[Homologies d’entrelacs de Khovanov–Rozansky symétriques]
On donne une catégorification de l’évaluation symétrique des toiles en utilisant les mousses. On en déduit des théories homologiques d’entrelacs qui catégorifient les invariants quantiques d’entrelacs associés aux puissances symétriques de la représentation standard de . Ces théories sont obtenues dans un cadre équivariant. On montre qu’il existe des suites spectrales de l’homologie triplement graduée de Khovanov-Rozansky vers ces homologies symétriques. On donne aussi une interpretation des bimodules de Soergel en terme de mousses.
We provide a finite-dimensional categorification of the symmetric evaluation of -webs using foam technology. As an output we obtain a symmetric link homology theory categorifying the link invariant associated to symmetric powers of the standard representation of . The construction is made in an equivariant setting. We prove also that there is a spectral sequence from the Khovanov-Rozansky triply graded link homology to the symmetric one and provide along the way a foam interpretation of Soergel bimodules.
Accepté le :
Publié le :
Keywords: Link homology, quantum invariant, foams, Soergel bimodules
Mot clés : Homologie d’entrelacs, invariant quantiques, mousses, bimodules de Soergel
Louis-Hadrien Robert 1 ; Emmanuel Wagner 2
@article{JEP_2020__7__573_0, author = {Louis-Hadrien Robert and Emmanuel Wagner}, title = {Symmetric {Khovanov-Rozansky} link homologies}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {573--651}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.124}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.124/} }
TY - JOUR AU - Louis-Hadrien Robert AU - Emmanuel Wagner TI - Symmetric Khovanov-Rozansky link homologies JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 573 EP - 651 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.124/ DO - 10.5802/jep.124 LA - en ID - JEP_2020__7__573_0 ER -
%0 Journal Article %A Louis-Hadrien Robert %A Emmanuel Wagner %T Symmetric Khovanov-Rozansky link homologies %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 573-651 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.124/ %R 10.5802/jep.124 %G en %F JEP_2020__7__573_0
Louis-Hadrien Robert; Emmanuel Wagner. Symmetric Khovanov-Rozansky link homologies. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 573-651. doi : 10.5802/jep.124. https://jep.centre-mersenne.org/articles/10.5802/jep.124/
[BHMV95] - “Topological quantum field theories derived from the Kauffman bracket”, Topology 34 (1995) no. 4, p. 883-927 | DOI | MR | Zbl
[Bla10] - “An oriented model for Khovanov homology”, J. Knot Theory Ramifications 19 (2010) no. 2, p. 291-312 | DOI | MR | Zbl
[BLS18] - “Koszul calculus”, Glasgow Math. J. 60 (2018) no. 2, p. 361-399, Addendum: Ibid. 61 (2019), no. 1, p. 249 | DOI | MR | Zbl
[BN05] - “Khovanov’s homology for tangles and cobordisms”, Geom. Topol. 9 (2005), p. 1443-1499 | DOI | MR | Zbl
[Bro82] - Cohomology of groups, Graduate Texts in Math., vol. 87, Springer-Verlag, New York-Berlin, 1982 | Zbl
[BW08] - “Categorification of the colored Jones polynomial and Rasmussen invariant of links”, Canad. J. Math. 60 (2008) no. 6, p. 1240-1266 | DOI | MR | Zbl
[Cau15] - “Clasp technology to knot homology via the affine Grassmannian”, Math. Ann. 363 (2015) no. 3-4, p. 1053-1115 | DOI | MR | Zbl
[Cau17] - “Remarks on coloured triply graded link invariants”, Algebraic Geom. Topol. 17 (2017) no. 6, p. 3811-3836 | DOI | MR | Zbl
[CH15] - “An exceptional collection for Khovanov homology”, Algebraic Geom. Topol. 15 (2015) no. 5, p. 2659-2707 | DOI | MR | Zbl
[CK08a] - “Knot homology via derived categories of coherent sheaves. I. The -case”, Duke Math. J. 142 (2008) no. 3, p. 511-588 | DOI
[CK08b] - “Knot homology via derived categories of coherent sheaves. II: case”, Invent. Math. 174 (2008) no. 1, p. 165-232 | DOI
[CK12] - “Categorification of the Jones-Wenzl projectors”, Quantum Topol. 3 (2012) no. 2, p. 139-180 | DOI | MR | Zbl
[CKW09] - “Regular sequences of symmetric polynomials”, Rend. Sem. Mat. Univ. Padova 121 (2009), p. 179-199 | DOI | Numdam | MR | Zbl
[Dow17] - “A categorification of the HOMFLY-PT polynomial with a spectral sequence to knot Floer homology”, 2017 | arXiv
[ES02] - “Some remarks on Chow varieties and Euler-Chow series”, J. Pure Appl. Algebra 166 (2002) no. 1, p. 67 -81 | DOI | MR | Zbl
[EST17] - “The Blanchet-Khovanov algebras”, in Categorification and higher representation theory, Contemp. Math., vol. 683, American Mathematical Society, Providence, RI, 2017, p. 183-226 | DOI | MR | Zbl
[ETW18] - “Functoriality of colored link homologies”, Proc. London Math. Soc. (3) 117 (2018) no. 5, p. 996-1040 | DOI | MR | Zbl
[FSS12] - “Categorifying fractional Euler characteristics, Jones-Wenzl projectors and -symbols”, Quantum Topol. 3 (2012) no. 2, p. 181-253 | DOI | Zbl
[Ful07] - “Equivariant Cohomology in Algebraic Geometry”, Eilenberg lectures, 2007, https://people.math.osu.edu/anderson.2804/eilenberg/
[GGS18] - “Quadruply-graded colored homology of knots”, Fund. Math. 243 (2018) no. 3, p. 209-299 | DOI | MR | Zbl
[Kas04] - “Homology and cohomology of associative algebras — A concise introduction to cyclic homology”, Notes of a course given in the Advanced School on Non-commutative Geometry at ICTP, 2004, 37 pages, http://www-irma.u-strasbg.fr/~kassel/Kassel-ICTPnotes2004.pdf
[Kau13] - Knots and physics, World Scientific, Singapore, 2013 | Zbl
[Kho04] - “sl(3) link homology”, Algebraic Geom. Topol. 4 (2004), p. 1045-1081 | DOI | MR | Zbl
[Kho05] - “Categorifications of the colored Jones polynomial”, J. Knot Theory Ramifications 14 (2005) no. 1, p. 111-130 | DOI | MR | Zbl
[Kho07] - “Triply-graded link homology and Hochschild homology of Soergel bimodules”, Internat. J. Math. 18 (2007) no. 8, p. 869-885 | DOI | MR | Zbl
[KR08] - “Matrix factorizations and link homology. II”, Geom. Topol. 12 (2008) no. 3, p. 1387-1425 | DOI | MR | Zbl
[Kra10a] - “Equivariant -link homology”, Algebraic Geom. Topol. 10 (2010) no. 1, p. 1-32 | DOI | MR
[Kra10b] - “Integral HOMFLY-PT and -link homology”, Internat. J. Math. Math. Sci. (2010), article ID 896879, 25 pages | DOI | MR
[Lan02] - Algebra, Graduate Texts in Math., vol. 211, Springer-Verlag, New York, 2002 | DOI | Zbl
[Lod98] - Cyclic homology, Grundlehren Math. Wiss., vol. 301, Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl
[LQR15] - “Khovanov homology is a skew Howe 2-representation of categorified quantum ”, Algebraic Geom. Topol. 15 (2015) no. 5, p. 2517-2608 | DOI
[Lus10] - Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010, Reprint of the 1994 edition | DOI | Zbl
[Mac15] - Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015
[MOY98] - “Homfly polynomial via an invariant of colored plane graphs”, Enseign. Math. (2) 44 (1998) no. 3-4, p. 325-360 | MR | Zbl
[MS09] - “A combinatorial approach to functorial quantum knot invariants”, Amer. J. Math. 131 (2009) no. 6, p. 1679-1713 | DOI
[MSV09] - “-link homology using foams and the Kapustin-Li formula”, Geom. Topol. 13 (2009) no. 2, p. 1075-1128 | DOI
[MSV11] - “The -coloured HOMFLY-PT link homology”, Trans. Amer. Math. Soc. 363 (2011) no. 4, p. 2091-2124 | DOI
[MW18] - “Categorified skew Howe duality and comparison of knot homologies”, Adv. Math. 330 (2018), p. 876-945 | DOI | MR | Zbl
[QR16] - “The foam 2-category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality”, Adv. Math. 302 (2016), p. 1251-1339 | DOI | MR
[QR18] - “Sutured annular Khovanov-Rozansky homology”, Trans. Amer. Math. Soc. 370 (2018) no. 2, p. 1285-1319 | DOI | MR | Zbl
[QRS18] - “Annular evaluation and link homology”, 2018 | arXiv | Zbl
[Ras15] - “Some differentials on Khovanov-Rozansky homology”, Geom. Topol. 19 (2015) no. 6, p. 3031-3104 | DOI | MR | Zbl
[Rou17] - “Khovanov-Rozansky homology and 2-braid groups”, in Categorification in geometry, topology, and physics, Contemp. Math., vol. 684, American Mathematical Society, Providence, RI, 2017, p. 147-157 | DOI | MR | Zbl
[Roz14] - “An infinite torus braid yields a categorified Jones-Wenzl projector”, Fund. Math. 225 (2014) no. 1, p. 305-326 | DOI | MR | Zbl
[RT16] - “Symmetric webs, Jones-Wenzl recursions, and -Howe duality”, Internat. Math. Res. Notices 2016 (2016) no. 17, p. 5249-5290 | DOI
[RW16] - “Deformations of colored link homologies via foams”, Geom. Topol. 20 (2016) no. 6, p. 3431-3517 | DOI
[RW17] - “A closed formula for the evaluation of -foams”, 2017, To appear in Quantum Topology | arXiv
[Soe92] - “The combinatorics of Harish-Chandra bimodules”, J. reine angew. Math. 429 (1992), p. 49-74 | DOI | MR | Zbl
[SS14] - “Categorified Jones-Wenzl projectors: a comparison”, in Perspectives in representation theory, Contemp. Math., vol. 610, American Mathematical Society, Providence, RI, 2014, p. 333-351 | DOI | MR | Zbl
[ST19] - “Webs and -Howe dualities in types BCD”, Trans. Amer. Math. Soc. 371 (2019) no. 10, p. 7387-7431 | DOI | Zbl
[Sto08] - “Hochschild homology of certain Soergel bimodules”, 2008 | arXiv | Zbl
[Str04] - “A structure theorem for Harish-Chandra bimodules via coinvariants and Golod rings”, J. Algebra 282 (2004) no. 1, p. 349-367 | DOI | MR | Zbl
[Sus07] - Category O and sl(k) link invariants, Ph. D. Thesis, Yale University, Ann Arbor, MI, 2007 | arXiv | MR
[TVW17] - “Super -Howe duality and web categories”, Algebraic Geom. Topol. 17 (2017) no. 6, p. 3703-3749 | DOI | Zbl
[Vaz08] - A categorification of the quantum sl(N)-link polynomials using foams, Ph. D. Thesis, Universidade do Algarve, 2008 | arXiv
[Web17] - Knot invariants and higher representation theory, Mem. Amer. Math. Soc., vol. 250, no. 1191, American Mathematical Society, Providence, RI, 2017 | DOI | MR | Zbl
[Wed19] - “Exponential growth of colored HOMFLY-PT homology”, Adv. Math. 353 (2019), p. 471-525 | DOI | MR | Zbl
[Wil11] - “Singular Soergel bimodules”, Internat. Math. Res. Notices 2011 (2011) no. 20, p. 4555-4632 | DOI | MR | Zbl
[Wu13] - “Colored Morton-Franks-Williams inequalities”, Internat. Math. Res. Notices 2013 (2013) no. 20, p. 4734-4757 | DOI | MR | Zbl
[Wu14] - “A colored homology for links in ”, Dissertationes Math. (Rozprawy Mat.) 499 (2014), p. 1-217 | DOI
[WW17] - “A geometric construction of colored HOMFLYPT homology”, Geom. Topol. 21 (2017) no. 5, p. 2557-2600 | DOI | MR | Zbl
[Yon11] - “Quantum link invariant and matrix factorizations”, Nagoya Math. J. 204 (2011), p. 69-123 | DOI | MR
Cité par Sources :