On the topology of closed manifolds with quasi-constant sectional curvature
Louis Funar
Journal de l'École polytechnique — Mathématiques, Volume 6  (2019), p. 367-423

We prove that closed manifolds admitting a generic metric whose sectional curvature is locally quasi-constant are graphs of space forms. In the more general setting of QC spaces where sets of isotropic points are arbitrary, under suitable positivity assumption and for torsion-free fundamental groups, they are still diffeomorphic to connected sums of spherical bundles over the circle.

Nous montrons que les variétés fermées admettant une métrique générique dont la courbure sectionnelle est localement quasi-constante sont des sommes graphées de variétés de courbure constante. Ensuite nous étendons ce résultat au cas des espaces QC dont l’ensemble des points isotropes pourrait être arbitraire en démontrant que, sous une condition de positivité et lorsque leurs groupes fondamentaux sont sans torsion, ils sont difféomorphes à des sommes connexes de fibrés en sphères sur le cercle.

Received : 2017-07-10
Accepted : 2019-05-29
Published online : 2019-08-19
DOI : https://doi.org/10.5802/jep.96
Classification:  53C21,  53C23,  53C25,  57R42
Keywords: Curvature, conformal geometry, topology, curvature leaves, codimension-one isometric immersions, foliations, second fundamental form
@article{JEP_2019__6__367_0,
     author = {Louis Funar},
     title = {On the topology of closed manifolds with quasi-constant sectional curvature},
     journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     pages = {367-423},
     doi = {10.5802/jep.96},
     mrnumber = {3974473},
     zbl = {07070237},
     language = {en},
     url = {https://jep.centre-mersenne.org/item/JEP_2019__6__367_0}
}
Funar, Louis. On the topology of closed manifolds with quasi-constant sectional curvature. Journal de l'École polytechnique — Mathématiques, Volume 6 (2019) , pp. 367-423. doi : 10.5802/jep.96. https://jep.centre-mersenne.org/item/JEP_2019__6__367_0/

[1] S. Alexander - “Locally convex hypersurfaces of negatively curved spaces”, Proc. Amer. Math. Soc. 64 (1977) no. 2, p. 321-325 | Article | MR 448262 | Zbl 0398.53028

[2] B. N. Apanasov - “Kobayashi conformal metric on manifolds, Chern-Simons and η-invariants”, Internat. Math. Res. Notices 2 (1991) no. 4, p. 361-382 | Article | MR 1113566 | Zbl 0761.53010

[3] R. L. Bishop - “Infinitesimal convexity implies local convexity”, Indiana Univ. Math. J. 24 (1974), p. 169-172 | Article | MR 350662 | Zbl 0268.53011

[4] R. L. Bishop & B. O’Neill - “Manifolds of negative curvature”, Trans. Amer. Math. Soc. 145 (1969), p. 1-49 | Article | MR 251664 | Zbl 0191.52002

[5] V. Boju & L. Funar - “Espaces à courbure Stanilov quasi-constante”, Serdica 9 (1983) no. 3, p. 307-308 | MR 744160 | Zbl 0543.53018

[6] V. Boju & M. Popescu - “Espaces à courbure quasi-constante”, J. Differential Geom. 13 (1978) no. 3, p. 373-383 | Article | MR 551566 | Zbl 0421.53033

[7] J. Cantwell & L. Conlon - “The dynamics of open, foliated manifolds and a vanishing theorem for the Godbillon-Vey class”, Adv. in Math. 53 (1984) no. 1, p. 1-27 | Article | MR 748894 | Zbl 0552.57009

[8] M. do Carmo, M. Dajczer & F. Mercuri - “Compact conformally flat hypersurfaces”, Trans. Amer. Math. Soc. 288 (1985) no. 1, p. 189-203 | Article | MR 773056 | Zbl 0537.53050

[9] Y. Carrière & É. Ghys - “Feuilletages totalement géodésiques”, An. Acad. Brasil. Ciênc. 53 (1981) no. 3, p. 427-432 | Zbl 0486.57013

[10] E. Cartan - “La déformation des hypersurfaces dans l’espace conforme réel à n5 dimensions”, Bull. Soc. math. France 45 (1917), p. 57-121 | Article | Zbl 46.1129.02

[11] T. E. Cecil & P. J. Ryan - “Focal sets of submanifolds”, Pacific J. Math. 78 (1978) no. 1, p. 27-39 | Article | MR 513280 | Zbl 0365.53018

[12] T. E. Cecil & P. J. Ryan - “Distance functions and umbilic submanifolds of hyperbolic space”, Nagoya Math. J. 74 (1979), p. 67-75 | Article | MR 535960 | Zbl 0401.53016

[13] J. Cheeger & D. G. Ebin - Comparison theorems in Riemannian geometry, AMS Chelsea Publishing, Providence, RI, 2008, Revised reprint of the 1975 original | Article | Zbl 1142.53003

[14] B. Y. Chen & K. Yano - “Special conformally flat spaces and canal hypersurfaces”, Tôhoku Math. J. (2) 25 (1973), p. 177-184 | Article | MR 334032 | Zbl 0266.53043

[15] S. S. Chern & J. Simons - “Characteristic forms and geometric invariants”, Ann. of Math. (2) 99 (1974), p. 48-69 | Article | MR 353327 | Zbl 0283.53036

[16] K. Corlette - “Immersions with bounded curvature”, Geom. Dedicata 33 (1990) no. 2, p. 153-161 | Article | MR 1050607 | Zbl 0717.53035

[17] P. R. Dippolito - “Codimension one foliations of closed manifolds”, Ann. of Math. (2) 107 (1978) no. 3, p. 403-453 | Article | MR 515731 | Zbl 0418.57012

[18] R. Edwards, K. Millett & D. Sullivan - “Foliations with all leaves compact”, Topology 16 (1977) no. 1, p. 13-32 | Article | MR 438353 | Zbl 0356.57022

[19] L. P. Eisenhart - An introduction to differential geometry, Princeton Mathematical Series, vol. 3, Princeton University Press, Princeton, NJ, 1947 | MR 3048 | Zbl 0033.01801

[20] L. Funar & R. Grimaldi - “La topologie à l’infini des variétés à géométrie bornée et croissance linéaire”, J. Math. Pures Appl. (9) 76 (1997) no. 10, p. 851-858 | Article | Zbl 0886.53036

[21] L. Funar & R. Grimaldi - “The ends of manifolds with bounded geometry, linear growth and finite filling area”, Geom. Dedicata 104 (2004), p. 139-148 | Article | MR 2043958 | Zbl 1073.53055

[22] G. Ganchev & V. Mihova - “Riemannian manifolds of quasi-constant sectional curvatures”, J. reine angew. Math. 522 (2000), p. 119-141 | Article | MR 1758579 | Zbl 0952.53017

[23] W. M. Goldman - “Conformally flat manifolds with nilpotent holonomy and the uniformization problem for 3-manifolds”, Trans. Amer. Math. Soc. 278 (1983) no. 2, p. 573-583 | Article | MR 701512 | Zbl 0518.53041

[24] W. M. Goldman & Y. Kamishima - “Conformal automorphisms and conformally flat manifolds”, Trans. Amer. Math. Soc. 323 (1991) no. 2, p. 797-810 | Article | MR 987162 | Zbl 0723.53007

[25] M. Gromov - “Manifolds of negative curvature”, J. Differential Geom. 13 (1978) no. 2, p. 223-230 | Article | MR 540941 | Zbl 0433.53028

[26] M. Gromov & W. Thurston - “Pinching constants for hyperbolic manifolds”, Invent. Math. 89 (1987) no. 1, p. 1-12 | Article | MR 892185 | Zbl 0646.53037

[27] P. Guan & G. Wang - “Conformal deformations of the smallest eigenvalue of the Ricci tensor”, Amer. J. Math. 129 (2007) no. 2, p. 499-526 | Article | MR 2306044 | Zbl 1143.53033

[28] A. Haefliger - “Variétés feuilletées”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 16 (1962), p. 367-397 | MR 189060 | Zbl 0122.40702

[29] R. Hermann - “Focal points of closed submanifolds of Riemannian spaces”, Indag. Math. 25 (1963), p. 613-628 | Article | MR 158333 | Zbl 0117.38702

[30] C. C. Hwang - “Some theorems on the spaces of quasi-constant curvature”, J. Math. Res. Exposition 3 (1983) no. 1, p. 1-16, Correction: Ibid., no. 2, p. 140 | MR 724835 | Zbl 0522.53041

[31] S. Izumiya, D. Pei & T. Sano - “Singularities of hyperbolic Gauss maps”, Proc. London Math. Soc. (3) 86 (2003) no. 2, p. 485-512 | Article | MR 1971160 | Zbl 1041.58017

[32] Y. Kamishima - “Conformally flat manifolds whose development maps are not surjective. I”, Trans. Amer. Math. Soc. 294 (1986) no. 2, p. 607-623 | Article | MR 825725 | Zbl 0608.53036

[33] Y. Kamishima & S. P. Tan - “Deformation spaces on geometric structures”, in Aspects of low-dimensional manifolds, Adv. Stud. Pure Math., vol. 20, Kinokuniya, Tokyo, 1992, p. 263-299 | Article | MR 1208313 | Zbl 0798.53030

[34] M. Kapovich - “Conformally flat metrics on 4-manifolds”, J. Differential Geom. 66 (2004) no. 2, p. 289-301 | Article | MR 2106126 | Zbl 1071.53029

[35] N. H. Kuiper - “On conformally-flat spaces in the large”, Ann. of Math. (2) 50 (1949), p. 916-924 | Article | MR 31310 | Zbl 0041.09303

[36] R. S. Kulkarni - “Conformally flat manifolds”, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), p. 2675-2676 | Article | MR 307113 | Zbl 0238.53026

[37] R. S. Kulkarni - Index theorems of Atiyah-Bott-Patodi and curvature invariants, Séminaire de Mathématiques Supérieures (Été 1972), vol. 49, Les Presses de l’Université de Montréal, Montréal, Que., 1975 | MR 440626 | Zbl 0332.58015

[38] R. S. Kulkarni - “Conformal structures and Möbius structures”, in Conformal geometry (Bonn, 1985/1986), Aspects Math., vol. E12, Friedr. Vieweg, Braunschweig, 1988, p. 1-39 | Zbl 0659.53015

[39] R. S. Kulkarni & U. Pinkall - “A canonical metric for Möbius structures and its applications”, Math. Z. 216 (1994) no. 1, p. 89-129 | Article | Zbl 0813.53022

[40] F. Labourie - “Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques”, Bull. Soc. math. France 119 (1991) no. 3, p. 307-325 | Article | Zbl 0758.53030

[41] F. Labourie - “Surfaces convexes dans l’espace hyperbolique et CP 1 -structures”, J. London Math. Soc. (2) 45 (1992) no. 3, p. 549-565 | Article | MR 1180262 | Zbl 0767.53011

[42] J. Lafontaine - “Conformal geometry from the Riemannian viewpoint”, in Conformal geometry (Bonn, 1985/1986), Aspects Math., vol. E12, Friedr. Vieweg, Braunschweig, 1988, p. 65-92 | Article | Zbl 0661.53008

[43] K. C. Millett - “Compact foliations”, in Differential topology and geometry (Proc. Colloq. Dijon, 1974), Lect. Notes in Math., vol. 484, Springer, Berlin, 1975, p. 277-287 | Article | MR 391122 | Zbl 0313.57018

[44] I. G. Nikolaev - “Stability problems in a theorem of F. Schur”, Comment. Math. Helv. 70 (1995) no. 2, p. 210-234 | Article | MR 1324627 | Zbl 0837.53031

[45] S. P. Novikov - “The topology of foliations”, Trudy Moskov. Mat. Obšč. 14 (1965), p. 248-278 | MR 200938 | Zbl 0247.57006

[46] U. Pinkall - “Compact conformally flat hypersurfaces”, in Conformal geometry (Bonn, 1985/1986), Aspects Math., vol. E12, Friedr. Vieweg, Braunschweig, 1988, p. 217-236 | Article | Zbl 0657.53030

[47] H. Reckziegel - “Krümmungsflächen von isometrischen Immersionen in Räume konstanter Krümmung”, Math. Ann. 223 (1976) no. 2, p. 169-181 | Article | Zbl 0319.53042

[48] H. Reckziegel - “Completeness of curvature surfaces of an isometric immersion”, J. Differential Geom. 14 (1979) no. 1, p. 7-20 (1980) | Article | MR 577875 | Zbl 0411.53042

[49] R. Schoen & S.-T. Yau - “Conformally flat manifolds, Kleinian groups and scalar curvature”, Invent. Math. 92 (1988) no. 1, p. 47-71 | Article | MR 931204 | Zbl 0658.53038

[50] F. Schur - “Über den Zusammenhang der Räume konstanten Krümmungsmasses mit den projectiven Räumen”, Math. Ann. 27 (1886), p. 537-567 | Article

[51] G. Smith - “Moduli of flat conformal structures of hyperbolic type”, Geom. Dedicata 154 (2011), p. 47-80 | Article | MR 2832711 | Zbl 1231.53012

[52] M. Spivak - A comprehensive introduction to differential geometry. Vol. IV, Publish or Perish, Inc., Wilmington, Del., 1979 | MR 532833 | Zbl 0439.53004

[53] F. W. Warner - “Extensions of the Rauch comparison theorem to submanifolds”, Trans. Amer. Math. Soc. 122 (1966), p. 341-356 | Article | MR 200873 | Zbl 0139.15601

[54] A. Weinstein - “Almost invariant submanifolds for compact group actions”, J. Eur. Math. Soc. (JEMS) 2 (2000) no. 1, p. 53-86 | Article | MR 1750452 | Zbl 0957.53021