Topological properties of Ważewski dendrite groups
[Propriétés topologiques des groupes d’homéomorphismes des dendrites de Ważewski]
Journal de l'École polytechnique — Mathématiques, Tome 7 (2020) , pp. 431-477.

Les groupes d’homéomorphismes des dendrites de Ważewski généralisées agissent sur l’ensemble des points de branchement de la dendrite et possèdent ainsi une topologie de groupe polonais agréable. Dans cet article, nous étudions ces groupes à la lumière de cette topologie polonaise. Le groupe d’homéomorphismes de la dendrite universelle de Ważewski D est remarquable puisque c’est le seul avec une classe de conjugaison dense. Pour ce groupe, G , nous explorons et prouvons certaines de ses propriétés topologiques comme l’existence d’une classe de conjugaison comaigre, la propriété de Steinhaus, la propriété de continuité automatique, la propriété des groupes de petit indice et une caractérisation de la topologie. De plus, nous décrivons le flot minimal universel de G et des stabilisateurs de points de D . Cela nous permet de montrer que les stabilisateurs de points de D sont des groupes moyennables et de donner une description simple et explicite du bord de Furstenberg universel de G .

Homeomorphism groups of generalized Ważewski dendrites act on the infinite countable set of branch points of the dendrite and thus have a nice Polish topology. In this paper, we study them in the light of this Polish topology. The group of the universal Ważewski dendrite D is more characteristic than the others because it is the unique one with a dense conjugacy class. For this group G , we explore and prove some of its topological properties like the existence of a comeager conjugacy class, the Steinhaus property, automatic continuity, the small index subgroup property and characterization of the topology. Moreover, we describe the universal minimal flow of G and of point-stabilizers. This enables us to prove that point-stabilizers in G are amenable and to give a simple and completely explicit description of the universal Furstenberg boundary of G .

Reçu le : 2019-03-28
Accepté le : 2020-02-24
Publié le : 2020-03-06
DOI : https://doi.org/10.5802/jep.121
Classification : 22F50,  57S05,  37B05
Mots clés: Dendrites de Ważewski, groupes d’homéomorphismes, groupes polonais, propriété de Steinhaus, éléments génériques, continuité automatique, flots universels
@article{JEP_2020__7__431_0,
     author = {Bruno Duchesne},
     title = {Topological properties of Wa\.zewski~dendrite groups},
     journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques},
     publisher = {\'Ecole polytechnique},
     volume = {7},
     year = {2020},
     pages = {431-477},
     doi = {10.5802/jep.121},
     zbl = {07179025},
     language = {en},
     url = {jep.centre-mersenne.org/item/JEP_2020__7__431_0/}
}
Bruno Duchesne. Topological properties of Ważewski dendrite groups. Journal de l'École polytechnique — Mathématiques, Tome 7 (2020) , pp. 431-477. doi : 10.5802/jep.121. https://jep.centre-mersenne.org/item/JEP_2020__7__431_0/

[AN98] S. A. Adeleke & P. M. Neumann - Relations related to betweenness: their structure and automorphisms, Mem. Amer. Math. Soc., vol. 131 no. 623, American Mathematical Society, Providence, RI, 1998 | Article | Zbl 0896.08001

[Bow99] B. H. Bowditch - Treelike structures arising from continua and convergence groups, Mem. Amer. Math. Soc., vol. 139 no. 662, American Mathematical Society, Providence, RI, 1999 | Article | Zbl 0961.20034

[BYMT17] I. Ben Yaacov, J. Melleray & T. Tsankov - “Metrizable universal minimal flows of Polish groups have a comeagre orbit”, Geom. Funct. Anal. 27 (2017) no. 1, p. 67-77 | Article | MR 3613453 | Zbl 1364.54026

[Cam09] P. J. Cameron - “Oligomorphic permutation groups”, in Perspectives in mathematical sciences. II, Stat. Sci. Interdiscip. Res., vol. 8, World Sci. Publ., Hackensack, NJ, 2009, p. 37-61 | Article | MR 2581750 | Zbl 1205.20002

[DHM89] M. Droste, W. C. Holland & H. D. Macpherson - “Automorphism groups of infinite semilinear orders. I, II”, Proc. London Math. Soc. (3) 58 (1989) no. 3, p. 454-478, 479–494 | Article | MR 1577254 | Zbl 0636.20004

[DM18] B. Duchesne & N. Monod - “Group actions on dendrites and curves”, Ann. Inst. Fourier (Grenoble) 68 (2018) no. 5, p. 2277-2309 | Article | MR 3893770 | Zbl 1408.37019

[DM19] B. Duchesne & N. Monod - “Structural properties of dendrite groups”, Trans. Amer. Math. Soc. 371 (2019) no. 3, p. 1925-1949 | Article | MR 3894039 | Zbl 06999066

[DMW19] B. Duchesne, N. Monod & P. Wesolek - “Kaleidoscopic groups: permutation groups constructed from dendrite homeomorphisms”, Fund. Math. 247 (2019) no. 3, p. 229-274 | Article | MR 4017014 | Zbl 07146419

[DNT86] J. D. Dixon, P. M. Neumann & S. Thomas - “Subgroups of small index in infinite symmetric groups”, Bull. London Math. Soc. 18 (1986) no. 6, p. 580-586 | Article | MR 859950 | Zbl 0607.20003

[Gla76] S. Glasner - Proximal flows, Lect. Notes in Math., vol. 517, Springer-Verlag, Berlin-New York, 1976 | MR 474243 | Zbl 0322.54017

[GW02] E. Glasner & B. Weiss - “Minimal actions of the group 𝕊() of permutations of the integers”, Geom. Funct. Anal. 12 (2002) no. 5, p. 964-988 | Article

[GW08] E. Glasner & B. Weiss - “Topological groups with Rokhlin properties”, Colloq. Math. 110 (2008) no. 1, p. 51-80 | Article | MR 2353899 | Zbl 1134.22001

[HHLS93] W. Hodges, I. Hodkinson, D. Lascar & S. Shelah - “The small index property for ω-stable ω-categorical structures and for the random graph”, J. London Math. Soc. (2) 48 (1993) no. 2, p. 204-218 | Article

[Hjo00] G. Hjorth - Classification and orbit equivalence relations, Mathematical Surveys and Monographs, vol. 75, American Mathematical Society, Providence, RI, 2000 | MR 1725642 | Zbl 0942.03056

[HLP14] E. Hrushovski, F. Loeser & B. Poonen - “Berkovich spaces embed in Euclidean spaces”, Enseign. Math. 60 (2014) no. 3-4, p. 273-292 | Article | MR 3342647 | Zbl 1325.14040

[Kal86] R. R. Kallman - “Uniqueness results for homeomorphism groups”, Trans. Amer. Math. Soc. 295 (1986) no. 1, p. 389-396 | Article | MR 831205 | Zbl 0597.57019

[Kec13] A. S. Kechris - “Dynamics of non-archimedean Polish groups”, in European Congress of Mathematics, European Mathematical Society, Zürich, 2013, p. 375-397 | MR 3469133 | Zbl 1364.03046

[KPT05] A. S. Kechris, V. G. Pestov & S. Todorcevic - “Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups”, Geom. Funct. Anal. 15 (2005) no. 1, p. 106-189 | Article | Zbl 1084.54014

[KR07] A. S. Kechris & C. Rosendal - “Turbulence, amalgamation, and generic automorphisms of homogeneous structures”, Proc. London Math. Soc. (3) 94 (2007) no. 2, p. 302-350 | Article | MR 2308230 | Zbl 1118.03042

[Kwi18] A. Kwiatkowska - “Universal minimal flows of generalized Ważewski dendrites”, J. Symbolic Logic 83 (2018) no. 4, p. 1618-1632 | Article | MR 3893292 | Zbl 1402.05211

[MVTT15] J. Melleray, L. N. Van Thé & T. Tsankov - “Polish groups with metrizable universal minimal flows”, Internat. Math. Res. Notices 2016 (2015) no. 5, p. 1285-1307 | Article | Zbl 1359.37023

[Nad92] S. B. Nadler Jr. - Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Math., vol. 158, Marcel Dekker, Inc., New York, 1992 | Zbl 0757.54009

[NVT13] L. Nguyen Van Thé - “More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions”, Fund. Math. 222 (2013) no. 1, p. 19-47 | Article | MR 3080786 | Zbl 1293.37006

[Pes98] V. G. Pestov - “On free actions, minimal flows, and a problem by Ellis”, Trans. Amer. Math. Soc. 350 (1998) no. 10, p. 4149-4165 | Article | MR 1608494 | Zbl 0911.54034

[Pes06] V. G. Pestov - Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon, University Lecture Series, vol. 40, American Mathematical Society, Providence, RI, 2006 | Article | Zbl 1123.37003

[Ros09] C. Rosendal - “Automatic continuity of group homomorphisms”, Bull. Symbolic Logic 15 (2009) no. 2, p. 184-214 | Article | MR 2535429 | Zbl 1173.03037

[RS07] C. Rosendal & S. Solecki - “Automatic continuity of homomorphisms and fixed points on metric compacta”, Israel J. Math. 162 (2007), p. 349-371 | Article | MR 2365867 | Zbl 1146.22003

[Sie28] W. Sierpiński - “Sur une décomposition d’ensembles”, Monatsh. Math. Phys. 35 (1928) no. 1, p. 239-242 | Article | Zbl 54.0092.01

[Sok15] M. Sokić - “Semilattices and the Ramsey property”, J. Symbolic Logic 80 (2015) no. 4, p. 1236-1259 | Article | MR 3436366 | Zbl 1332.05141

[SY17] E. Shi & X. Ye - “Periodic points for amenable group actions on dendrites”, Proc. Amer. Math. Soc. 145 (2017) no. 1, p. 177-184 | Article | MR 3565370 | Zbl 1368.37019

[Tru92] J. K. Truss - “Generic automorphisms of homogeneous structures”, Proc. London Math. Soc. (3) 65 (1992) no. 1, p. 121-141 | Article | MR 1162490 | Zbl 0723.20001

[Tru07] J. K. Truss - “On notions of genericity and mutual genericity”, J. Symbolic Logic 72 (2007) no. 3, p. 755-766 | Article | Zbl 1123.03022

[Zuc18] A. Zucker - “Maximally highly proximal flows”, 2018 | arXiv:1812.00392