that the N -equivalence between F and D follows from their

k-equivalence. We need to prove that for any foam G bounding a circle with label k,
〈F ◦G〉N = 〈D ◦G〉N . First note that thanks to identity (3.2), we can suppose that G
is a decorated disk of label k. In this case, D◦G is a decorated sphere of label k. Let c
be a coloring of D◦G. The coloring c is given by the color I(c) = {i1(c), . . . , ik(c)} ⊆ P
of this sphere. We have:

〈D ◦G, c〉N =
〈D ◦G〉k (xi1(c), . . . xik(c))∏

i∈I(c)
j∈PrI(c)

(xj − xi)
.(3.8)

Note the foam D◦G being a sphere, it admits only one slk-coloring. It can be obtained
from c by replacing ia(c) by a in I(c) for all a ∈ {1, . . . k}.

Similarly, if c is a coloring of F ◦ G, it gives to the facet containing G a color
I(c) = {i1(c), . . . , ik(c)}. Let us denote by f : I(c) → {1, . . . , k} the one-to-one map
given by f(ia) = a and f(c) the slk-coloring of F ◦G induced from c by f . We have:

〈F ◦G, c〉N =
〈F ◦G, f(c)〉k (xi1(c), . . . , xik(c))∏

i∈I
j∈PrI

(xj − xi)
.(3.9)

Combining (3.8) and (3.9) and keeping the same notations, we get:

〈F ◦G〉N =
∑

c∈colN (F◦G)

〈F ◦G, c〉N =
∑
I⊆P

#I=k

∑
c∈colN (F◦G)

I(c)=I

〈F ◦G, c〉N

=
∑
I⊆P

#I=k

∑
c∈colN (D◦G)

I(c)=I

〈D ◦G, c〉N = 〈D ◦G〉N . �

Lemma 3.30. — A rooted Γ-foam F is ∞-equivalent to a Z-linear combination of
tree-like foams.

Proof. — First, assume that Γ is a braid-like k-MOY graph-k. We will show that F is
∞-equivalent to a Z-linear combination of foams which are superposition of a tree-like
Γ-foam on top of a disk-like foam which bounds a circle and conclude by Lemma 3.29
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Assume further that Γ has the form:

m + n

m + n

nm

Then, this is the content of identities (3.4).
If Γ is a braid-like k-MOY graph-k, the result is obtained by induction using

repeatedly identities (3.1) and (3.4). See Figure 8 for an illustration.

k k ∼∞
∑

k

Figure 8.

This induction can be thought of a categorified implementation of the algorithm
described in Lemma 2.12.

The general case follows. The foam F is embedded in the cube. Consider on sf the
following curve

and S the surface embedded in the cube obtained as a product of the previous curve
with a unit interval. The intersection of a thickening of this surface with the foam F

along is diffeomorphic to a k-MOY graph-k for which the first case applies. �

Remark 3.31. — Using the dots migration identity (3.3), we obtain that a tree-like
rooted Γ-foam is ∞-equivalent to Z-linear combination of tree-like rooted Γ-foams,
where all non-trivial decoration are on facets which intersect Γ. These facets are the
leaves of the rooted Γ-foam.

Lemma 3.32. — Let F and F ′ be two tree-like rooted Γ-foams with non-trivial decora-
tions only on their leaves. Suppose furthermore that these decorations are the same(6)

for F and F ′. Then F is ∞-equivalent to F ′.

(6)The fact that the non-trivial decoration are only on the leaves allows to see the decoration as
a function associating a symmetric polynomial with every edge of Γ. We require that these functions
to be the same for F and F ′.
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Proof. — This follows directly from the definition of the exterior evaluation of foams.
The set of colorings of F and of F ′ are in one-to-one correspondence (because they
are both in one-one correspondence with the set of colorings of their boundary). Let
us denote c and c′ two corresponding colorings of F and F ′. The monochrome and
the bichrome surfaces of (F, c) and (F ′, c′) are diffeomorphic. The oriented arcs in
(F, c) and (F ′, c) are in one-one correspondence preserving their orientation. Finally
the condition on the decorations of F and F ′ ensures that their contributions to the
evaluation are equal. �

3.4. Vinyl foams (or symmetric foams). — In this part, we work in the thickened
annulus A × [0, 1]. If x :=

(
x1
x2
x3

)
is an element of A × [0, 1], we denote by tx the vector(−x2

x1
0

)
, by v the vector

(
0
0
1

)
, and by Px the affine plane containing x and spanned by tx

and v. If θ is an element of [0, 2π[, Pθ is the half-plane
{(

ρ cos θ
ρ sin θ
t

)∣∣∣ (ρ, t) ∈ R+ × R
}
.

Pθ

θ

Px

x

Definition 3.33. — Let k be a non-negative integer and Γ0 and Γ1 two vinyl graphs
of level k. Let F be a foam with boundary embedded in A × [0, 1]. Suppose that
F ∩ (A × {0}) = −Γ0 and F ∩ (A × {1}) = Γ1. We say F is a vinyl Γ1-foam-Γ0 of
level k if for every point x of F , the normal line of F at x is not contained in Px. See
Figure 9 for an example.

Remark 3.34. — Note that if we cut a vinyl foam F along a half plane Pθ, we obtain
a disk-like foam.

Definition 3.35. — The category TLFk of vinyl foams of level k consists of the fol-
lowing data:

– the objects are elements of Vk, i.e., vinyl graphs of level k,
– morphisms from Γ0 to Γ1 are (ambient isotopy classes of) vinyl Γ1-foams-Γ0.

Composition is given by stacking vinyl foams together and rescaling. In the category
TLFk we have one distinguished object which consists of a single essential circle with
label k denoted by Sk. The degree degT (F ) of a vinyl foam F is equal to degΛ

0 (F ).
Note that the degree is additive with respect to the composition in TLFk.
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2

1

1

Figure 9. An example of a vinyl foam

The name vinyl comes from the following lemma.

Lemma 3.36. — Let F be a vinyl Γ1-foam-Γ0. Then any non-empty connected subsur-
face Σ of F is an annulus. Moreover, for every t in [0, 1], Σ∩A ×{t} is an essential
circle in A × {t}. Such annuli are called tubes.

Proof. — The condition on the tangent plane of vinyl foams implies that the projec-
tion on the last coordinate is a Morse function for Σ and that it has no critical points.
The result follows. �

Corollary 3.37. — Let F be a vinyl Γ1-foam-Γ0.
(1) Let t be an element of [0, 1] such that the intersection of A × {t} and F is

generic (i.e., A × {t} does not contain any singular points of F and the intersection
of A × {t} with the bindings of F is transverse). Then F ∩A × {t} is a vinyl graph.

(2) Let θ be an element of [0, 2π[ and assume that the intersection of F with Pθ is
generic. Then the intersection of F and Pθ is braid-like.

Before proving the statements, let us emphasize that there are only finitely many t’s
(resp. θ’s) for which the intersection of F and A × {t} (resp. Pθ) is not generic.

Proof. — First note that every point of F is contained in a connected subsurface
which intersects A × {0, 1} non-trivially. Indeed we can cable foams just like we can
cable MOY graphs (see Figure 2). This gives us a collection of sub-surfaces of F
which covers it. Let us prove the first part. Let x =

( x1
x2
t0

)
be a point in F and Σ a

connected subsurface of F containing x. Since F is vinyl, the scalar product of tx with
the tangent vector of F ∩A × {t} is non-zero. Since Σ is connected, this quantity is
either always positive or always negative on Σ. The graphs Γ0 and Γ1 being vinyl, it
is positive. This proves that F ∩A × {t} is vinyl.

The second part is similar but we consider the scalar product of Pθ ∩ F with
v =

(
0
0
1

)
. �
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The notion of tree-like foams developed in Section 3.3 extends mutatis mutandis
to the concept of foams in the thickened annulus. The analogues of rooted Γ-foams
are Γ̂-foams-Sk. We have analogues of Lemmas 3.30 and 3.32:

Lemma 3.38. — Let Γ be a vinyl graph of level k and F a vinyl Γ-foam-Sk. Then F

is ∞-equivalent to a Z-linear combination of tree-like foams.

Proof. — First we choose a θ in [0, 2π] such that the intersection of Pθ with the
foam F is generic. Thanks to Corollary 3.37, we know that this intersection is a
braid-like k-MOY graph-k B for some finite sequence k of positive integers. We can
suppose that F is locally diffeomorphic to B × [ε, ε]. The algorithm described in
Lemma 2.12 and the local identities (3.1) and (3.4) tells us that F is ∞-equivalent
to a Z-linear combination of vinyl foams such that the intersection with Pθ is the
canonical k-tree-k. If we cut these foams along Pθ, we can apply Lemma 3.30 on each
of these foams. Gluing back the result along the canonical k-tree-k gives us a Z-linear
combination of tree-like Γ-foams-Sk which is ∞-equivalent to F . �

Remark 3.39. — Just like for the disk-like context, thanks to the dot migration iden-
tity (3.3), we can move all non-trivial decorations of a tree-like foam on its leaves.

The proof of Lemma 3.32 can be easily adapted to the annular case. This gives the
following lemma.

Lemma 3.40. — Let Γ be a vinyl graph and F and F ′ be two tree-like Γ-foams-Sk with
non-trivial decorations only on their leaves. Suppose furthermore that these decora-
tions are the same for F and F ′. Then F is ∞-equivalent to F ′.

4. Soergel bimodules

In this section we prove that for any braid-like MOY graph Γ the space of rooted
Γ-foams regarded up to ∞-equivalence is isomorphic to the Soergel bimodule associ-
ated with Γ.

4.1. Some polynomial algebras

Notation 4.1
(1) We denote the graded ring Q[T1, . . . , TN ]SN by RN , where the indetermi-

nates T• are homogeneous of degree 2. This is the q-degree.
(2) Denote by C the category of Z-graded finitely generated projective RN -mod-

ules. If M is an object of C, Mqi denotes the same object where the degree has
been shifted by i. This means that (Mqi)j = Mj−i. If P (q) =

∑
i aiq

i is a Laurent
polynomial in q with positive integer coefficients, MP (q) denotes the module⊕

i

(Mqi)ai .
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(3) Let k = (k1, . . . , k`) be a finite sequence of positive integers of level k (if k = 0

the empty sequence is allowed). The group
∏`
i=1 Ski is denoted by Sk. We define the

algebra Ak:
Ak := RN [x1, . . . , xk]Sk .

The indeterminates x• are homogeneous of degree 2. If k = (k) (that is, if k has
length 1), we write Ak instead of A(k).

(4) If Γ is a vinyl graph, denote by FT
∞(Γ)Q the graded Q-vector space gener-

ated by vinyl Γ-foams-Sk modded out by ∞-equivalence (see Definition 3.19). Define
FT
∞(Γ) := FT

∞(Γ)Q ⊗Q RN . Since for all k, the exterior slk-evaluation of foams is
homogeneous, the RN -module FT

∞(Γ) is naturally graded.

Before dealing with Soergel bimodules, we state the following lemma which relates
the algebra Ak with vinyl foams.

Lemma 4.2. — Let k := (k1, . . . , k`) be a finite sequence of positive integers and Sk be
the vinyl graph which consists of ` oriented circles with labeling induced by k. Then
FT
∞(Sk) is isomorphic to Ak as a graded RN -module.

Proof. — Let k =
∑`
i ki and T be the canonical k-tree-(k). For i in {1, . . . , `} and λi

denotes a Young diagram with at most ki lines. Denote π(i)
λi

the Schur polynomial
associated with λi in the variables x1+ri , . . . , xki+ri where ri =

∑i−1
j=1 kj .

A RN -base of Ak is given by (π
(1)
λ1
, . . . , π

(`)
λ`

) =: πλ where the λi’s take all possible
shapes. Being given λ = (λ1, . . . , λ`) a sequence of of Young diagrams as described
above, define Fλ to be the foam T × S1 where the ith leaf of F is decorated by the
Schur polynomial π(i)

λi
.

Let us prove that the RN -linear map sending πλ ∈ Ak to Fλ ∈ FT
∞(Sk) is bi-

jective. It is surjective because of dots migration (3.3). Let
∑h
j=1 µλjπλj be a linear

combination of monomials mapped to 0. Let `max be the maximal length of all lines
appearing in the Young diagrams of all the size of the Young diagram of (λj)j=1,...,h.
For M = `max(k+ 1), the foams Fλh precomposed by a cup labeled by k are linearly
independent in FM (Sk). Hence the coefficients µλj must be all equal to 0. �

4.2. Singular Soergel bimodules. — We introduce singular Soergel bimodules. See
for instance [Soe92, Str04, Kho07, Wil11] or [Wed19] for a pictorial description close
to ours.

Definition 4.3. — Let Γ be a braid-like k1-MOY graph-k0. If Γ has no trivalent
vertices, we have k0 = k1 and we define B(Γ) to be equal to Ak0

as a Ak0
-module-Ak0

.
If Γ has only one trivalent vertex (which is supposed to be of type (a, b, a+ b)), then:

– if the length of k1 is equal to the length of k0 plus 1, we define B(Γ) to be
Ak1

q−ab/2 as a Ak1
-module-Ak0

;
– if the length of k0 is equal to the length of k1 plus 1, we define B(Γ) to be

Ak0
q−ab/2 as a Ak1

-module-Ak0
;
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If Γ has more than one trivalent vertex, if necessary we perturb(7) Γ to see it as a
composition:

Γ = Γt ◦kt Γt−1 ◦kt−1 · · · ◦k2 Γ1 ◦k1 Γ0,

where Γi is a braid-like ki+1-MOY graph-ki with one trivalent vertex, for all i in
{0, . . . , t}. The symbols ◦ki mean that Γi and Γi−1 are glued along ki. We have
k0 = k0 and kt+1 = k1. We define

B(Γ) := B(Γt)⊗Akt B(Γt−1)⊗Akt−1 · · · ⊗Ak2 B(Γ1)⊗Ak1 B(Γ0).

The space B(Γ) has a natural structure of Ak1
-module-Ak0

. It is called the Soergel
bimodule associated with Γ. Note that the grading of B(Γ) takes values either in Z or
in 1

2 + Z.

Example 4.4. — The singular Soergel bimodule associated with

Γ =

1 2

1

1

3

4

2

2

3

1 2

is the following A(2,1,2)-module-A(1,2,1,1):

A(2,1,2) ⊗A(2,3)
A(2,3) ⊗A(2,3)

A(2,2,1) ⊗A(4,1)
A(4,1) ⊗A(4,1)

A(3,1,1)

⊗A(3,1,1)
A(1,2,1,1)q

−13/2

' A(2,1,2) ⊗A(2,3)
A(2,2,1) ⊗A(4,1)

A(1,2,1,1)q
−13/2.

Remark 4.5. — For Definition 4.3 to be valid, the isomorphism type of the bimod-
ule B(Γ) should not depend on the decomposition of Γ. This is clear since two such
decompositions are related by the “commutation of faraway vertices” for which the
isomorphism is clear (see as well Remark 4.13). The purpose of the grading shift
introduced in the previous definition is to ensure compatibility of gradings in Propo-
sition 4.15. In order to keep track of this overall shift, define

s(Γ) =
∑

v vertex of Γ
of type (a, b, a+ b)

ab

2
.

(7)In other words, we choose an ambient isotopy of the square such that the images of the trivalent
vertices of Γ have distinct y-coordinate.
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4.3. A 2-functor. — The relationship between Soergel bimodules and foams has al-
ready been investigated, see for instance [RW16, Wed19]. However, we develop in
this section a foam interpretation of Soergel bimodules themselves and not only of
morphisms between them.

Definition 4.6. — Let Γ be a braid-like k1-MOY graph-k0. We set FD
∞(Γ) to be the

free RN -module generated by the set of rooted Γ-foams modded out by∞-equivalence.
If F is in 2-HomDLFk(Γ0,Γ1), we denote by FD

∞(F ) the map FD
∞(Γ0) → FD

∞(Γ1)

induced by F . It is a map of graded RN -modules. Given two objects k0 and k1 of
DLFk, this defines a functor FD

∞ from 1-HomDLFk(k0, k1) to the category of graded
RN -modules.

Lemma 4.7. — Let k = (k1, . . . , k`) be a finite sequence of positive integers. The space
FD
∞(k×I) has a natural structure of RN -algebra. As an algebra it is isomorphic to Ak.

Proof. — The algebra structure is induced by concatenation of disk-like (k×I)-foams
along the standard tree. The unit is the standard tree times the interval, with each
facets trivially decorated. Note, that there is an isomorphism of RN -algebras:

Ak '
⊗̀
i=1

RN [x1, . . . , xki ]
Ski .

It is convenient to use this description of Ak to define the isomorphism between Ak
and FD

∞(k×I). For P = P1⊗· · ·⊗P` a pure tensor in Ak, we define φ(P ) to be the (∞-
equivalence class of the) standard tree times the interval with decorations P1, . . . , P`
on its leaves and trivial decorations on the other facets. This is clearly an algebra
morphism and it is surjective thanks to Lemma 3.30. We now focus on injectivity.
Both FD

∞(k × I) and Ak have natural structures of Ak-modules. For Ak this comes
from the injection of Ak in Ak. For FD

∞(k × I), this comes by decorating the “root”
facet, that is, the facet which bounds the edge k×I (which it self is in sb). The map φ
respects these structures of Ak-modules because the dots migration identity (3.3) is
part of the∞-equivalence (see Remark 3.20). Thanks to identity (3.4) (which is as well
compatible with the∞-equivalence) used (k−1) times, we know that FD

∞(k×I) is free
of rank

[
k

k1 k2 ... k`

]
. The algebra Ak is as well a free Ak-module of rank

[
k

k1 k2 ... k`

]
.

This is enough to conclude that φ is indeed an isomorphism. �

Corollary 4.8. — Let Γ be a braid-like k1-MOY graph-k0. The space FD
∞(Γ) has a

natural structure of Ak1
-module-Ak0

. Let us define rs and rm the two Laurent poly-
nomials by the formulas:

rs(Γ) :=
∏

v∈V (Γ) split
v of type (a, b, a+ b)

[
a+ b

a

]
and rm(Γ) :=

∏
v∈V (Γ) merge

v of type (a, b, a+ b)

[
a+ b

a

]
.

The space FD
∞(Γ) is a free Ak1

-module of graded rank rm(Γ)q−s(Γ) and a free mod-
ule-Ak0

of graded rank rs(Γ)q−s(Γ).
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Proof. — The algebras Ak0
and Ak1

are isomorphic to FD
∞(k0 × I) and FD

∞(k1 × I)

and the action of Ak0
and Ak1

are given by concatenating disk-like (k0 × I)-foam
and (k1 × I) along sr and s`. The statement about the freeness and the rank follows
directly from Lemma 2.12, Remark 2.13 and the fact that the identities (3.1) and
(3.4) holds in the ∞-equivalence setting (see Remark 3.20.) �

Remark 4.9
(1) Note that this corollary implies, that for any braid-like k1-MOY graph-k0 Γ,

we have:
rs(Γ) dimQ

q Ak1
= rm(Γ) dimQ

q Ak0
.

where dimQ
q W (∈ Z[[q]]) denotes the graded dimension of a W as a graded Q-vector

space provided each graded piece is finite-dimensional.
(2) Recall that FD

∞(k0 × I) and FD
∞(k1 × I) are spanned by decorated versions

of the interval times the standard k0-tree and the standard k1-tree respectively. This
implies that the action of Ak0

and Ak1
on FD

∞(Γ) can be thought of as multiplying
decoration on facets adjacent to the standard k0-tree (contained in the square s`) and
on the standard k1-tree (contained in the square sr) respectively.

Corollary 4.10. — Let us consider Γm the braid-like k1-MOY graph-k0 and Γs the
braid-like k0-MOY graph-k1 given by

Γm :=

a+ b

a b

. . .. . .

Γs :=

a+ b

a b

. . .. . . .and

Then FD
∞(Γs) isomorphic to Ak0

as a Ak1
-module-Ak0

and FD
∞(Γm) isomorphic

to Ak0
as a graded Ak0

-module-Ak1
. This makes sense, since Ak1

is a sub-algebra
of Ak0

.

Proof. — We only prove the statement for Γm (the proof for Γs is similar). Denote `
the length of k0 and let us fix F a rooted tree-like Γm-foam. We want to define a
map Ψ from Ak0

to FD
∞(Γm). An element of Ak0

is a finite sum of elements of the
form P :=

∏`
i=1 Pi where Pi is a symmetric polynomial on ki0 variables. Define Ψ(P )

to be the foam F with decorations of that facets adjacent to the leaves of the k0-tree
given by the P•’s. Pictorially, for k0 = (a, b, c) and k1 = (a + b, c), this looks like
Figure 10.

This map is clearly a bimodule map and it has degree −s(Γm). Thanks to
Lemma 3.30, the map Ψ is surjective. We conclude with Corollary 4.8 which implies
that up to an overall grading shift of −s(Γm), FD

∞(Γm) and Ak0
have the same

graded dimension. �
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Ψ(P ) =

P1

a + b

c
a

c
b

P3

P2

.

Figure 10.

Lemma 4.11. — Let Γb and Γt be two braid-like k1-MOY graphs-k0 and F be an
element of 2−homDLF(Γb,Γt). The linear map FD

∞(F ) is a map of Ak1
-modules-Ak0

.

Proof. — The structures of Ak1
-modules-Ak0

of FD
∞(Γb) and FD

∞(Γb) is given by
multiplying the decoration of facets of foams adjacent to the k0-tree (contained in
the square s`) and the k1-tree (contained in the square sr). Recall that the boundary
foam F in the square s` (resp. in the square sr) is k0×I (resp. k1×I). Hence stacking F
over a rooted Γb-foam does not change the nature of the boundary in the squares s`
and sr. In particular, acting with Ak1

or Ak0
before or after stacking F produces the

same foam. Hence the actions of Ak1
and Ak0

commute with FD
∞(F ). �

Lemma 4.12. — Let Γ0 be a braid-like k1-MOY graph-k0 and Γ1 be be a k2-MOY
graph-k1. Then we have the following isomorphism of Ak2

-module-Ak0
:

FD
∞(Γ1 ◦k1

Γ2) ' FD
∞(Γ1)⊗Ak1

FD
∞(Γ2).

Proof. — We have an Ak1
-bilinear morphism of Ak2

-module-Ak0
from FD

∞(Γ1) ×
FD
∞(Γ2) (where 1k = (1, . . . , 1)) to FD

∞(Γ1 ◦k1
Γ2) given by concatenating foams

along the standard tree for k1. This induce a map Ψ : FD
∞(Γ1) ⊗Ak1

FD
∞(Γ2) →

FD
∞(Γ1 ◦k1

Γ2). We now prove that Ψ is bijective.
The surjectivity is easy. Indeed, thanks to Lemmas 3.30 and 3.32 every element

of FD
∞(Γ1 ◦k1

Γ2) is a linear combination of decorated tree-like foams Fi and we can
choose the shape of these tree-like foams. Hence we can suppose that at the locus
where Γ1 and Γ2 are glued together, the intersection of the foams Fi with a vertical
plane are equal to the standard trees. Hence every Fi is in the image of Ψ and their
sum as well.
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To conclude, we argue with graded Q-dimensions since every graded piece is finite-
dimensional. We have:

dimQ
q

(
FD
∞(Γ1)⊗A(k)

FD
∞(Γ2)

)
= rm(Γ1)rs(Γ2) dimQ

q Ak1
q−s(Γ1)q−s(Γ2)

= rm(Γ1)rm(Γ2) dimQ
q Ak2

q−s(Γ1)−s(Γ2)

= rm(Γ1 ◦k1
Γ2) dimQ

q Ak2
q−s(Γ1)−s(Γ2)

= dimQ
q

(
FD
∞(Γ1 ◦k1

Γ2)
)
. �

Remark 4.13. — Note that from this lemma, we can re-obtain the fact that the
bimodule B(Γ) is well-defined. See Remark 4.5.

Definition 4.14. — For every k, we denote by BimSk the 2-category of singular
Soergel bimodules of level k. More precisely:

(1) The objects of Bk are finite sequences of positive integers which sum up to k.
(2) The category of 1-morphisms from k0 to k1 is the smallest abelian full sub-

category of Ak1
-module-Ak0

containing the Ak1
-module-Ak0

B(Γ) for any braid-like
MOY graph Γ. Note that thanks to Corollary 4.8, all objects of this category are
projective (and therefore free) as Ak1

-modules and as modules-Ak0
, and are finitely

generated for both of these structures.

From Lemmas 4.7 and 4.12 and Corollaries 4.8 and 4.10, we deduce the following
proposition:

Proposition 4.15. — We have a 2-functor

FD
∞ : DLFk −→ BimSk

k 7−→ k

Γ 7−→ FD
∞(Γ)

F 7−→ FD
∞(F ).

which factorizes through the 2-category D̂LFk.

Actually, based on evidence given by Stošić [Sto08], we conjecture the following:

Conjecture 4.16. — The 2-functor FD
∞ induces an equivalence of 2-categories be-

tween D̂LFk and BimSk.

4.4. Hochschild homology. — If A is an algebra and M an A-module-A, the
Hochschild homology of A with coefficients in M is denoted by HH•(A,M).

Lemma 4.17. — Let Γ be a braid-like k1-MOY graph-k0 and Γ′ be a braid-like k0-MOY
graph-k1, then HH•(Ak0

,B(Γ′ ◦k1
Γ)) and HH•(Ak1

,B(Γ ◦k0
Γ′)) are canonically iso-

morphic.

J.É.P. — M., 2020, tome 7



610 L.-H. Robert & E. Wagner

Proof. — This follows from Corollary 4.8 and Lemma 4.12. Let us writeM = FD
∞(Γ)

and M ′ = FD
∞(Γ′). Let C•(M) be a projective resolution of M as Ak1

-module-Ak0
.

Since M ′ is projective as module-Ak1
, C•(M) ⊗Ak0

M ′ is a projective resolution of
M⊗Ak0

M ′ as Ak1
-module-Ak1

. Similarly,M ′⊗Ak1
C•(M) is a projective resolution of

M ′⊗Ak1
M as Ak0

-module-Ak0
. We have a canonical isomorphism of chain complexes

Ak0
⊗Aen

k0

(
M ′ ⊗Ak1

C•(M)
)
' Ak1

⊗Aen
k1

(
C•(M)⊗Ak0

M ′
)
.

The result follows because HH•(Ak0
,B(Γ′ ◦k1

Γ)) and HH•(Ak1
,B(Γ ◦k0

Γ′)) are the
homology groups of these two chain complexes. �

Proposition 4.18. — Let Γ be a braid-like k-MOY graph-k and denote by Γ̂ its clo-
sure and by FT

∞(Γ̂) the space of vinyl Γ̂-foams modulo ∞-equivalence. The space
HH0(Ak,FD

∞(Γ)) is canonically isomorphic to FT
∞(Γ̂).

Proof. — Closing up rooted Γ-foams into vinyl Γ̂-foams provides a well-defined map
π : FD

∞(Γ)→ FT
∞(Γ̂). The action of Ak can be seen as concatenating foams (see proof

of Corollary 4.10). Hence, π factories through FD
∞(Γ)/[Ak,FD

∞(Γ)] which is equal to
HH0(Ak,FD

∞(Γ)). We now denote by π the induced map from HH0(Ak,FD
∞(Γ)) to

FT
∞(Γ̂). This map is surjective thanks to Lemma 3.30. Instead of proving that π is

injective, we prove that spaces HH0(Ak,FD
∞(Γ)) and FT

∞(Γ̂) have the same graded
dimension (and each of their homogeneous parts is finite-dimensional). Thanks to
Lemma 4.17,HH0(Ak,FD

∞(Γ)) only depends on Γ̂. Hochschild homology is compatible
with direct sum of bimodules in the sense that:

HH•(A,M ⊕N) ' HH•(A,M)⊕HH•(A,N).

Hence, thanks to Proposition 2.19, it is enough to prove the statement for Γ̂ a col-
lection of circles. If Γ̂ is a collection of circles labeled by k := (k1, . . . , k`), then
we have FD

∞(Γ) = Ak. Lemma B.1 implies that the space HH0(Ak,FD
∞(Γ)) is iso-

morphic to Ak. On the other hand, FT
∞(Γ̂) is isomorphic to Ak as well thanks to

Lemma 4.2. �

5. One quotient and two approaches

5.1. A foamy approach

5.1.1. Evaluation of vinyl foams

Notation 5.1. — The set of Young diagrams with at most a rows and at most b
columns is denoted by T (a, b) and the set of Young diagrams with at most a rows is
denoted by T (a,∞). The rectangular Young diagram with a rows and b columns is
denoted by ρ(a, b).

Notation 5.2. — Recall that RN denotes the ring of symmetric polynomials with
coefficients in Q.
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(1) Denote the graded algebra RN [x1, . . . , xk]Sk by Ak, by JN,k the ideal of
RN [x1, . . . , xk] generated by{ N∏

i=1

(xj − Ti)
∣∣∣∣ j = 1, . . . , k

}
.

Note that elements of this set are indeed symmetric in the T•. Denote by MN,k the
RN -algebra

Ak
/

(JN,k ∩Ak),

seen as an RN -module. The indeterminates x• have degree 2, just like the indetermi-
nates T• appearing in the definition of RN (end of Section 3.4).

(2) If λ = (λ1, . . . , λk) is a Young diagram with at most k rows, define xλ :=∏k
i=1 x

λi
i . Denote bymλ(x1, . . . , xk) the symmetric polynomial

∑
λ′ x

λ′ , where λ′ runs
over all distinct permutations of λ. Denote by m̃λ(x1, . . . , xk) the symmetric polyno-
mial

∑
λ′ x

λ′ , where λ′ runs over all permutations of λ. The family (mλ)λ∈T (k,∞) is
a Z-basis of the ring of symmetric polynomials in k variables with coefficients in Z
(see [Mac15]). The family (m̃λ)λ∈T (k,∞) is a Q-basis of the ring of symmetric polyno-
mials in k variables with coefficients in Q.

Lemma 5.3. — The RN -module MN,k is free and has a basis given by images in
MN,k of

(mλ(x1, . . . , xk))λ∈T (k,N−1)

seen as element of Ak.

Proof. — The RN -module MN,k is isomorphic to

(RN [x1, . . . , xk]/JN,k)
Sk .

Indeed, the RN -linear maps

Ak ↪−→ RN [x1, . . . , xk] −→−→ RN [x1, . . . , xk]/JN,k −→−→ (RN [x1, . . . , xk]/JN,k)
Sk

is surjective because if P +JN,k ∈ (RN [x1, . . . , xk]/JN,k)
Sk , one can assume that P is

itself Sk-invariant since the ideal JN,k is Sk-invariant. The kernel of this morphism
is JN,k ∩ Ak, hence it induces an isomorphism of RN -modules between MN,k and
(RN [x1, . . . , xk]/JN,k)

Sk .
The RN -module (RN [x1, . . . , xk]/JN,k)

Sk is isomorphic to

Symk

(
RN [x]

/( N∏
i=1

(x− Ti)
))

.

The RN -module RN [x]
/(∏N

i=1(x − Ti)
)
is a free RN module of rank N and has

a natural RN -basis given by (xi)06i6N−1. Therefore, (mλ(x1, . . . , xk))λ∈T (k,N−1) is a
RN -basis of (RN [x1, . . . , xk]/JN,k)

Sk . �
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Denote εN,k the following morphism of RN -modules defined on the basis λ ∈
T (k,N − 1):

εN,k : MN,k −→ RN

mλ 7−→

{
1 if λ = ρ(k,N − 1),
0 if λ 6= ρ(k,N − 1).

Example 5.4. — Suppose k = 1, then we have:

εN,1(x`) =
∑

n1,...,nN>0∑N
i=1 ini=`−N+1

(−1)
∑N
i=1(i−1)ni

(∑N
i=1 ni

)
!∏N

i=1 ni!

N∏
i=1

enii (T1, . . . , TN ).

In particular, one has:

εN,1(x`) = 0 if ` < N − 1, εN,1(xN−1) = 1, εN,1(xN ) = e1(T1, . . . , TN )

εN,1(xN+1) = e1(T1, . . . , TN )2 − e2(T1, . . . , TN ).and

Suppose now that k is arbitrary and λ = (λ1, . . . , λk) is a Young diagram with at
most k rows, then

εN,k(m̃λ) = k!

k∏
i=1

εN,1(xλi).

Proposition 5.5. — The RN -linear map εN,k endows the RN -algebra MN,k with a
structure of symmetric algebra. In particular, MN,k is a commutative Frobenius alge-
bra.

Proof. — It is enough to check that the composition of εN,k with the multiplication
is a non-degenerate pairing. This follows from the following fact:

εN,k(m̃λm̃µ) =

{
(k!)2 if λ = µc,
0 if |λ|+ |µ| 6 k(N − 1) and λ 6= µc.

Indeed, this implies that the pairing matrix in the bases (m̃λ)λ∈T (k,N−1) and
(m̃µc)µ∈T (k,N−1) suitably ordered has the following form:

(k!)2

(k!)2 0

. . .
? (k!)2

(k!)2




and is clearly invertible. Hence the pairing is non-degenerate. �
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Denote ΥN,k the composition of the projection from Ak to MN,k with εN,k. Let F
be a vinyl Sk-foam-Sk. In R3, we can cap and cup F with two disks labeled by k, to
obtain a (non-vinyl) foam cl(F ).

Definition 5.6. — The equivariant symmetric evaluation of a vinyl Sk-foams-Sk F is
given by:

⟪F⟫N := ΥN,k (〈cl(F )〉k) ,

where 〈•〉k denotes the slk-evaluation of closed foams (see Definition 3.14).

Remark 5.7. — We can make the symmetric evaluation more explicit: let F be a vinyl
Sk-foam-Sk, then ⟪F⟫N is equal to the coefficient of mρ(k,N−1) (in the basis (mλ))
of 〈cl(F )〉k. Alternatively it is equal to k! times the m̃ρ(k,N−1)-coefficient in the basis
(m̃λ) of 〈cl(F )〉k.

Example 5.8. — Using Example 5.4, one can easily compute the evaluation of some
simple vinyl foams.

(1) Suppose F is the foam S1 × [0, 1] decorated by x`, then the foam cl(F ) is a
sphere labeled by 1 decorated by x` and 〈cl(F )〉1 = −X`

1. Hence

⟪F⟫N = −εN,1(x`) =
∑

n1,...,nN>0∑N
i=1 ini=`−N+1

(−1)1+
∑N
i=1(i−1)ni

(∑N
i=1 ni

)
!∏N

i=1 ni!

N∏
i=1

enii (T1, . . . , TN ).

(2) If F is a foam Sk × [0, 1] decorated by a polynomial m̃λ, then

⟪F⟫N = (−1)k(k+1)/2εN,k(m̃λ).

The basis (m̃λ) is convenient because of the following lemma which is the key
ingredient for the proof of monoidality of our construction.

Lemma 5.9. — Let k1 and k2 be two non-negative integers, λ (resp. µ) be a Young
diagram with at most k1 (resp. k2) rows and A be a set of k1 + k2 variables. We have∑

A1tA2=A
#A1=k1
#A2=k2

m̃λ(A1)m̃µ(A2) = m̃λ·µ(A).

where λ · µ is Young diagram corresponding to the union of the partition of λ and µ.
In particular, for any integer N , λ ·µ = ρ(k1 + k2, N) if and only if λ = ρ(k1, N) and
µ = ρ(k2, N). �

Lemma 5.9 implies a nice behavior of the evaluation with respect to disjoint union
as illustrated in the following example.

Example 5.10. — Let k1 and k2 be two non-negative integers, λ (resp. µ) be a Young
diagram with at most k1 (resp. k2) rows. Denote by F (resp. G) the foam Sk1

× [0, 1]

J.É.P. — M., 2020, tome 7



614 L.-H. Robert & E. Wagner

(resp. Sk2
× [0, 1]) decorated by m̃λ (resp. m̃µ). From Example 5.8, one deduces:

⟪F⟫N = (−1)k1(k1+1)/2εN,k1
(m̃λ) = (−1)k1(k1+1)/2k1!

k1∏
i=1

εN,1(xλi) and

⟪G⟫N = (−1)k2(k2+1)/2εN,k2
(m̃µ) = (−1)k2(k2+1)/2k2!

k2∏
i=1

εN,1(xµi).

Set k = k1 + k2 and consider H the (Sk,Sk)-vinyl foam obtained by pre-composing
F ∪G by Y k1,k2

k and post-composing it by Yk
k1,k2

where:

Y k1,k2

k :=

k1 + k2

k1 k2

× S1 and Yk
k1,k2

:=

k1 + k2

k1 k2

× S1.

In other words, H is vinyl foam equal to a digon labeled by k1, k2 and k times S1

decorated by m̃λ and m̃µ. The foam H is ∞-equivalent to Sk × [0, 1] decorated by
m̃λ·µ. Hence, one has:

⟪H⟫N = (−1)k(k+1)/2εN,k(m̃λ·µ)

= (−1)k(k+1)/2k!

k1∏
i=1

εN,1(xλi)

k2∏
j=1

εN,1(xµj )

= (−1)k(k+1)/2−k1(k1+1)/2−k2(k2+1)/2

(
k

k1

)
⟪F⟫N ⟪G⟫N

= (−1)k1k2

(
k

k1

)
⟪F⟫N ⟪G⟫N .

The following lemma proves that this evaluation does not really depend on k.

Lemma 5.11. — Let F be a vinyl Sk-foam-Sk, then it is ∞-equivalent to the foam
Sk × [0, 1] decorated with

〈
(−1)k(k+1)/2cl(F )

〉
k
. The decoration makes sense since〈

(−1)k(k+1)/2cl(F )
〉
k
is a symmetric polynomial in k variables.

Proof. — Let us denote by T the foam

k

k

(−1)k(k+1)/2 〈cl(F )〉k

We need to show that T and F are N -equivalent for all N . If N < k, this is clear,
since all Sk-foams-Sk are N -equivalent to 0. If N = k this is clear as well since
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the identity (3.2) has a very simple form in this case: we can apply it on the top
and on the bottom of F and T , the result follows immediately. Let us now pick an
integer N greater than k. Thanks to the definition of FN (and its monoidality, see
Corollary 3.18), the N -equivalence is equivalent to saying that for any (G1, G2) in
HomFoam(Sk,∅)×HomFoam(∅,Sk), we have:

〈G2 ◦ F ◦G1〉N = 〈G2 ◦ T ◦G1〉N .

If N = k, the result holds by hypothesis. Since F is vinyl, for any slN -coloring c of
G2 ◦ F ◦ G1, the induced coloring on the two circles which form the boundary of F
are the same, hence it induces a coloring c′ on G2 ◦T ◦G1. Since the difference of the
Euler characteristics of monochrome and bichrome surfaces as well as the parity of
the difference of numbers of positive circles can be computed locally, the quantity

〈G2 ◦ F ◦G1, c〉N
〈G2 ◦ T ◦G1, c′〉N

only depends on the restrictions of c and c′ to F and T . Since F and T are vinyl,
there are exactly k pigments appearing in the restrictions of c and c′ to F and T .
Hence if these pigments are 1, . . . , k and if we sum over all colorings c of G2 ◦F ◦G1,
which induce c′ on G2 ◦ T ◦G1 we obtain (thanks to the case k = N):∑

c induces c′

〈G2 ◦ F ◦G1, c〉N
〈G2 ◦ T ◦G1, c′〉N

= 1.

Since permuting the pigments boils down to permuting the variables x1, . . . , xN (see
[RW17, Lem. 2.16]), we obtain:∑

c coloring of
G2◦F◦G1

〈G2 ◦ F ◦G1, c〉N =
∑

c′ coloring of
G2◦T◦G1

〈G2 ◦ T ◦G1, c
′〉N . �

5.1.2. Universal construction. — We will use the evaluation defined in Definition 5.6
and a universal construction à la [BHMV95] in order to define a functor Sk,N :

TLFk → C, where C is the category of Z-graded finitely generated projective RN -
modules.

If Γ is a vinyl graph of level k, we consider the free graded RN -module generated
by HomTLFk(Sk,Γ)q−k(N−1). We mod this space out by⋂

G∈HomTLFk
(Γ,Sk)

Ker
(HomTLFk(Sk,Γ) −→ RN

F 7−→ ⟪G ◦ F⟫N
)
.

We define Sk,N (Γ) to be this quotient. The definition of Sk,N on morphisms follows
naturally.

5.1.3. Categorified identities

Proposition 5.12. — The RN -module Sk,N (Sk) is isomorphic to MN,kq
−k(N−1) (see

Notation 5.2). In particular, we have

rkRNq (Sk,N (Sk)) =

[
k +N − 1

k

]
.
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Proof. — Define φ : Ak → Sk,N (Sk) the RN -linear map which maps any symmetric
polynomial in k variables P to the cylinder Sk × [0, 1] decorated by P . Thanks to
Lemma 5.11, this map is surjective. By the very definition of the equivariant sym-
metric evaluation JN,k ∩Ak is in the kernel of this map. Hence it induces a RN -linear
map MN,k → Sk,N (Sk) denoted by φ′.

The map φ′ is injective. Indeed, let x be a non-zero element of MN,k. Since MN,k

is a Frobenius algebra there exists y in MN,k such that εN,k(xy) 6= 0. Let X and Y
be two RN -linear combinations of vinyl Sk-foams-Sk representing φ′(x) and φ′(y) in
Sk,N (Sk). By definition, ⟪X ◦ Y ⟫N = ε(xy) 6= 0. Hence φ′(xy) = φ′(x) ◦ φ′(y) 6= 0

and φ′(x) 6= 0. It follows that φ′ is an isomorphism. Note that it is homogeneous of
degree −(N − 1)k. �

From the definition of the evaluation of vinyl foams, we immediately deduce that
the identities of Section 3.2 which can be expressed by vinyl foams are still valid. This
gives the following proposition.

Proposition 5.13. — Let k be a non-negative integer and N be a positive integer,
then the functor Sk,N satisfies the following local relations:

Sk,N


i + j + k

i

j + k

j k
 ' Sk,N


i + j + k

k

i + j

i j
(5.1)

Sk,N


m + n

m + n

nm

 ' Sk,N

 m + n

[m+ n

m

]
(5.2)

Sk,N


n

n + k

m

m + `

m + `− k

n + `

n + k −m

k

(5.3)

'
m⊕

j=max (0,m−n)

Sk,N


n

m− j

m

m + `

n + ` + j

n + `

j

n + j −m


[

`

k − j

]

Sk,N


k + s

k

k − r

`− s

`

` + r

r

s

 ' Sk,N


k + s

k − r

`− s

` + r

r + s


[
r + s

s

]
.(5.4)

�
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5.1.4. Monoidality. — The category TLFk does not have a notion of disjoint union,
hence for a fixed k we cannot have monoidality of the functor Sk,N . However, if we
consider the disjoint union TLFN of the categories TLFk for k in N, then we can speak
about disjoint union, and this obviously endows TLFN with a structure of a monoidal
category. The empty vinyl graph seen as an object of TLF0 is the monoidal unit. Note
that in this category Γ1 t Γ2 is in general not isomorphic to Γ2 t Γ1.

We consider the functor SN,N : it is given by the functor Sk,N on TLFk for all
k ∈ N. In order to fix notations, set⊔

k1,k2

: TLFk1
× TLFk2

−→ TLFk1+k2

which sends pairs of objects (resp. morphisms) onto their (rescaled) disjoint union.
This is illustrated on object below:

Γ1
, Γ2 7−→ Γ1 Γ2 .

Proposition 5.14. — Let Γ1 (resp. Γ2) be a vinyl graph of level k1 (resp. k2). Suppose
that Sk1,N (Γ1) and Sk2,N (Γ2) are free RN -modules, then Sk1+k2,N (

⊔
k1,k2

(Γ1,Γ2))

is isomorphic to Sk1,N (Γ1) ⊗RN Sk2,N (Γ2). In particular, Sk1+k2,N (
⊔
k1,k2

(Γ1,Γ2))

is a free RN -module.

Proof. — Let us fix two vinyl graphs Γ1 and Γ2 of level k1 and k2. We denote⊔
k1,k2

(Γ1,Γ2) by Γ and k1+k2 by k. We will define a map φΓ1,Γ2 from Sk1,N (Γ1)⊗RN
Sk2,N (Γ2) to Sk1+k2,N (

⊔
k1,k2

(Γ1,Γ2)). It is enough to define φΓ1,Γ2
on pure tensors.

Let v1 (resp. v2) be an element of Sk1,N (Γ1) (resp. Sk2,N (Γ2)). We can suppose
that v1 is represented by a Γ1-foam-Sk1 F1 and v2 by a Γ2-foam-Sk2 F2. We define
φΓ1,Γ2(v1 ⊗ v2) to be the element of Sk,N (Γ) obtained by re-scaling F1 and F2, tak-
ing their disjoint union (this gives an element of HomTLFk

(⊔
k1,k2

(Sk1
,Sk2

) ,Γ
)
and

pre-composing it with the foam

Y k1,k2

k :=

k1 + k2

k1 k2

× S1.

We extend this definition linearly. We now need to show that:
(1) this is well-defined,
(2) this is an isomorphism,
(1) In order to prove that φΓ1,Γ2 is well-defined, we only need to show that if for all

vinyl Γ2-foam-Sk2
F2 (resp. Γ1-foam-Sk1

F1) and RN -linear combination of vinyl Γ1-
foams-Sk1

∑
i aiF

i
1 (resp. Γ2-foams-Sk2

∑
j bjF

j
2 ) representing 0 in Sk1,N (Γ1) (resp. in
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Sk2,N (Γ2)), we have φΓ1,Γ2

(∑
i ai[F

i
1]⊗[F2]

)
= 0 (resp. φΓ1,Γ2

(∑
i ai[F

i
1]⊗[F2]

)
= 0).

By symmetry we only prove

φΓ1,Γ2

(∑
i

ai
[
F i1
]
⊗ [F2]

)
= 0.

The square brackets stand for “the element of the appropriate graded RN -module
represented by this foam”.

Suppose that the element
∑
i ai[F

i
1] is equal to 0. This means that for any vinyl

Sk1
-foam-Γ1 G1,

∑
i ai ⟪G1 ◦ F i1⟫N = 0. In other words, the coefficient of m̃ρ(k1,N−1)

(in the base (m̃λ)λ∈T (k1,N−1)) of
∑
i ai
〈
cl(G1 ◦ F i1)

〉
k
is equal to 0.

We want to prove that for any vinyl Sk-foam-Γ G,∑
i

ai ⟪G ◦ (F i1 t F2) ◦ Y k1,k2

k ⟫
N

= 0.

Thanks to Lemmas 3.38 and 3.40, we might suppose that G is tree-like and that it
can be obtained by re-scaling the disjoint union of a tree-like Sk1

-foam-Γ1 G1 and
a Sk2

-foam-Γ2 G2 composed with Yk
k1,k2

(which is the foam Y k1,k2

k turned upside
down). Thanks to Lemma 5.11, for all i, G1 ◦ F i1 is ∞-equivalent to Sk1

× [0, 1]

decorated with
〈
cl(G1 ◦ F i1)

〉
k1

and G2 ◦ F2 is ∞-equivalent to Sk2 × [0, 1] decorated
with 〈cl(G2 ◦ F2)〉k2

. Hence
∑
i aiG ◦ (F i1 t F2) ◦ Y k1,k2

k is ∞-equivalent to

k1 + k2

k1 k2

∑
i ai(−1)k1(k1+1)/2

〈
cl(G1 ◦ F i1)

〉
k1

(−1)k2(k2+1)/2 〈cl(G1 ◦ F2)〉k2

k1 + k2

× S1

Following Example 5.10, one deduces that for all i:

⟪G ◦ (F i1 t F2) ◦ Y k1,k2

k ⟫
N

= (−1)k1k2

(
k

k1

)
⟪G1 ◦ F i1⟫N ⟪G2 ◦ F2⟫N ,

and therefore∑
i

ai ⟪G ◦ (F i1 t F2) ◦ Y k1,k2

k ⟫
N

=(−1)k1k2

(
k

k1

)
⟪G2 ◦ F2⟫N

∑
i

ai ⟪G1 ◦ F i1⟫N =0.

(2) Let F1 (resp. F2) be a trivially decorated tree-like Γ1-foam-Sk1 (resp. Γ2-foam-
Sk2

). The foam F obtained by pre-composing F1 tF2 with the foam Y k1,k2

k described
in the construction of φΓ1,Γ2

is in the image of φΓ1,Γ2
as well as its decorated version

with non-trivial decoration on leaves. Thanks to Lemma 3.38 and 3.40 the RN -vector
space Sk,N (Γ) is spanned by elements represented by foams of this type. This proves
the surjectivity.

To prove injectivity, we first pick bases (B1
i )i∈I and (B2

j )j∈J of Sk1,N (Γ1) and
Sk2,N (Γ2) and their dual bases (B∗1i )i∈I and (B∗2j )j∈J . All these elements can be
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represented by (RN -linear combinations of) tree-like foams. Denote these (RN -linear
combinations of) tree-like foams by F 1

i , F 2
j , F ∗1i and F ∗2j . Suppose that[∑

i∈I
j∈J

aij(F
1
i t F 2

j ) ◦ Y k1,k2

k

]
= 0.

Let us fix an i0 in I and a j0 in J . The hypothesis implies that∑
i∈I
j∈J

aij ⟪ Yk
k1,k2

◦ (B∗1i0 tB
∗2
j0 ) ◦ (F 1

i t F 2
j ) ◦ Y k1,k2

k ⟫
N

= 0.

In the previous expression, ⟪•⟫N has been RN -linearly extended to makes sense on
RN -linear combinations of foams. Thanks to Lemma 5.9, the m̃ρ(k,N−1)-coefficient in
the base (m̃λ)λ∈T (k,∞) of∑

i∈I
j∈J

aij

〈
cl(

Yk
k1,k2

◦ (B∗1i0 tB
∗2
j0 ) ◦ (F 1

i t F 2
j ) ◦ Y k1,k2

k )
〉
k

is equal to ai0j0 . However, this coefficient should be equal to 0. This prove injectivity.
�

Theorem 5.15. — The functor SN,N is monoidal.

Proof. — First of all, since the only vinyl foam of level 0 is the empty set, it is clear
that SN,N (1TLFN) = RN = 1C (1 denotes the unital object of monoidal categories).
We need to construct a natural isomorphism (φΓ1,Γ2

)Γ1,Γ2∈ob(TLFN) from SN,N (•)⊗RN
SN,N (•) to SN,N (

⊔
(•, •)).

This isomorphism is provided by (the proof of) Proposition 5.14. In order to use it,
we only need to show that for any vinyl graph Γ, SN,N (1TLFN) is a free RN -module.

If Γ is a collection of circles we can argue by induction on the number of circles.
If Γ consists of only one circle, we can use Proposition 5.12. If it consists of more
than one circle, we can use the induction hypothesis and Proposition 5.14. We deduce
the general case from the case of collection of circles thanks to Proposition 2.19 and
Proposition 5.13. �

Remark 5.16. — Formally we should have checked the compatibility of associators.
Since we did not write down them explicitly, we cannot be very precise here. However,
this compatibility trivially holds because the foams

i + j + k

i

j + k

j k

× S1 and

i + j + k

k

i + j

i j

× S1

are ∞-equivalent, (because they are both tree-like with only trivial decorations (see
Lemma 3.40)).

We can now prove that the functor SN,N categorifies the symmetric MOY calculus.

J.É.P. — M., 2020, tome 7



620 L.-H. Robert & E. Wagner

Theorem 5.17. — The functor SN,N : TLFN → C satisfies for every vinyl graph Γ.

rkRNq (SN,N (Γ)) = ⟪Γ⟫N .

Proof. — We have already seen in the proof of Theorem 5.15, that the RN -module
SN,N (Γ) is free for every vinyl graph Γ. Thanks to Theorem 5.15 and Propositions 5.12
and 5.13 we obtain that the function rkRNq (SN,N (•)) satisfies identities (2.12), (2.13),
(2.14), (2.18) and (2.19). We conclude by Theorem 2.18. �

5.2. An algebraic approach

5.2.1. Hochschild and Koszul homologies. — Koszul homology has been formalized in
[BLS18]. If R is a unital commutative ring, A an R-algebra and M a A-module-A, it
associates with the pair (A,M) a sequence KH•(A,M) of R-modules in a functorial
way. If A is Koszul (and this will be our case), then KH•(A,M) = HH(A,M). We
do not aim to discuss Koszul homology in details, we refer to [BLS18] and references
therein for a nice presentation. We will use Koszul homology instead of Hochschild
homology because it enables to have more structure: in fact an extra differential.

Notation 5.18. — In what follows, k = (k1, . . . , k`) is a finite sequence of positive
integers of level k, Ak is the polynomial algebra RN [x1, . . . xk]Sk and Ak denotes
RN [x1, . . . xk]Sk . Note that Ak is a polynomial algebra over RN . For i in {1, . . . , `}
and j in {1, . . . , ki}, we set e(i)

j to be the jth elementary symmetric polynomial in
variables xri+1, . . . , xri+ki , where ri =

∑i−1
t=1 kt. It is standard that we have (see for

example [Lan02, Chap. IV, §6]):

Ak = RN [e
(1)
1 , . . . , e

(1)
k1
, e

(2)
1 . . . , e

(2)
k2
, . . . , e

(`)
1 . . . , e

(`)
k`

] ⊆ A1k ,

where A1k := A(1,...,1) = RN [x1, . . . , xk].

Definition 5.19. — The Koszul resolution of Ak is the complex

C•(Ak) :=
⊗̀
i=1

ki⊗
j=1

(
RN [e

(i)
j ]⊗RN [e

(i)
j ]q2j

e
(i)
j ⊗1−1⊗e(i)j−−−−−−−−−−→ RN [e

(i)
j ]⊗RN [e

(i)
j ]
)
.

The homological degree of C•(Ak) is called the H-degree.

It is convenient to think of this complex in this way: let Vk be the RN -module gen-
erated by (e

(i)
j ) i=1,...,`

j=1,...,ki

(with (e
(i)
j ) having degree 2j). Then C•(Ak) = Ak⊗ΛVk⊗Ak

with the differential:

dk : C•(Ak) −→ C•(Ak)

a⊗ v1 ∧ · · · ∧ v` ⊗ b 7−→
∑̀
i=1

(−1)i+1 (avi ⊗ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v` ⊗ b

−a⊗ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v` ⊗ vib) .

J.É.P. — M., 2020, tome 7



Symmetric Khovanov-Rozansky link homologies 621

It is standard that it is a projective resolution of Ak as Ak-module-Ak. Hence, for any
Ak-module-Ak M , we have:

HH•(Ak,M) ' H(C•(Ak)⊗Aen
k
M) =: KH(Ak,M).

From now on, when speaking about Hochschild homology, we mean Hochschild
homology computed in this way. Of course this precision is irrelevant when we only
look at the homology groups. But we will shortly introduce an extra differential dN
on C•(Ak). It will equip the Hochschild homology with a structure of chain complex.
As far as we understand, the differential dN can be thought as an equivariant version
of the extra differential introduced by Cautis in [Cau17]. Some proofs are postponed
to Appendix B.

5.2.2. An extra differential. — Let N be a positive integer.

Notation 5.20. — We denote by DN the following derivation on A1k :

DN
1k : A1k −→ A1k

P (x1, . . . , xk) 7−→
k∑
i=1

N∏
j=1

(xi − Tj)∂xiP (x1, . . . , xk).

We denote by dNk the following map Ak-linear-Ak map on C•(Ak):

dNk : C•(Ak) −→ C•(Ak)

1⊗ v1 ∧ · · · ∧ v` ⊗ 1 7−→
∑̀
i=1

(−1)i+1DN
k (vi)⊗ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v` ⊗ 1.

note that this is H-homogeneous of degree −1 and q-homogeneous of degree 2(N−1).
When the context is clear we will drop the subscript k.

Lemma 5.21. — For any finite sequence of positive integers k, the map dNk anti-
commutes with dk and is a differential on C•(Ak).

Since we have this extra structure, we need a refined version of Lemma 4.17. The
following lemma should be compared to [Cau17, Lem. 6.2].

Lemma 5.22. — Let Γ be a braid-like k1-MOY graph-k0 and Γ′ be a braid-like k0-MOY
graph-k1, then the complexes

(HH•(Ak0
,FD
∞(Γ′ ◦k1

Γ)), dNk0
) and (HH•(Ak1

,FD
∞(Γ ◦k0

Γ′)), dNk1
)

are isomorphic.

This is proved in Appendix B where we restrict to the special case where Γ contains
only one vertex. Note that this is actually enough to conclude in general. We define an
explicit homotopy equivalence ϕ between two complexes computing the Hochschild
homology. Finally we prove that ϕ ◦ dNk0

− dNk1
◦ ϕ is null-homotopic. Note that the

previous lemma shows that the complex (HH•(Ak,FD
∞(Γ)), dN ) only depends on the

vinyl graph Γ̂.
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In order to make the differential dN of q-degree 0, we shift HHi(Ak,M) by 2i(N−1)

in q-degree. Note that this adjustment does not change HH0(Ak,M). We denote this
normalization by HHN

• (Ak,M)

The following proposition should be compared to [Wed19, Lem. 3.23].

Proposition 5.23. — Let Γ be a vinyl graph. The homology of (HHN
• (Ak,FD

∞(Γ)), dN )

(denoted by HN•) is concentrated in H-degree 0.

Proof. — Thanks to Queffelec-Rose’s algorithm (see Theorem 2.18), it is enough to
show the statement when Γ is a collection of circles. Suppose that Γ is a collec-
tion of circles labeled by k. The result follows from the regularity of the sequence(
DN (e

(i)
j )
)

16i6`
16j6ki

seen as polynomials in x1, . . . , xk with coefficients in RN . The reg-

ularity of this sequence follows from that of the sequences
(
DN (e

(i)
j )
)

16j6ki
for ev-

ery i because they involve different sets of variables. Hence, from now on, we can
suppose that ` = 1 and we write DN (ej) instead of DN (e

(1)
j ) The regularity of a

sequence is equivalent to the fact that the set Z of common zeroes of these polyno-
mials is 0-dimensional. Note that {T1, . . . , TN}k is a subset of Z. One shall see that
Z = {T1, . . . , TN}k.

Let us consider the ideal I of RN [x1, . . . , xk]Sk generated by the polynomials

Pr =

k∑
i=1

N∏
j=1

(xi − Tj)xri for 0 6 r 6 k − 1.

Note that I is equal to the ideal generated by
(
DN (ej)

)
16j6k

.
Let (y1, . . . , yk) ∈ RkN be a common zero of the polynomials (Pr)06r6k−1. Some of

the the y•’s might be equal. Let s be the cardinal of {y1, . . . , yk}. By symmetry, one
can assume that the first y1, . . . , ys are pairwise different. For i ∈ {1, . . . , s}, let us
write mi = {a ∈ {1, . . . , k}|ya = yi}. For 0 6 r 6 s− 1, one has:

Pr(y1, . . . , yk) =

s∑
i=1

mi

N∏
j=1

(yi − Tj)yri = 0,

in other words: 
1 1 . . . 1

y1 y2 . . . ys
...

...
ys−1

1 ys−1
2 . . . ys−1

s

 ·

m1

∏N
j=1(y1 − Tj)

m2

∏N
j=1(y2 − Tj)

...
ms

∏N
j=1(ys − Tj)

 = 0.

This implies that for every i ∈ {1, . . . , s}, we have yi ∈ {T1, . . . , TN}. Hence Z ⊆
{T1, . . . , TN}k. �

Remark 5.24. — The previous proof remains valid over RN ⊗Ti 7→zi C, for any choice
of z•’s. It is adapted from the elegant proof of [CKW09, Prop. 2.9] which treats the
case where all the zi are 0.
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In next section, we will need a primality result concerning the polynomials(
DN (e

(i)
j )
)

16i6`
16j6ki

. As in the previous proof, we start with the case ` = 1.

Lemma 5.25. — For 1 6 i 6 k, let ei be the ith elementary symmetric polynomial in
x1, . . . , xk. The polynomials

(
DN (ei)

)
16i6k

are pairwise co-prime in Ak ( = ASk
1k

).

Proof. — We work by induction on k. For 1 6 i 6 k, we write Pi,k := DN (ei) with ei
symmetric in k variables and P 0

i,k := DN (ei)|T1=···=TN=0. For k = 1, there is nothing
to show. For k = 2, we have:

P 0
1,2 = xN1 + xN2 and P 0

2,2 = x1x
N
2 + x2x

N
1 = x1x2(xN−1

1 + xN−1
2 )

which are co-prime since xN−1
1 +xN−1

2 and xN1 +xN2 are co-prime as polynomial in x1

with coefficients in Q[x2]. If Q is a non-trivial homogeneous element of Ak which
divides P1,2 and P2,2, then Q|T1=···=TN=0 is of degree 0. Since Q is not equal to 0 it
has degree 0 which proves that P1,2 and P2,2 are co-prime. Suppose now that k > 3.

If P is a polynomial in Ak, P (xk = 0) denotes the polynomial of Ak−1 obtained
by specializing the variable xk to 0 in P . From the very definition of DN , we have:

P 0
i,k =

k∑
j=1

xNj ei−1(x1, . . . , x̂j , . . . xk).

Hence if 1 6 i 6 k − 1, P 0
i,k(xk = 0) = P 0

i,k−1. Let 1 6 i1 < i2 6 k − 1. Suppose that
a polynomial Q in A1k divides Pi1,k and Pi2,k. The polynomial Q0 := Q|T1=···=TN=0

is homogeneous and Q(xk = 0) divides P 0
i1,k−1 and P 0

i2,k−1. By induction, we know
that Q0(xk = 0) has degree 0. This implies that Q0 and therefore Q has degree 0.
Hence Pi1,k and Pi2,k are co-prime.

It remains to show that for 1 6 i 6 k − 1, Pi,k and Pk,k are co-prime. Let Q be a
polynomial of Ak which divides Pi,k and Pk,k.

P 0
k,k = x1x2 · · ·xk(xN−1

1 + · · ·+ xN−1
k ) = ek(x1, . . . , xk)(xN−1

1 + · · ·+ xN−1
k ).

The polynomial ek is prime in Ak and does not divide Pi,k, since Pi,k(xk = 0) is not
equal to 0. Hence Q0 divides xN−1

1 + · · ·+ xN−1
k =: pk,N−1. Since Q0 divides pk,N−1

and P 0
i,k, it divides (in Ak)

Pi,k − pk,N−1xkei−1(x1, . . . , xk−1).

Hence its xk-degree is at most equal to 1. Since Q0 is symmetric in the x•, if it does
not have degree equal to 0, it is a multiple of x1 + · · ·+ xk = e1. But for e1 to divide
pk,N−1, one must have k = 2 and N − 1 odd. But we supposed k > 3. Hence Q0

has degree 0. This implies that Q has degree 0 and finally that Pi1,k and Pi2,k are
co-prime. �

Corollary 5.26. — The polynomials
(
DN (e

(i)
j )
)

16i6`
16j6ki

are pairwise co-prime in Ak.

Proof. — First note that DN (e
(i)
j ) is a polynomial in the variables xri+1, . . . , xri+ki

and T1, . . . , TN . It is homogeneous and has degree N − 1 + j which is bigger than 1.
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Hence for i1 6= i2, 1 6 j1 6 ki1 and 1 6 j2 6 i2, if DN (e
(i1)
j1

) and DN (e
(i2)
j2

) would
have a non-trivial common divisor, they would have an homogeneous divisor in the
variables T•. However DN (e

(i1)
j1

) is not divisible by any non-trivial homogeneous poly-
nomial in the variables T•, because evaluating all theses variables to 0 in DN (e

(i1)
j1

)

does not give the 0 polynomial. The case i1 = i2 follows from Lemma 5.25. �

Notation 5.27. — If Γ̂ is a vinyl graph of level k, denote TN (Γ̂), the space

HN0(HHN
• (Ak,F

D
∞(Γ)))q−k(N−1)

for a braid-like k-MOY graph-k Γ whose closure is equal to Γ̂. This is legitimate
thanks to Proposition 5.23.

5.3. When algebra meets foams. — The aim of this section is to compare TN (Γ̂)

and SN,N (Γ̂), namely to prove that these spaces are isomorphic.
Let us consider a braid-like k-MOY graph-k Γ and denote Γ̂ the closure of Γ. We

know, thanks to Proposition 4.18, that there is a canonical isomorphism φ from FT
∞(Γ̂)

to HH0(Ak,B(Γ)). The space SN,N (Γ̂) is a quotient of FT
∞(Γ̂)q−k(N−1) while the

space TN (Γ̂) is a quotient of HH0(Ak,B(Γ))q−k(N−1) (thanks to Proposition 5.23).
Using the isomorphism φ, we can think of TN (Γ̂) and SN,N (Γ̂) as being both quotients
of HH0(Ak,B(Γ̂))q−k(N−1). The rest of the section is devoted to proving the following
proposition:

Proposition 5.28. — The spaces TN (Γ̂) and SN,N (Γ̂) are isomorphic.

Thanks to the Queffelec-Rose algorithm and Proposition 4.15, it is enough to prove
the statement when Γ̂ is a collection of circles labeled by k. Since the spaces TN (Γ̂)

and SN,N (Γ̂) are both quotients of HH0(Ak,B(Γ))q−k(N−1) which is itself isomorphic
to Akq−k(N−1), let us write TN (Γ̂) = Akq

−k(N−1)/I1 and SN,N (Γ̂) = Akq
−k(N−1)/I2.

With these notations, we only need to show that the spaces I1 and I2 of Akq−k(N−1)

are equal.

Lemma 5.29. — The space I1 is generated by the polynomials
(
DN (e

(i)
j )
)

16i6`
16j6ki

. For-

getting about the action of the variables T•, it is a graded vector space. Its graded
dimension over Q is equal to:

dimQ
q I1 = q−k(N−1)

(
1−

∏̀
b=1

kb∏
i=1

(
1− q2(i+N−1)

))
dimQ

q Ak.

Proof. — The first statement is obvious. The second one follows from the fact that
the polynomials

(
DN (e

(i)
j )
)

16i6`
16j6ki

are pairwise co-prime. Indeed this implies that

〈
DN (e

(i1)
j1

)
〉
Ak
∩
〈
DN (e

(i2)
j2

)
〉
Ak
∩ · · · ∩

〈
DN (e

(ia)
ja

)
〉
Ak

=
〈
DN (e

(i1)
j1

) ·DN (e
(i2)
j2

) · · ·DN (e
(ia)
ja

)
〉
Ak
.
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Since the polynomial DN (e
(i)
j ) is homogeneous of degree 2(N + j − 1), we have:

dimq

〈
DN (e

(i1)
j1

) ·DN (e
(i2)
j2

) · · · DN (e
(ia)
ja

)
〉
Ak

= q−k(N−1)(dimQ
q Ak)

a∏
`=1

q2(j`+N−1).

The space I1 is the sum of all spaces
〈
DN (e

(i)
j )
〉
Ak

. This implies:

dimQ
q I1 = q−k(N−1)

(
1−

∏̀
b=1

kb∏
i=1

(
1− q2(i+N−1)

))
dimQ

q Ak. �

The proof of Proposition 5.28, follows from next lemma.

Lemma 5.30. — The spaces I1 and I2 are equal.

Proof. — It is clear that I1 is in I2 because the polynomials
(
DN (e

(i)
j )
)

16i6`
16j6ki

are

all in I2 (this follows from the definition of the evaluation of vinyl foams). We know
thanks to Lemma 5.3 that SN,N associates with a circle labeled kb a free RN -module
of graded rank

kb∏
i=1

q−i−(N−1) − qi+N−1

q−i − qi
= q−kb(N−1)

kb∏
i=1

1− q2(i+N−1)

1− q2i
.

Thanks to the monoidality of this functor, we obtain that the graded rank of SN,N (Γ)

is equal to

q−k(N−1)
∏̀
b=1

kb∏
i=1

1− q2(i+N−1)

1− q2i
.

But Akq−k(N−1) has a graded rank over RN equal to:

q−k(N−1)
∏̀
b=1

kb∏
i=1

1

1− q2i
.

Hence we have:

dimQ
q I2 = q−k(N−1) dimQ

q Ak − q−k(N−1)
∏̀
b=1

kb∏
i=1

(
1− q2(i+N−1)

)
dimQ

q Ak

= q−k(N−1)

(
1−

∏̀
b=1

kb∏
i=1

(
1− q2(i+N−1)

))
dimQ

q Ak

= dimQ
q I1. �

6. Link homologies

In this section, we define the symmetric Khovanov-Rozansky homology on diagrams
of braid closures and prove that they are indeed links invariants. The definition is of a
purely foamy nature. However for proving the invariance we need to use the dictionary
developed in Section 4. We derive the invariance of the symmetric homologies from
the invariance of the triply graded homology [KR08]. We use the description of this
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homology as Hochschild homology of complexes of Soergel bimodules due to Khovanov
and Rouquier [Kho07, Rou17]. We show that the extra differential introduced in
Section 5.2.2, is compatible with their construction. Finally, we prove that when taking
the homology with respect to this extra differential, one gets the same link homology
as the one obtained by applying the foamy functor of the previous sections. This link
homology categorifies the Reshetikhin-Turaev link invariant associated with q-sym-
metric powers of the standard representation of Uq(slN ). We call it the symmetric
Khovanov-Rozansky homology.

6.1. The chain complexes. — The idea of the construction is somewhat classical. We
follow the normalization used in [Ras15]. Let D be a diagram of a braid-closure of
level k, and ×(D) be its set of crossings. For x in ×(D) we define a finite set Ix by
the following rules:

if x =
m n and m 6 n then Ix = {−m, . . . ,−1, 0},

if x =
m n and m > n then Ix = {−n, . . . ,−1, 0},

if x =
nm and m 6 n then Ix = {0, 1, . . . ,m},

if x =
nm and m > n then Ix = {0, 1, . . . , n}.

In the first two cases, we say that x is of type (m,n,+) and in the last two cases of
type (m,n,−). If x is a crossing and i is an element of Ix we define

(ηx,i, κx,i) =


(m+ i,−i−m) if x is of type (m,n,+), and m 6 n
(n+ i,−i− n) if x is of type (m,n,+), and m > n,
(i−m,m− i) if x is of type (m,n,−), and m 6 n
(i− n, n− i) if x is of type (m,n,−) and m > n.

We set I(D) to be
∏
x∈×(D) Ix and call the elements of I(D) the states of D. With

every state s = (sx)x∈×(D) of D we associate a vinyl graph Ds of level k by replacing
every crossing x of ×(D) according to the rules given by Figure 11.

If s is a state, we define

ηs =
∑
x∈×

ηx,sx and κs =
∑
x∈×

κx,sx

and we set Ds to sit in topological degree ηs and to be shifted in q-degree by κs.
If s = (sx)x∈×(D) and s′ = (s′x)x∈×(D) are two states which are equal on all but

one of their coordinate x, for which s′x = sx + 1, we write (s → s′) (or (s → xs
′) to

be precise). In this case, we define FD,s→s′ to be the vinyl Ds′-foam-Ds, which is the
identity everywhere but in a neighborhood of x, where it is given by Figure 12.
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n

n

m

m

n− sx −m

−sx

n− sx m + sx if x is of type (m,n,+) and m 6 n,

n

n

m

m

m− sx − n

−sx

n + sx m− sx if x is of type (m,n,+) and m > n,

n

n

m

m

n + sx −m

sx

n + sx m− sx if x is of type (m,n,−) and m 6 n,

n

n

m

m

m + sx − n

sx

n− sx m + sx if x is of type (m,n,−) and m > n.

Figure 11.

Remark 6.1. — If x is of type (1, 1,+) or (1, 1,−), the set Ix has two elements and
the foam FD,s→xs′ simplifies upon removing 0-labeled facets:

FD,s→xs′ for x of type (1, 1,+), FD,s→xs′ for x of type (1, 1,−).

We define an hyper-rectangle R(D) of graded RN -modules. The vertices of this
hyper-rectangle are labeled by states and the edges by pair of states (s, s′) for which
s → s′. With every state s = (sx)x∈× we associated the graded RN -module Vs :=

Sk,N (Ds)q
κs and we declare that it has homological degree ηs.

With every edge (s→ s′), we associate the map ds→s′ :=Sk,N (FD,s→s′) : Vs→Vs′ .
One easily checks that all these maps are q-homogeneous of degree 0 (thanks to the
degree shift qκs) and increase the homological degree by 1. Hence we call them pre-
differentials. J.É.P. — M., 2020, tome 7
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n−s′x

n−sx

m+s′x

m+sx

m

n

n−sx−m

n−s′x−m

1

n
−sx

−s′x

m

n+s′x

n+sx

m−s′x

m−sx

m

n

m−sx−n

m−s′x−n

1

n
−sx

−s′x

m

if x is of type (m,n,+) and m 6 n, if x is of type (m,n,−) and n 6 m,

n−s′x

n−sx

m+s′x

m+sx

m

n

m+sx−n

m+s′x−n

1

n
−sx

−s′x

m

n+s′x

n+sx

m−s′x

m−sx

m

n

n+sx−m

n+s′x−m

1

n
sx

s′x

m

if x is of type (m,n,+) and m > n, if x is of type (m,n,−) and n < m.

Figure 12. It is worth noting that this has q-degree 1.

All squares in R(D) commute because of the TQFT nature of the functor Sk,N .
Furthermore, if the composition of two pre-differentials ds→s′ and ds′→s′′ does not fit
into a square in R(D), this means that we have (s → xs

′) and (s′ → xs
′′) for the

same x in ×. In this case ds′→s′′ ◦ ds→s′ = 0 because the foams of Figure 13 are
∞-equivalent to 0. Indeed, given a closure F of one of this two foams, one can gather
the colorings of F in canceling pairs. Given a coloring c of F , the two facets labeled 1

must carry different pigments, say i and j. One can locally exchange the pigments i
and j. This produces a new coloring c′ and the contributions of c and c′ in the
evaluation formula (Definition 3.14) cancel each others. Hence if we add(8) some signs

(8)There are many ways to do it, but all possibilities produce isomorphic chain complexes. In
order to get functoriality of the construction announced in the introduction, one should be careful in
this choice. This boils down to endowing the set× with a total order as detailed in [ETW18]. A more
systematical construction is given in [Bla10] making use of the exterior algebra generated by×. This
last approach works only for uncolored links, but can be easily adapted to the colored case.
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n+k+2

n+k+1

n+k

m−k−2

m−k−1

m−k

m

n

n+k−m

n+k+2−m

1

1

n
k

k+2

m

and

n−k

n−k+1

n−k+2

m+k

m+k−1

m+k−2

m

n

m+k−2−n

m+k−n

1

1

n
k−2

k

m

Figure 13.
to the pre-differential to turn the commutativity of squares into anti-commutativity
we can flatten the hyper-rectangle R(D) and obtain a complex of graded RN -modules
S•,•(D).

Finally we set Ŝ•,•(D) to be equal to S•,•(D)qκ
′(D), where

κ′(D) =
∑
x∈×

κ′x and κ′x =


−m(m+N − 1) if x is of type (m,m,+),
m(m+N − 1) if x is of type (m,m,−),
0 else.

Theorem 6.2. — The homology of Ŝ•,•(D) is a link invariant which categorifies the
symmetric Reshetikhin-Turaev invariant.

Notation 6.3. — In what follows, we deal with three different differentials: the
Hochschild one (dH), the topological one (dT ) and the extra one (dN ). We denote by
HH(•) (resp. HT (•), HN(•)), the homology taken with respect to dH (resp. dT , dN )
and by HNT (•) the homology taken with respect to the total complex(9) built out of
the bicomplex with bi-differentials (dN , dT ). The Hochschild homology is computed
using the Koszul complex (as explained in Section 4.4 and Appendix B). Moreover,
for the Hochschild homology, we will often drop the algebra in the notation: writing
HH(M) instead of HH(A,M). As explained in Section 5.2.2, we denote by HHN the
Hochschild homology with an additional q-degree shift making the extra differential
of q-degree 0.

Note that homological degree for HH and HN coincide. We denote by [•]H and [•]T
grading shifts(10) with respect to the H and the T -degree. When considering the total
complex built out of the bicomplex with bi-differentials (dN , dT ), the homological
degree shift is denoted by [•]TH . Let us recall that grading shifts with respect to the
q-degree are denoted by q•.

(9)Note that dN is a differential of chain complex (it has H-degree −1) while dT is a differential
of cochain complex (it has T -degree +1), the total complex we consider is a complex of cochain
complex: the total homological degree is equal to the T -degree minus the H-degree.

(10)We use the homological convention for grading shifts: If V = ⊕iVi, we have (V [k])i = Vi−k.
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Proof of Theorem 6.2. — The fact the graded Euler characteristic of Ŝ•,•(•) is indeed
the symmetric Reshetikhin-Turaev invariant follows from Theorem 5.17 and from
the construction of the hyper-rectangle which is clearly designed to categorify the
identities (2.10) and (2.11). In order to prove invariance, we proceed in two steps:

(1) First, we prove that if D is a diagram of a knotted vinyl graph (that is, a
diagram of a knotted MOY graph which satisfies the same condition on tangent than
vinyl graph), then the homotopy type of complex S•,•(D) (up to a q-grading shift)
only depends on the isotopy type of knotted graph in the annulus.

(2) Then we prove that we have a stabilization property. Namely, we will show, that
for any diagram of knotted braid-like k-MOY graph-k Γ, the complexes associated
with the following three diagrams

D+ := 1
1
...Γ 1 , D− := 1

1 ...Γ 1 and D0 := 1 ...Γ

have the same homology. We write Γ+ (resp. Γ−) for the two knotted braid-like
k′-MOY graph-k′ obtained from Γ by adding one strand labeled by 1 on the right
and a positive (resp. negative) crossing on the top of it.
Note that in our stabilization, we only deal with a strand labeled by 1. Thanks to a
trick due to Mackaay-Stošić-Vaz [MSV11] (see as well [Wu14] and [Cau17, Fig. 1]),
this implies (together with the homotopy equivalences (6.1)) that we actually get the
stabilization property for any labels. Using this trick requires that we actually deal
with knotted vinyl graphs in step (1) (and not only with links). Finally thanks to
Markov theorem, we can conclude that S•,•(D) is a link invariant.

(6.1) q−abS


a + b

ba

 ' S


a + b

a b

 ' qabS


a + b

a b

 .

The proof of step (1) is quite standard. One first consider the case where all strands
involved in the braid relations have label 1. This case is treated in terms of foams
in [Vaz08, Figs. 5.14 & 5.16]. The case with strands of arbitrary labels follows from
the first case and the invariance under the so-called fork slide moves (see Figure 14).
Indeed, one can blist (see Figure 15) each strands and use the fork slide moves
and the 1-labeled braid relation to deduce the arbitrary labeled braid relations. See
[WW17, MSV09, Wu14] for similar arguments. Proof of invariance for the fork slide
move using foam is quite standard see for instance [QR16, Proof of Prop. 4.10] or
[ETW18, §3.3]. But let us briefly sketch how it works on the fork slide move on the
top left move of Figure 14. We consider the diagram on the left-hand side of the
move and its associated complex in Figure 16. The space on the first line can be
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m

n + 1

1 n

! m

n + 1

1 n

m

n + 1

1 n

! m

n + 1

1 n

n + 1

n 1

m

!
n + 1

n 1

m
n + 1

n 1

m
!

n + 1

n 1

m

Figure 14. Fork slide moves

i  i
. . .

. . .

1

i

1

1

1

1

Figure 15. Blisting an edge of label i.

n + 1 m

1

m + 1n

j

1

m

m + jn− j

m
+
j −

n

ni

n + 1 m

1
m−

1

n

j

1

m

m + jn− j

m
+
j −

n

nm

. . . . . .

. . . . . .

Figure 16. For simplicity we dropped the symbols SN .

J.É.P. — M., 2020, tome 7



632 L.-H. Robert & E. Wagner

n + 1 m

j
+

1

n− j

m + j + 1

1

m + j

m
+
j −

n

nm

⊕ [j]

mn + 1

j + 1
n− j

m
−

1

j +m

m
+
j −

n

m n 1

[j + 1]

mn + 1

j + 1
n− j

m
−

1

j +m

m
+
j −

n

m n 1

. . . . . .

. . . . . .

Figure 17.

n + 1 m

j
+

1

n− j

m + j + 1

1

m + j

m
+
j −

n

nm

q−j

mn + 1

j + 1
n− j

m
−

1

j +m

m
+
j −

n

m n 1

. . . . . .

. . . . . .

Figure 18.
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decomposed using the isomorphisms (5.1) and (5.3). The space on the second line
can be decomposed using isomorphisms (5.1) and (3.4). This gives the diagrams in
Figure 17. One can check that the vertical maps injective on the second term of the
direct sum. We can use them to simplify the complex. The complex is homotopy
equivalent to that in Figure 18. The second line turns out to be exact (thanks to
isomorphism (5.3)) except on the rightmost (corresponding to j = 0) term if n < m.
If the line is exact we can simplify and obtain that the complex is homotopy equivalent
to that corresponding to the right-hand side diagram of the for slide move we are
interested in.

If n < m, we can cancel out the second line except the rightmost term which
becomes:

mn + 1

n
+

1−
m

n + 1

1nm

Hence the whole complex is homotopy equivalent to that corresponding to the right-
hand side diagram of the for slide move we are interested in.

The invariance under braid relations can as well be deduced from the algebraic
setting using Soergel bimodules, see [WW17]. The proof of step (2) is more involved.
We need to use the dictionary between Soergel bimodules and vinyl foams developed
in Section 5 and a stabilization result which holds for Soergel bimodules.

First note that if D has braid index equal to k,

S(D) = HT (HN(HHN
• (B(R(D)))))q−k(N−1),

thanks to Proposition 5.28. We claim that we have

HNT (HHN
• (B(R(D)))) = HT (HN(HHN

• (B(R(D))))).

We consider HHN
• (B(R(D))). It is a bi-complex which we temporarily denote by C.

Proposition 5.23 tells us that HN(C) is concentrated in H-degree equal to 0. This
implies that the spectral sequence E(C) induced by the bi-complex structure with
HT (HN(C)) on the second page has only trivial differentials on this page. This spectral
sequence converges to HNT (C) because the bi-complex is bounded. Hence, we have

HNT (HHN
• (B(R(D)))) = E∞(C) = E2(C) = HT (HN(HHN

• (B(R(D))))).

The stabilization result for Soergel bimodules is given by Lemma 6.5 and its proof
occupies Section 6.2. It tells us that:

HT (HH•(B(Γ+)))[−1]T [−1]Hq
−1 ' HT (HH•(B(Γ0))) ' HT (HH•(B(Γ−)))q1.
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Using HHN instead of HH and collapsing the T -grading and the H-grading to their
difference, we get:

HT (HHN
• (B(Γ+)))q−2(N−1)−1 ' HT (HHN

• (B(Γ0))) ' HT (HHN
• (B(Γ−)))q1.

Moreover these isomorphisms preserve the extra-differential dN . We shift by q−k(N−1).
This proves that

HN(HT (HHN
• (B(Γ+))))q−Nq−(k+1)(N−1) ' HN(HT (HHN

• (B(Γ0))))q−k(N−1)

' HN(HT (HHN
• (B(Γ−))))[1]THq

Nq−(k+1)(N−1).

Since homological degrees are all finite, there is a spectral sequence with

HN(HT (HH•Ak,B(•)))

on the second page converging to HNT (HH•Ak,B(•)). The previous isomorphisms
descend to the spectral sequences and to their limits. Hence we have:

HNT (HHN
• Ak,B(Γ+))qNq−(k+1)(N−1) ' HNT (HHN

• (Ak,B(Γ0))q−k(N−1)

' HNT (HHN
• (Ak,B(Γ−))q−Nq−(k+1)(N−1).

This implies that S(D+)qN ' S(D0) ' S(D−)q−N , and finally that

Ŝ(D+) ' S(D0) ' Ŝ(D−). �

Remark 6.4. — Note that the previous proof can be adapted to disk-like foams up
to ∞-equivalence. Then it turns out to be a rewriting of the invariance of the triply
graded homology very close to [Rou17] (see also [KR08, Ras15]).

6.2. Stabilization. — The aim of this section is to prove the stabilization move for
Soergel bimodules. This basically follows from Rouquier [Rou17]. However, since for
further use we need to be careful with some additional structures going on, we repeat
the proof. Note, however, that the framework in which the results of [Rou17] are
stated is more general(11) than ours.

Let k be a positive integer and k11 := (k1, . . . , k`−1, 1, 1) be a finite sequence of
positive integers of level k. We define k2 = (k1, . . . , k`−1, 2) to be the same sequence
where the last two 1s has been merged k1 := (k1, . . . , k`−1, 1) to be the same sequence
where the last 1 has been dropped, and finally k0 := (k1, . . . , k`−1) to be the same
sequence where the last two 1s has been dropped. We consider the algebras A11 :=

Ak11 , A2 := Ak2 and A1 := Ak1 .
We consider M a complex of A1-modules-A1 which is projective as an A1-module

and as a module-A1, and we define MI := M ⊗ RN [xk]. It has a natural structure
complex of A11-modules-A11 and these modules are projective as A1-modules and as a
modules-A1. We denote by θ the A11-module-A11 A11⊗A2 A11q−1. Note that with the

(11)Namely, he deals with arbitrary Coxeter groups, while we only consider the type A.
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notations of Section 4, θ is the Soergel bimodule associated with
1 1

1 1

2 and the A11-

module-A11 A11 is the Soergel bimodule associated with 1 1 . Finally we consider
two morphisms of A11-modules-A11.

s : θ −→ A11

P ⊗Q 7−→ PQ
and

m : A11 −→ θ

P 7−→ Pxk−1 ⊗ 1− P ⊗ xk
The notation may seem confusing: m is for merge and s is for split. We define

F := 0 −→ θ
s−−→ A11q−1 −→ 0,

F−1 := 0 −→ A11q
m−−→ θ −→ 0.

In F−1 and F , θ is in T -degree 0, A11q−1 in T -degree 1 and A11q in T -degree −1.
Note that in the language of Section 4, m and s are the maps induced by the foams

given in Remark 6.1.
The following lemma should be compared to [Cau17, Lem. 6.3].

Lemma 6.5. — The homology of the complexes

(HH∗(A
1,M), dT ), (HH∗(A

11,MI ⊗A11 F )[−1]T [−1]Hq
−1, dT ),

(HH∗(A
11,MI ⊗A11 F−1)q1, dT )

are isomorphic as triply graded RN -modules. Moreover we can choose the isomor-
phisms to commute with the extra-differentials dN .

Proof. — We will deal with complexes carrying three different differentials: the
Hochschild differential dH , the topological differential dT and the additional differen-
tial dN .

C(A11) = C(A1)⊗RN X,
where

X := RN [xk]⊗RN [xk]q2 RN [xk]⊗RN [xk],
xk ⊗ 1− 1⊗ xk

xNk ∂xk

Hence

C(A11)⊗(A11)en (MI ⊗A11 F ) ' C(A1)⊗(A1)en (M ⊗A1 (X ⊗RN [xk]en F )),

where Ben denotes the algebra B ⊗R Bopp for any R-algebra. We have, focusing on
X ⊗RN [xk]en F ,

X ⊗RN [xk]en F '

θq2 A11q

θ A11q−1

s

xk ⊗ 1− 1⊗ xk 0

s

.
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In θ, the elements 2(xk⊗1−1⊗xk) and (xk−xk−1)⊗1−1⊗(xk−xk−1) are equal.
Hence, we have the following exact sequence of bicomplexes (for dT and dH) of graded
A11-modules-A11 in Figure 19. Note that this is not a sequence of tri-complexes: it does

0

Y1

F ⊗Q[xk]en X

Y2

0

A11q3 A11q

0 0

2(xk − xk−1)

θq2 A11q

θ A11q−1

s

xk ⊗ 1− 1⊗ xk 0

s

A′11q 0

θ A11q−1

a 7→ a(xk − xk−1)⊗ 1

−a⊗ (xk − xk−1)
0

s

(xk − xk−1)⊗ 1

+1⊗ (xk − xk−1)

a⊗ b 7→ aσk−1(b)

2 Id

φ

Id

2 Id

Figure 19. Here A′11 is equal to A11 as a A11-module and has a right
A11-action twisted by the transposition σk−1 which exchanges xk and
xk−1.

not respect the differential dN . The dotted arrows represents the part of dN appearing
in X. In each topological degree, this sequence splits as a sequence of complexes (for
the Hochschild differential) of

φ(p(x1, . . . , xk2)xik−1x
j
k) = p(x1, . . . , xk2)xik−1 ⊗ x

j
k−1.

We now take the homology with respect with the Hochschild differentials.(12) It im-
plies, that for each i in N, that we have the sequence of graded complexes:

0 −→ HHi(C(A1)⊗(A1)en (M ⊗A1 Y1)) −→ HHi(A
11,MI ⊗ F )

−→ HHi(C(A1)⊗(A1)en (M ⊗A1 Y2)) −→ 0.

(12)Here, we abuse a little bit the appellation Hochschild differential: in Y1 and Y2 the vertical
arrows are part of the Hochschild differential, while the horizontal ones are part of the topological
differential.
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We have a short exact sequence of complexes of A11-modules-A11:

0 −→ A′11q
a7→a(xk−xk−1)⊗1−a⊗(xk−xk−1)−−−−−−−−−−−−−−−−−−−−−−−→ θ

s−→ A11q−1 −→ 0.

This implies that for all i, the complexHHi(C(A1)⊗(A1)en(M⊗A1Y2)) is homotopically
trivial (with respect to dT ). It follows that:

HT (HHi(A
11,MI ⊗ F−1)) ' HT (HHi(C(A1)⊗(A1)en (M ⊗A1 Y1))).

This implies that the part of the differential dN coming from X is equal to 0 in
HT (HHi(A

11,MI ⊗ F−1)), and therefore that this isomorphism commute with dN .
The complex (HHi(C(A1) ⊗(A1)en (M ⊗A1 Y1)), dT ) has the same homology as
the complex (HHi(C(A1) ⊗(A1)en (M ⊗A1 A1q1))[+1]H , dT ) which itself is equal to
HHi(A

1,M)[+1]Hq
1.

The argument for F−1 is similar, with the following short exact sequence of bi-
complexes:

0

Z1

F−1 ⊗Q[xk]en X

Z2

0

A11q3 A11q3

0 0

Id

A11q3 θq2

A11q θ

m

0 xk ⊗ 1− 1⊗ xk

m

0 A′11q

A11q θ

a 7→ (xk − xk−1)a⊗ 1

−a⊗ (xk − xk−1)

m

2 Id

a⊗ b 7→ aσk−1(b)

Id

φ

a 7→ (xk − xk−1)a⊗ 1

−a⊗ (xk − xk−1)

Id

�

6.3. An example of computation. — In this section, we compute the homology of
the positive uncolored Hopf link in the non-equivariant setting (i.e., evaluating the
variables T• on 0).

First remark (see Remark 6.1) that the pre-differential given by the foam FD,s→xs′

for x of type (1, 1,+) (resp. of type (1, 1,−)) is always surjective (resp. injective). This
implies in particular that if an uncolored braid diagram D has n crossings, then the
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homological length (for the topological degree) of H(Ŝ(D) is at most n. If D contains
both positive and negative crossings then H(Ŝ(D) has length at most n− 1.

The complex of resolutions of the positive uncolored Hopf link is given by:

2

2

{mλ|λ∈T (2,N−1)}

{xi|i∈{0,1}} {xi|i∈{0,1}}

[N ][N+1][2]

2

{mλ|λ∈T (2,N−1)}

{xi|i∈{0,1}}

[N ][N+1]

2

{mλ|λ∈T (2,N−1)}

{xi|i∈{0,1}}

[N ][N+1]
{mλ|λ∈T (1,N−1)}

{mλ|λ∈T (1,N−1)}

[N ][N ]

In this picture, the red labels are meant to represent a basis. For a given diagram Γ,
pick a Γ-tree-like foam and decorate it with the elements given by red sets. The blue
quantum numbers are meant to represent the quantum dimension of the spaces.

Observe that the two spaces in the middle are isomorphic and that the pre-
differential on the left are equal up to this isomorphism, and therefore have the same
kernel. On the other hand, the pre-differential on the right are surjective. Taking care
of the different grading shifts, this gives:

Hi(Ŝ(Dn)) = Hi(S(Dn))q−Nn =


Q[N ][N + 1]q−2N+1 if i = 0,
Q[N ]q−(N+1) if i = 1,
0 else.

Remark 6.6
(1) Note in particular that the symmetric uncolored homology of links is not triv-

ial for N = 1 (for which the corresponding polynomial invariant is always 1). We
expect that a simple combinatorial description of this homology is achievable since
the polynomial invariant of MOY graph has an especially simple form for N = 1 (see
Lemma 2.8).

(2) For N = 2, this gives a different homology than the Khovanov homology and
odd Khovanov homology.
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Appendix A. Quantum link invariants and representations of Uq(glN )

In this appendix we provide details about the relation between the graphical MOY
calculi defined in Section 2.1 and the representations of Uq(glN ). The aim is to give ex-
plicit definitions the Reshetikhin-Turaev functors which associate with a MOY graph
an intertwiner of Uq(glN )-representations. We will define two such functors: one sends
an edge labeled k onto the identity of ΛkqVq where Vq is the standard representation
of Uq(slN ). This yields the exterior MOY calculus.(13) The other one associates with
such an edge the identity of Symk

q Vq. This yields what we call the symmetric MOY
calculus.

A.1. The quantum group Uq(glN ). — We first recall the definition of Uq(glN ). For a
general presentation of quantum groups we refer to [Lus10].

Definition A.1. — Let N be a positive integer. The quantum general linear algebra
Uq(glN ) is the associative, unital C(q)-algebra generated by Li, L−1

i , Fj and Ej , with
1 6 i 6 N and 1 6 j 6 N − 1 subject to the relations

LiLj = LjLi, LiL
−1
i = L−1

i Li = 1,

LiFi = q−1FiLi, Li+1Fi = qFiLi+1, LiEi = qEiLi, Li+1Ei = q−1EiLi+1,

LjFi = FiLj , LjEi = EiLj for j 6= i, i+ 1,

EiFj − FjEi = δij
LiL

−1
i+1 − L

−1
i Li+1

q − q−1
,

[2]qFiFjFi = F 2
i Fj + FjF

2
i if |i− j| = 1,

[2]qEiEjEi = E2
i Ej + EjE

2
i if |i− j| = 1,

EiEj = EjEi, FiFj = FjFi if |i− j| > 1.

Proposition A.2. — Defining ∆ : Uq(glN ) → Uq(glN )⊗2, S : Uq(glN )opp → Uq(glN )

and ε : Uq(glN )→ C(q) to be the C(q) algebra maps defined by:

∆(L±1
i ) = L±1

i ⊗ L
±1
i , S(L±1

i ) = L∓1
i , ε(L±1

i ) = 1,

∆(Fi) = Fi ⊗ 1 + L−1
i Li+1 ⊗ Fi, S(Fi) = −LiL−1

i+1Fi, ε(Fi) = 0,

∆(Ei) = Ei ⊗ 1 + LiL
−1
i+1 ⊗ Ei, S(Ei) = −EiL−1

i Li+1, ε(Ei) = 0,

endow Uq(glN ) with a structure of Hopf algebras with antipode. Furthermore the cat-
egory of finite-dimensional Uq(glN )-modules is braided.

(13)This is the “classical” MOY calculus. MOY stands for Murakami-Ohtsuki-Yamada who gave
the identities described in Section 2.1 in [MOY98].
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Proposition A.3. — We define Vq to be an Nth dimensional C(q)-vector space with
basis (bi)i=1,...,N . The formulas:

Libi = qbi, L−1
i bi = q−1bi, L±1

i bj = bj j 6= i,

Ei−1bi = bi−1 Eibj = 0, if i 6= j − 1,
Fibi = bi+1 Fibj = 0, if i 6= j,

endow Vq with a structure of Uq(glN )-modules.

Following [ST19] we now consider the tensor algebra T •Vq. This algebra is naturally
graded and endowed with an action of Uq(glN ) which preserve the grading (i.e., for
every integer a, T aVq is a Uq(glN )-submodule of T •Vq.). We consider two two-sided
ideals E2Vq and S2Vq inside this algebra TVq:

EVq := 〈qbi ⊗ bj − bj ⊗ bi|for i < j〉
SVq := 〈bm ⊗ bm, bi ⊗ bj + qbj ⊗ bi|for all m and for i < j〉.and

Since these two ideals are homogeneous the quotient

Λ•qVq := T •Vq/SVq and Sym•q Vq := T •Vq/EVq

inherits a grading from T •Vq. One easily checks that E2Vq and S2Vq are stable under
the action of Uq(glN ) over T •Vq. This implies that for any non-negative integer a,
ΛaqVq and Syma

q Vq inherit structure of Uq(glN )-modules. One can show that for ev-
ery integer a, ΛaqVq and Syma

q Vq are simple modules. The image of a pure tensor
x1 ⊗ · · · ⊗ xa is denoted by

x1 ∧ · · · ∧ xa in ΛaqVq and by x1 ⊗ · · · ⊗ xa in Syma
q Vq.

The C(q) vector space ΛaqVq has dimension (Na ) and is spanned by the vectors

(bi1 ∧ bi2 ∧ · · · ∧ bia)16i1<i2<···<ia6N .

If 1 6 i1 < i2 < · · · < ia 6 N and I = {i1, . . . ia}, we write bI = bi1 ∧ bi2 ∧ · · · ∧ bia .

Definition A.4. — Let X be a set. A multi-subset of X is a map Y : X → N. If∑
x∈X Y (x) < ∞, the multi-subset Y is said to be finite and the sum is its cardinal

(denoted by #Y ). If x is an element of X, the number Y (x) is the multiplicity of x
in Y .

The C(q) vector space Syma
q Vq has dimension (N+a−1

a ) and is spanned by the
vectors

(bi1 ⊗ bi2 ⊗ · · · ⊗ bia)16i16i26···6ia6N .

If 1 6 i1 6 i2 6 · · · 6 ia 6 N and I is the multi-subset of IN := {1, . . . , N} {i1, . . . ia},
we write b′I = bi1 ⊗ bi2 ⊗ · · · ⊗ bia .
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A.2. Exterior MOY calculus. — In this subsection we work in the full subcate-
gory Uq(glN )-modΛ of finite-dimensional Uq(glN )-modules generated (as a monoidal
category) by the modules ΛaqVq for 0 6 a 6 N and their duals. We define a few
morphisms:

ΛaqVq ⊗ ΛbqVq
Λa,b−−−−→ Λa+b

q Vq Λa+b
q Vq

Ya,b−−−−→ ΛaqVq ⊗ ΛbqVq

bI ⊗ bJ 7−→

{
q−|J<I|bItJ if I ∩ J = ∅,
0 else,

bK 7−→
∑

ItJ=K

q|I<J|bI ⊗ bJ ,

C(q)

←
∪a−−−→ ΛaqVq ⊗ (ΛaqVq)

∗ (ΛaqVq)
∗ ⊗ ΛaqVq

←
∩a−−−→ C(q)

1 7−→
∑

#I=a

bI ⊗ b∗I , f ⊗ x 7−→ f(x),

C(q)

→
∪a−−−→ (ΛaqVq)

∗ ⊗ ΛaqVq ΛaqVq ⊗ (ΛaqVq)
∗
→
∩a−−−→ C(q)

1 7−→
∑

#I=a

q−|I<IN |+|IN<I|b∗I ⊗ bI , bI ⊗ b∗J 7−→ q|I<IN |−|IN<I|δIJ .

We should explain what |J < I| and |I < J | mean here. If A and B are two subsets
of an ordered set C, we define

|A < B| := #{(a, b) ∈ A×B|a < b}.

Using the Reshetikhin-Turaev functor one can interpret any MOY graph as a mor-
phism in Uq(glN )-modΛ. Using identities (2.1) and (2.2) we can extend this interpre-
tation to MOY graph with crossings.

A.3. Symmetric MOY calculus. — In this subsection we work in the full subcate-
gory Uq(glN )-modS of finite-dimensional Uq(glN )-modules generated (as a monoidal
category) by the modules Syma

q Vq for a in N and their duals. We define a few mor-
phisms:

Syma
q Vq ⊗ Symb

q Vq
λa,b−−−−→ Syma+b

q Vq Syma+b
q Vq

Ya,b−−−−→ Syma
q Vq ⊗ Sym ΛbqVq

b′I ⊗ b′J 7−→ q|J<I|b′ItJ , b′K 7−→
∑

ItJ=K

[I, J ]qq
−|J<I|b′I ⊗ b′J ,

C(q)

←
∪a−−−→ Syma

q Vq ⊗ (Syma
q Vq)

∗ (Syma
q Vq)

∗ ⊗ Syma
q Vq

←
∩a−−−→ C(q)

1 7−→
∑

#I=a

q|I<J|b′I ⊗ (b′I)
∗, f ⊗ x 7−→ f(x),

C(q)

→
∪a−−−→ (Syma

q Vq)
∗ ⊗ Syma

q Vq Syma
q Vq ⊗ (Syma

q Vq)
∗
→
∩a−−−→ C(q)

1 7−→
∑

#I=a

q−|I<IN |+|IN<I|(b′I)
∗ ⊗ b′I , b′I ⊗ (b′J)∗ 7−→ q|I<IN |−|IN<I|δIJ .
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We should explain what |J < I|, |I < J |, and [I, J ] mean here. If A and B are two
multi-subsets of an ordered set X, we define

|A < B| :=
∏

x<y∈X
A(x)B(y), [A,B] =

∏
x∈X

[
A(x) +B(x)

A(x) B(x)

]
.

Using the Reshetikhin-Turaev functor one can interpret any MOY graph as a mor-
phism in Uq(glN )-modS. Using identities (2.10) and (2.11) we can extend this inter-
pretation to MOY graph with crossings. Note that this is not consistent with the
exterior MOY calculus: the braiding has been changed for its inverse.

Appendix B. Koszul resolutions of polynomial algebras

In this appendix we recall the definition of the Koszul resolution of polynomial al-
gebras. Then we describe a way to construct other differentials on the Koszul complex
which anti-commute with the Koszul differential.

For an introduction to Koszul resolution see [Lod98, §3.4] and [Kas04, BLS18].

B.1. Koszul resolutions. — Let R be an unitary commutative ring and V a free
R-module of rank k. Let us fix an ordered basis (x1, . . . xk). We denote by A the
symmetric tensor algebra SV and we will think of A as the polynomial algebra
R[x1, . . . , xn]. The algebra ΛV is naturally graded (we speak of H-grading): the non-
zero elements of V seen in ΛV have H-degree equal to 1. Let C(A) be the A-module-A
A⊗ΛV ⊗A. It inherits an H-grading from ΛV . We consider the following endomor-
phism of A-module-A on (C(A)•):

d : C(A) −→ C(A)

1⊗ v1 ∧ · · · ∧ v` ⊗ 1 7−→
∑̀
i=1

(−1)i+1 (vi ⊗ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v` ⊗ 1

−1⊗ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v` ⊗ vi) .

Lemma B.1. — The map d is a differential on C(A)•, and (C(A)•, d) is a projective
resolution of A as an A-module-A. The complex C(A)• is called the Koszul resolution
of A.

Proof. — If V has dimension 1, then A = R[x1]. It is easy to check, that the short
exact sequence

0 −→ A⊗A x1⊗1−1⊗x1−−−−−−−−−→ A⊗A m−−→ A −→ 0

is exact. This proves that

0 −→ A⊗A x1⊗1−1⊗x1−−−−−−−−−→ A⊗A

is a projective resolution of A. If V is k dimensional, then C(A) is by definition the
complex

C(R[x1])⊗ C(R[x2])⊗ · · · ⊗ C(R[xk]),

and we deduce the result from the one-dimensional case. �
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Remark B.2. — The vector space V could be graded, we speak of q-grading. In this
case we suppose that the basis (x1, . . . , xk) is homogeneous. The H-grading of C(A) is
not influenced by the q-grading. On the contrary, q-grading of V induces a q grading
on A. Hence if all the xi’s have positive q-degree, we have:

rkRq A =

k∏
i=1

1

1− qdegq xi
.

B.2. An homotopy equivalence. — We consider the algebra A :=A1k =R[x1, . . . , xk].
For consistency with the rest of the paper, we set the indeterminate xi’s to have
q-degree equal to 2. If k = (k1, . . . , k`) is a finite sequence of positive integers of
level k, we set Ak := ASk , where Sk is equal to Sk1 × · · · ×Sk` and acts naturally
on the indeterminates x1, . . . , xk. Note that the algebras Ak can be thought of as
polynomial algebras as well. One only need to consider some appropriate elementary
symmetric polynomials.

Let us fix two finite sequences k1 = (k1
1, . . . , k

`1
1 ) and k2 = (k1

2, . . . , k
`2
2 ) of positive

integers of levels k. We suppose furthermore, that k2 is obtained from k1 by merging
two of consecutive elements of k1. For instance:

k1 = (2, 3, 1, 1, 5, 4) and k2 = (2, 4, 1, 5, 4).

For simplicity of notations we will actually suppose that k1 = (a, b) and k2 = (a+ b)

with a, b > 1. In what follows we will be interested in A1 := Ak1
and A2 := Ak2

.
Since A2 is a sub-algebra of A1, A1 can be consider as a A2-module-A1. As a

module-A1 it is free of rank 1, as a A2-module, it is free of rank
(
a+b
a

)
. Hence it is

both a projective module-A1 and a projective A2-module. This implies that
C1
• := A1 ⊗A1 C(A1)• ' C(A1)• and C2

• := C(A2)• ⊗A2 A1

are both projective resolutions of A1 as A2-module-A1. Hence we know that these two
complexes are homotopic. We denote by d1 (resp. d2) the differential of C1

• (resp. C2
• ).

We want to give an explicit homotopy equivalence of complexes of A2-module-A1

ϕ : C2
• → C1

• . We consider the vector space V1 := 〈f1, . . . , fa, g1, . . . , gb〉R and
V2 := 〈e1, . . . , ea+b〉. The element fi (resp. gi, resp. ei) is meant to represent the ith
elementary symmetric polynomials in the first a variables (resp. the last b variables,
resp. a+ b variables).

Thanks to some standard argument of homological algebra (see e.g. [Bro82,
Chap. 1, Lem. 7.3]) we know that if ϕ is a chain map such that

C2
• A1

C1
• A1

π

ϕ IdA1

π

(B.1)

commutes, then ϕ is an homotopy equivalence. By definition we have:

C1
• := A1 ⊗ ΛV1 ⊗A1 and C2

• := A2 ⊗ ΛV2 ⊗A1.

Since C2
• is a free A2-module-A1 with a basis given by elements of the form

1A2 ⊗ ei1 ∧ · · · ∧ ei` ⊗ 1A1 ,
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with 0 6 ` 6 a+ b and i1 < i2 < · · · < i`, we only need to define ϕ on these elements.
For ` = 0, we define:

ϕ(1A2 ⊗ 1R ⊗ 1A1) = 1A1 ⊗ 1R ⊗ 1A1 .

For ` = 1, we define:

ϕ(1A2 ⊗ ei ⊗ 1A1) =

i∑
j=1

fi−j ⊗ gj ⊗ 1A1 + 1A1 ⊗ fj ⊗ gi−j ,

with the convention that the jth elementary polynomial in c variables is equal to 0

whenever j > c. For ` > 1 we set:

ϕ(1A2 ⊗ ei1 ∧ · · · ∧ ei` ⊗ 1A1) =
∏̀
h=1

ϕ(1A2 ⊗ eih ⊗ 1A1)

and extend this map A2⊗ (A1)opp-linearly. In the last formula, the space A⊗ΛV ⊗A
is endowed with the algebra structures given by:

(a1 ⊗ v1 ⊗ b1) · (a2 ⊗ v2 ⊗ b2) = a1a2 ⊗ v1 ∧ v2 ⊗ b1b2.

Note however that the product is ordered and that ϕ is not an algebra morphism.

Proposition B.3. — The map ϕ is a morphism of complexes of A2-modules-A1 such
that the diagram (B.1) commutes.

Proof. — Thanks to the definition of ϕ(1A2 ⊗ 1R ⊗ 1A1), the diagram (B.1) obvi-
ously commutes. It remains to show that ϕ is indeed a chain map. Thanks to the
A2 ⊗ (A1)opp-linearity, it is enough to consider elements of the form

1A2 ⊗ ei1 ∧ · · · ∧ ei` ⊗ 1A1 .

Let us consider the case ` = 1. We have
ϕ(d2(1⊗ ei ⊗ 1)) = ei ⊗ 1R ⊗ 1− 1⊗ 1R ⊗ ei

and

d1(ϕ(1⊗ ei ⊗ 1)) =

i∑
j=1

(fi−jgj ⊗ 1R ⊗ 1− fi−j ⊗ 1R ⊗ gj)

+

i∑
j=1

(fj ⊗ 1R ⊗ gi−j − 1⊗ 1R ⊗ fjgi−j)

=

i∑
j=0

(fjgi−j ⊗ 1R ⊗ 1− 1⊗ 1R ⊗ fjgi−j) = ei ⊗ 1R ⊗ 1− 1⊗ 1R ⊗ ei.

If ` > 1, we have:

d1(ϕ(1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1)) = d1

(∏̀
h=1

ϕ(1⊗ eih ⊗ 1)

)
=
∑̀
k=1

(−1)k+1

(k−1∏
h=1

ϕ(1⊗ eih ⊗ 1)

)
· d1(ϕ((1⊗ eik ⊗ 1))

( ∏̀
h=k+1

ϕ(1⊗ eih ⊗ 1)

)
=
∑̀
k=1

(−1)k+1

(k−1∏
h=1

ϕ(1⊗ eih ⊗ 1)

)
· (ϕ(d2(1⊗ eik ⊗ 1))

( ∏̀
h=k+1

ϕ(1⊗ eih ⊗ 1)

)
= ϕ(d2(1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1)). �
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B.3. An additional differential

Notation B.4. — Suppose D : A → A is a derivation on A which lets Ak stable for
any finite sequence of positive k integers of level k. We consider the endomorphisms
δk of C(Ak) given by:

δk : C(Ak) −→ C(Ak)

1⊗ v1 ∧ · · · ∧ v` ⊗ 1 7−→
∑̀
i=1

(−1)i+1D(vi)⊗ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v` ⊗ 1.
(B.2)

Both these maps are H-homogeneous of degree −1. For simplifying notations we
denote the maps on C(A1) and C(A2) by δ1 and δ2.

If we fix a positive integer N and if R = RN , an example of such a derivation is
given by

DN : A1k −→ A1k

P (x1, . . . , xk) 7−→
k∑
i=1

N∏
j=1

(xi − Tj)∂xiP (x1, . . . , xk).

The maps defined with DN by the formula (B.2) are denoted dNk . These are precisely
the differentials considered in Section 5.2.2.

Lemma B.5. — For i = 1, 2, the map δi anti-commutes with di and is a differential
on C(Ai).

Proof. — The fact that δ1 and δ2 are differentials follows as usual from the signs
which forces every square to anti-commute. To check that di and δi anti-commute is
an easy computation. We assume i = 1. We have:

δ1(d1(1⊗ v1 ∧ · · · ∧ v` ⊗ 1))

=
∑

16i1<i26`

(−1)i1+i2+2(vi1D(vi2)⊗ v1 ∧ · · · ∧ v̂i1 ∧ · · · ∧ v̂i2 ∧ · · · ∧ v` ⊗ 1

−D(vi2)⊗ v1 ∧ · · · ∧ v̂i1 ∧ · · · ∧ v̂i2 ∧ · · · ∧ v` ⊗ vi1
−D(vi1)vi2 ⊗ v1 ∧ · · · ∧ v̂i1 ∧ · · · ∧ v̂i2 ∧ · · · ∧ v` ⊗ 1

+D(vi2)⊗ v1 ∧ · · · ∧ v̂i1 ∧ · · · ∧ v̂i2 ∧ · · · ∧ v` ⊗ vi1)

d1(δ1(1⊗ v1 ∧ · · · ∧ v` ⊗ 1))and

=
∑

16i1<i26`

(−1)i1+i2+2(D(vi1)vi2 ⊗ v1 ∧ · · · ∧ v̂i1 ∧ · · · ∧ v̂i2 ∧ · · · ∧ v` ⊗ 1

−D(vi1)⊗ v1 ∧ · · · ∧ v̂i1 ∧ · · · ∧ v̂i2 ∧ · · · ∧ v` ⊗ vi2
− vi1D(vi2)⊗ v1 ∧ · · · ∧ v̂i1 ∧ · · · ∧ v̂i2 ∧ · · · ∧ v` ⊗ 1

+D(vi1)⊗ v1 ∧ · · · ∧ v̂i1 ∧ · · · ∧ v̂i2 ∧ · · · ∧ v` ⊗ vi2)

= −δ1(d1(1⊗ v1 ∧ · · · ∧ v` ⊗ 1)). �

We define η : C2
• → C1

• to be the A2 ⊗ (A1)opp-linear map defined by:
η(1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1) = D ⊗ IdΛV ⊗ IdA1 (ϕ(1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1)) .
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Note that we have:

η(1⊗ei1 ∧· · ·∧ei`⊗1) =
∑̀
k=1

(k−1∏
h=1

ϕ(1⊗eih⊗1)

)
η(1⊗eik⊗1)

( ∏̀
h=k+1

ϕ(1⊗eih⊗1)

)
,

This follows from the fact thatD is a derivation. We can write a (complicated) explicit
formula for η:

η(1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1) =
∑

j1+j′1=i1
···

j`+j
′
`=i`

∑̀
k=0

∑
AtB={1,...,`},|A|=k
A={a1<···<ak}
B={b1<···<bk−`}

(−1)|B<A|

·D(fja1
· · · fjak )⊗ gj′a1

∧ · · · ∧ gj′ak ∧ fjb1 ∧ · · · ∧ fib`−k ⊗ gj′b1 · · · gj′a`−k ,

where |B < A| := #{(b, a) ∈ A×B|b < a}.

Lemma B.6. — We have the following identity:
ϕ ◦ δ2 − δ1 ◦ ϕ = η ◦ d2 + d1 ◦ η.

Proof. — Suppose ` = 1. On the one hand, we have
(ϕ ◦ δ2 − δ1 ◦ ϕ)(1⊗ ei ⊗ 1)

= D(ei)⊗ 1⊗ 1−
i∑

j=1

(fi−jD(gj)⊗ 1⊗ 1 +D(fj)⊗ 1⊗ gi−j)

=

i∑
j=0

D(fj)gj−i ⊗ 1⊗ 1 + fjD(gj−i)⊗ 1⊗ 1

−
( i∑
j=1

fjD(gi−j)⊗ 1⊗ 1 +D(fj)⊗ 1⊗ gi−j
)

=

i∑
j=1

D(fj)gj−i ⊗ 1⊗ 1−
i∑

j=1

D(fj)⊗ 1⊗ gi−j .

On the other hand, we have:
η ◦ d2(1⊗ ei ⊗ 1) = η(ei ⊗ 1⊗ 1)− η(1⊗ 1⊗ ei) = 0

and

d1 ◦ η(1⊗ ei ⊗ 1) = d1

( i∑
j=1

D(fj)⊗ gij ⊗ 1

)
=

i∑
j=1

D(fj)gij ⊗ 1⊗ 1−D(fj)⊗ 1⊗ gi−j

= (ϕ ◦ δ2 − δ1 ◦ ϕ)(1⊗ ei ⊗ 1).

Suppose now that ` > 1. We have:
(ϕ ◦ δ2 − δ1 ◦ ϕ)(1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1)

=
∑̀
h=1

(−1)h+1
h−1∏
k=1

ϕ(1⊗ eik ⊗ 1)(ϕ ◦ δ2 − δ1 ◦ ϕ)(1⊗ eih ⊗ 1)
∏̀

k=h+1

ϕ(1⊗ eik ⊗ 1)

=
∑̀
h=1

(−1)h+1
h−1∏
k=1

ϕ(1⊗ eik ⊗ 1)(d1 ◦ η)(1⊗ eih ⊗ 1)
∏̀

k=h+1

ϕ(1⊗ eik ⊗ 1).
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On the other hand, we have:

η ◦ d2(1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1)

= η

(∑̀
h=1

(−1)h+1
h−1∏
k=1

(1⊗ eik ⊗ 1)d2(1⊗ eih ⊗ 1)
∏̀

k=h+1

(1⊗ eik ⊗ 1)

)

=
∑̀
h=1

h−1∑
j=1

(−1)h+1

j−1∏
k=1

ϕ(1⊗ eik ⊗ 1)η(1⊗ eij ⊗ 1)

·
h−1∏
k=j+1

ϕ(1⊗ eik ⊗ 1)ϕ(d2(1⊗ eih ⊗ 1))
∏̀

k=h+1

(1⊗ eik ⊗ 1)

+
∑̀
h=1

∑̀
j=h+1

(−1)h+1
h−1∏
k=1

ϕ(1⊗ eik ⊗ 1)ϕ(d2(1⊗ eih ⊗ 1))

·
j−1∏

k=h+1

(1⊗ eik ⊗ 1)η(1⊗ eij ⊗ 1)
∏̀

k=j+1

ϕ(1⊗ eik ⊗ 1)

=
∑̀
h=1

h−1∑
j=1

(−1)h+1

j−1∏
k=1

ϕ(1⊗ eik ⊗ 1)η(1⊗ eij ⊗ 1)

·
h−1∏
k=j+1

ϕ(1⊗ eik ⊗ 1)d1(ϕ(1⊗ eih ⊗ 1))
∏̀

k=h+1

(1⊗ eik ⊗ 1)

+
∑̀
h=1

∑̀
j=h+1

(−1)h+1
h−1∏
k=1

ϕ(1⊗ eik ⊗ 1)d1(ϕ(1⊗ eih ⊗ 1))

·
j−1∏

k=h+1

(1⊗ eik ⊗ 1)η(1⊗ eij ⊗ 1)
∏̀

k=j+1

ϕ(1⊗ eik ⊗ 1)

and

d1 ◦ η(1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1)

= d1

(∑̀
h=1

(−1)h+1
h−1∏
k=1

ϕ(1⊗ eik⊗)η(1⊗ eih⊗)
∏̀

k=h+1

ϕ(1⊗ eik ⊗ 1)

)
= −η ◦ d2((1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1)

+
∑̀
h=1

(−1)h+1
h−1∏
k=1

ϕ(1⊗ eih⊗)d1(η(1⊗ eih⊗))
∏̀

k=h+1

ϕ(1⊗ eik ⊗ 1)

= −η ◦ d2(1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1)

+
∑̀
h=1

(−1)h+1
h−1∏
k=1

ϕ(1⊗ eik⊗) · (ϕ ◦ δ2 − δ1 ◦ ϕ)(1⊗ eih ⊗ 1)
∏̀

k=h+1

ϕ(1⊗ eik ⊗ 1)

= −η ◦ d2(1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1) + (ϕ ◦ δ2 − δ1 ◦ ϕ)(1⊗ ei1 ∧ · · · ∧ ei` ⊗ 1). �
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Appendix C. A pinch of algebraic geometry

Algebraic geometry has been a very useful guideline for the definition of the (ex-
terior) Khovanov-Rozansky homologies. The exterior slN -invariant of the unknot la-
beled by k is equal to

[
N
k

]
, which is the graded Euler characteristic of the cohomology

ring of GrC(k,N) the Grassmannian variety of k-spaces in CN up to an overall grad-
ing shift. Indeed the Frobenius algebra associated with the unknot labeled by k in the
Khovanov-Rozansky homology is isomorphic to H∗(GrC(k,N)). This can be extended
to an equivariant(14) setting see [Kra10a, RW17].

The symmetric slN invariant of the unknot with a label k is equal to
[
N+k−1

k

]
. This

is (up to an overall grading shift) the graded Euler characteristic of GrC(k, k+N−1).
However, this does not seem to be the correct point of view when categorifying the
symmetric slN -invariant.(15) Indeed, in an equivariant setting, one expect to have a
natural action of Q[T1, . . . TN ] or Q[T1, . . . TN ]SN on the Frobenius algebra associated
with the unknot labeled by k. Instead, we believe that it is better to consider the
space Sk (GrC(1, N)) of collections of k lines (counted with multiplicity) in CN :

Sk (GrC(1, N)) = (GrC(1, N))
k /

Sk.

There is a natural action of GLN on this space and its (non-equivariant) cohomology
ring is isomorphic(16) to that of GrC(k, k +N − 1):

Theorem C.1 ([ES02, Th. 2.4]). — There is a birational map f : (GrC(1, N))
k →

GrC(k, k+N − 1) such that the correspondence induced by the graph Γf of f induces
an isomorphism

(Γf )• : H•(GrC(k, k +N − 1),Q) −→ H•
(
Sk (GrC(1, N)) ,Q

)
of graded Q-algebras.

As stated before, we are interested in the equivariant version of the cohomology
ring of Sk(Gr(1, N)).

The group G := GLN acts naturally on Gr(1, N) and diagonally on Sk(Gr(1, N)).
Since H•(BG,Q) ' Q[T1, . . . TN ]SN =: RN as a ring, the equivariant cohomologies of
both Gr(1, N) and Sk(Gr(1, N)) have structures of graded RN -algebras (the degrees
of the variables T• are all equal to 2). There exists a presentation of H•G(Gr(1, N)):

Lemma C.2 ([Ful07, Lect. 3, Ex. 1.2]). — The RN -algebra H•G(Gr(1, N),Q) is isomor-
phic to RN [x] /JN,1 , where x has degree 2 and JN,1 is the ideal of RN [x] generated
by
∏N
i=1(x− Ti).

It follows immediately that H•G(Gr(1, N),Q) is a free graded RN -module and
that the family (1, x, . . . , xN−1) forms an homogeneous RN -basis of this space. The

(14)This motivates the term “equivariant” slN -homology.
(15)This remark is due to François Costantino.
(16)Note that if N = 2, these two varieties are actually isomorphic.
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space MN,k considered in Section 5 is isomorphic to

Symk(H•G(Gr(1, N),Q)).

We believe that this is the same as

H•G(Symk(Gr(1, N)),Q))

but could not locate such a statement in the literature.
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