Bubbling analysis and geometric convergence results for free boundary minimal surfaces
[Analyse des bulles et résultats de convergence géométrique pour des surfaces minimales à bord libre]
Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 621-664.

Nous étudions le comportement à la limite de suites de surfaces minimales à bord libre d’indice et de volume bornés, en présentant une analyse détaillée de la dégénérescence au voisinage des points de concentration de courbure. Nous en déduisons une identité générale de quantification pour la fonctionnelle de courbure totale, valable en dimension inférieure à 8 et applicable à des hypersurfaces limites qui peuvent être impropres. En dimension 3, cette identité peut être combinée au théorème de Gauss-Bonnet pour fournir une contrainte reliant la topologie des surfaces minimales à bord libre dans une suite convergente, celle de leur limite, et celle des bulles ou demi-bulles qui apparaissent comme modèles d’explosion. Nous présentons diverses applications de ces outils, notamment une description du comportement des surfaces minimales à bord libre d’indice 1 dans une variété de dimension 3 de courbure scalaire positive ou nulle et à bord strictement convexe en moyenne. En particulier, dans le cas de domaines de 3 compacts, simplement connexes et strictement convexes en moyenne, il y a convergence inconditionnelle pour tous les types topologiques exceptés le disque et l’anneau et, dans ces cas, nous classifions les dégénérescences possibles.

We investigate the limit behaviour of sequences of free boundary minimal hypersurfaces with bounded index and volume, by presenting a detailed blow-up analysis near the points where curvature concentration occurs. Thereby, we derive a general quantization identity for the total curvature functional, valid in ambient dimension less than eight and applicable to possibly improper limit hypersurfaces. In dimension three, this identity can be combined with the Gauss-Bonnet theorem to provide a constraint relating the topology of the free boundary minimal surfaces in a converging sequence, of their limit, and of the bubbles or half-bubbles that occur as blow-up models. We present various geometric applications of these tools, including a description of the behaviour of index one free boundary minimal surfaces inside a 3-manifold of non-negative scalar curvature and strictly mean convex boundary. In particular, in the case of compact, simply connected, strictly mean convex domains in 3 unconditional convergence occurs for all topological types except the disk and the annulus, and in those cases the possible degenerations are classified.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.102
Classification : 53A10,  53C42,  49Q05
Mots clés : Surfaces minimales à bord libre, analyse des bulles, quantification, compacité géométrique
@article{JEP_2019__6__621_0,
     author = {Lucas Ambrozio and Reto Buzano and Alessandro Carlotto and Ben Sharp},
     title = {Bubbling analysis and geometric convergence results for free boundary minimal surfaces},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {621--664},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.102},
     zbl = {07114035},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.102/}
}
Lucas Ambrozio; Reto Buzano; Alessandro Carlotto; Ben Sharp. Bubbling analysis and geometric convergence results for free boundary minimal surfaces. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 621-664. doi : 10.5802/jep.102. https://jep.centre-mersenne.org/articles/10.5802/jep.102/

[1] L. Ambrozio, R. Buzano, A. Carlotto & B. Sharp - “Geometric convergence results for closed minimal surfaces via bubbling analysis”, 2018 | arXiv:1803.04956

[2] L. Ambrozio, A. Carlotto & B. Sharp - “Compactness of the space of minimal hypersurfaces with bounded volume and p-th Jacobi eigenvalue”, J. Geom. Anal. 26 (2016) no. 4, p. 2591-2601 | Article | MR 3544933 | Zbl 1354.53069

[3] L. Ambrozio, A. Carlotto & B. Sharp - “Compactness analysis for free boundary minimal hypersurfaces”, Calc. Var. Partial Differential Equations 57 (2018) no. 1, article ID 22, 39 pages | Article | MR 3740402 | Zbl 1414.53008

[4] L. Ambrozio, A. Carlotto & B. Sharp - “Index estimates for free boundary minimal hypersurfaces”, Math. Ann. 370 (2018) no. 3-4, p. 1063-1078 | Article | MR 3770163 | Zbl 1391.53007

[5] R. Buzano & B. Sharp - “Qualitative and quantitative estimates for minimal hypersurfaces with bounded index and area”, Trans. Amer. Math. Soc. 370 (2018) no. 6, p. 4373-4399 | Article | MR 3811532 | Zbl 1390.53008

[6] M. do Carmo & C. K. Peng - “Stable complete minimal surfaces in R 3 are planes”, Bull. Amer. Math. Soc. (N.S.) 1 (1979) no. 6, p. 903-906 | Article | MR 546314 | Zbl 0442.53013

[7] J. Chen, A. Fraser & C. Pang - “Minimal immersions of compact bordered Riemann surfaces with free boundary”, Trans. Amer. Math. Soc. 367 (2015) no. 4, p. 2487-2507 | Article | MR 3301871 | Zbl 1308.58007

[8] S. Y. Cheng & J. Tysk - “Schrödinger operators and index bounds for minimal submanifolds”, Rocky Mountain J. Math. 24 (1994) no. 3, p. 977-996 | Article | Zbl 0818.53075

[9] O. Chodosh & D. Maximo - “On the topology and index of minimal surfaces”, J. Differential Geom. 104 (2016) no. 3, p. 399-418 | Article | MR 3568626 | Zbl 1357.53016

[10] R. Courant - “The existence of minimal surfaces of given topological structure under prescribed boundary conditions”, Acta Math. 72 (1940), p. 51-98 | Article | MR 2478 | Zbl 66.0485.02

[11] R. Courant - Dirichlet’s principle, conformal mapping, and minimal surfaces, Springer-Verlag, New York-Heidelberg, 1977 | Zbl 0354.30012

[12] C. De Lellis & J. Ramic - “Min-max theory for minimal hypersurfaces with boundary”, Ann. Inst. Fourier (Grenoble) 68 (2018) no. 5, p. 1909-1986 | Article | MR 3893761 | Zbl 1408.53079

[13] N. Ejiri & M. Micallef - “Comparison between second variation of area and second variation of energy of a minimal surface”, Adv. Calc. Var. 1 (2008) no. 3, p. 223-239 | Article | MR 2458236 | Zbl 1163.58006

[14] D. Fischer-Colbrie - “On complete minimal surfaces with finite Morse index in three-manifolds”, Invent. Math. 82 (1985) no. 1, p. 121-132 | Article | MR 808112 | Zbl 0573.53038

[15] D. Fischer-Colbrie & R. Schoen - “The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature”, Comm. Pure Appl. Math. 33 (1980) no. 2, p. 199-211 | Article | MR 562550 | Zbl 0439.53060

[16] A. Folha, F. Pacard & T. Zolotareva - “Free boundary minimal surfaces in the unit 3-ball”, Manuscripta Math. 154 (2017) no. 3-4, p. 359-409 | Article | MR 3713919 | Zbl 1381.35040

[17] A. Fraser & M. M.-c. Li - “Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary”, J. Differential Geom. 96 (2014) no. 2, p. 183-200 | Article | MR 3178438 | Zbl 1295.53062

[18] A. Fraser & R. Schoen - “Sharp eigenvalue bounds and minimal surfaces in the ball”, Invent. Math. 203 (2016) no. 3, p. 823-890 | Article | MR 3461367 | Zbl 1337.35099

[19] A. M. Fraser - “On the free boundary variational problem for minimal disks”, Comm. Pure Appl. Math. 53 (2000) no. 8, p. 931-971 | Article | MR 1755947 | Zbl 1039.58013

[20] B. Freidin, M. Gulian & P. McGrath - “Free boundary minimal surfaces in the unit ball with low cohomogeneity”, Proc. Amer. Math. Soc. 145 (2017) no. 4, p. 1671-1683 | Article | MR 3601558 | Zbl 1360.49034

[21] M. Grüter & J. Jost - “On embedded minimal disks in convex bodies”, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986) no. 5, p. 345-390 | Article | MR 868522 | Zbl 0617.49017

[22] Q. Guang & X. Zhou - “Compactness and generic finiteness for free boundary minimal hypersurfaces”, 2018 | arXiv:1803.01509

[23] D. Hoffman & W. H. Meeks III - “The strong halfspace theorem for minimal surfaces”, Invent. Math. 101 (1990) no. 2, p. 373-377 | Article | MR 1062966 | Zbl 0722.53054

[24] L. P. Jorge & W. H. Meeks III - “The topology of complete minimal surfaces of finite total Gaussian curvature”, Topology 22 (1983) no. 2, p. 203-221 | Article | MR 683761 | Zbl 0517.53008

[25] J. Jost - “Existence results for embedded minimal surfaces of controlled topological type. I”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986) no. 1, p. 15-50 | MR 863634 | Zbl 0619.49019

[26] J. Jost - “Existence results for embedded minimal surfaces of controlled topological type. II”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986) no. 3, p. 401-426 | MR 881099 | Zbl 0669.49024

[27] J. Jost - “Existence results for embedded minimal surfaces of controlled topological type. III”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) no. 1, p. 165-167 | MR 937541 | Zbl 0681.49039

[28] N. Kapouleas & N. Li - “Free boundary minimal surfaces in the unit three-ball via desingularization of the critical catenoid and equatorial disk”, 2017 | arXiv:1709.08556

[29] N. Kapouleas & D. Wygul - “Free-boundary minimal surfaces with connected boundary in the 3-ball by tripling the equatorial disc”, 2017 | arXiv:1711.00818

[30] D. Ketover - “Free boundary minimal surfaces of unbounded genus”, 2016 | arXiv:1612.08691

[31] M. M.-c. Li - “A general existence theorem for embedded minimal surfaces with free boundary”, Comm. Pure Appl. Math. 68 (2015) no. 2, p. 286-331 | Article | MR 3298664 | Zbl 1321.53074

[32] N. Li & X. Zhou - “Min-max theory for free boundary minimal hypersurfaces I – regularity theory”, 2016 | arXiv:1611.02612

[33] V. Lima - “Bounds for the Morse index of free boundary minimal surfaces”, 2017 | arXiv:1710.10971

[34] F. J. López & A. Ros - “Complete minimal surfaces with index one and stable constant mean curvature surfaces”, Comment. Math. Helv. 64 (1989) no. 1, p. 34-43 | Article | MR 982560 | Zbl 0679.53047

[35] F. J. López & A. Ros - “On embedded complete minimal surfaces of genus zero”, J. Differential Geom. 33 (1991) no. 1, p. 293-300 | Article | MR 1085145 | Zbl 0719.53004

[36] D. Maximo, I. Nunes & G. Smith - “Free boundary minimal annuli in convex three-manifolds”, J. Differential Geom. 106 (2017) no. 1, p. 139-186 | Article | MR 3640009 | Zbl 1386.53071

[37] R. Osserman - “On complete minimal surfaces”, Arch. Rational Mech. Anal. 13 (1963), p. 392-404 | Article | MR 151907 | Zbl 0127.38003

[38] R. Osserman - “Global properties of minimal surfaces in E 3 and E n ”, Ann. of Math. (2) 80 (1964), p. 340-364 | Article | MR 179701 | Zbl 0134.38502

[39] A. V. Pogorelov - “On the stability of minimal surfaces in Lobachevskiĭ space”, Dokl. Akad. Nauk 354 (1997) no. 6, p. 742-744 | MR 1473134 | Zbl 0980.53014

[40] A. Ros & E. Vergasta - “Stability for hypersurfaces of constant mean curvature with free boundary”, Geom. Dedicata 56 (1995) no. 1, p. 19-33 | Article | MR 1338315 | Zbl 0912.53009

[41] R. Schoen & L. Simon - “Regularity of stable minimal hypersurfaces”, Comm. Pure Appl. Math. 34 (1981) no. 6, p. 741-797 | Article | MR 634285 | Zbl 0497.49034

[42] R. M. Schoen - “Uniqueness, symmetry, and embeddedness of minimal surfaces”, J. Differential Geom. 18 (1983) no. 4, p. 791-809 (1984) | Article | MR 730928 | Zbl 0575.53037

[43] B. Sharp - “Compactness of minimal hypersurfaces with bounded index”, J. Differential Geom. 106 (2017) no. 2, p. 317-339 | Article | MR 3662994 | Zbl 1390.53065

[44] M. Struwe - “On a free boundary problem for minimal surfaces”, Invent. Math. 75 (1984) no. 3, p. 547-560 | Article | MR 735340 | Zbl 0537.35037

[45] J. Tysk - “Finiteness of index and total scalar curvature for minimal hypersurfaces”, Proc. Amer. Math. Soc. 105 (1989) no. 2, p. 429-435 | Article | MR 946639 | Zbl 0661.53039

[46] G. Wang - “Birkhoff minimax principle for minimal surfaces with a free boundary”, Math. Ann. 314 (1999) no. 1, p. 89-107 | Article | MR 1689264 | Zbl 0938.58015

[47] B. White - “Which ambient spaces admit isoperimetric inequalities for submanifolds?”, J. Differential Geom. 83 (2009) no. 1, p. 213-228 | Article | MR 2545035 | Zbl 1179.53061

[48] B. White - “On the compactness theorem for embedded minimal surfaces in 3-manifolds with locally bounded area and genus”, Comm. Anal. Geom. 26 (2018) no. 3, p. 659-678 | Article | MR 3844118 | Zbl 1394.53065

Cité par document(s). Sources :