Le principe de Mazur pour
The Mazur principle for
Accepté le :
Publié le :
DOI : 10.5802/jep.92
Mots-clés : Variétés de Shimura, cohomologie de torsion, idéal maximal de l’algèbre de Hecke, localisation de la cohomologie, représentation galoisienne
Keywords: Shimura varieties, torsion in the cohomology, maximal ideal of the Hecke algebra, localized cohomology, Galois representation
Pascal Boyer 1

@article{JEP_2019__6__203_0, author = {Pascal Boyer}, title = {Principe de {Mazur} en dimension sup\'erieure}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {203--230}, publisher = {\'Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.92}, mrnumber = {3959073}, zbl = {07045721}, language = {fr}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.92/} }
TY - JOUR AU - Pascal Boyer TI - Principe de Mazur en dimension supérieure JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 203 EP - 230 VL - 6 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.92/ DO - 10.5802/jep.92 LA - fr ID - JEP_2019__6__203_0 ER -
Pascal Boyer. Principe de Mazur en dimension supérieure. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 203-230. doi : 10.5802/jep.92. https://jep.centre-mersenne.org/articles/10.5802/jep.92/
[1] - “Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples”, Invent. Math. 177 (2009) no. 2, p. 239-280 | MR | Zbl
[2] - “Cohomologie des systèmes locaux de Harris-Taylor et applications”, Compositio Math. 146 (2010) no. 2, p. 367-403 | MR
[3] - “La cohomologie des espaces de Lubin-Tate est libre” (2013), soumis, arXiv :1309.1946
[4] - “Filtrations de stratification de quelques variétés de Shimura simples”, Bull. Soc. math. France 142 (2014) no. 4, p. 777-814 | DOI | MR | Zbl
[5] - “Groupe mirabolique, stratification de Newton raffinée et cohomologie des espaces de Lubin-Tate” (2016), arXiv :1611.02082
[6] - “Sur la torsion dans la cohomologie des variétés de Shimura de Kottwitz-Harris-Taylor”, J. Inst. Math. Jussieu (2017), doi :10.1017/S1474748017000093, arXiv :1503.03303 | MR | Zbl
[7] - “Torsion classes in the cohomology of KHT Shimura’s varieties”, Math. Res. Lett. 25 (2019) no. 5, p. 1547-1566 | MR
[8] - “On the generic part of the cohomology of compact unitary Shimura varieties”, Ann. of Math. (2) 186 (2017) no. 3, p. 649-766 | DOI | MR | Zbl
[9] - “Un cas simple de correspondance de Jacquet-Langlands modulo
[10] - The geometry and cohomology of some simple Shimura varieties, Annals of Math. Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001 | MR | Zbl
[11] - “Autour du théorème de monodromie locale”, in Périodes
[12] - “Serre’s modularity conjecture, I & II”, Invent. Math. 178 (2009) no. 3, p. 485-504 & 505–586 | MR | Zbl
[13] - “Vanishing theorems for torsion automorphic sheaves on compact PEL-type Shimura varieties”, Duke Math. J. 161 (2012) no. 6, p. 951-1170 | MR | Zbl
[14] - “On modular representations of
[15] - “Compatibility of local and global Langlands correspondences”, J. Amer. Math. Soc. 20 (2007), p. 467-493 | DOI | MR | Zbl
[16] - “Induced
Cité par Sources :