Soit une surface compacte connexe et soit un élément du groupe des homéomorphismes de isotopes à l’identité. Notons un relevé de au revêtement universel de . Fixons un domaine fondamental de ce revêtement universel. On dit que l’homéomorphisme est non-diffus si la suite converge vers , où désigne le diamètre de . Supposons que la surface est orientable de bord non vide. Nous démontrons que, si est distincte du disque et de l’anneau, un homéomorphisme est non-diffus si et seulement si il a des conjugués dans arbitrairement proches de l’identité. Dans le cas où la surface est l’anneau, nous démontrons qu’un homéomorphisme est non-diffus si et seulement si il a des conjugués arbitrairement proches d’une rotation (ce résultat était déjà connu dans la plupart des cas grâce à un théorème dû à Béguin, Crovisier, Le Roux et Patou). On en déduit que, pour de telles surfaces , un élément de est distordu si et seulement si il est non diffus.
Let be a compact connected surface and let be an element of the group of homeomorphisms of isotopic to the identity. Denote by a lift of to the universal cover of . Fix a fundamental domain of this universal cover. The homeomorphism is said to be non-spreading if the sequence converges to , where is the diameter of . Let us suppose now that the surface is orientable with a nonempty boundary. We prove that, if is different from the annulus and from the disc, a homeomorphism is non-spreading if and only if it has conjugates in arbitrarily close to the identity. In the case where the surface is the annulus, we prove that a homeomorphism is non-spreading if and only if it has conjugates in arbitrarily close to a rotation (this was already known in most cases by a theorem by Béguin, Crovisier, Le Roux and Patou). We deduce that, for such surfaces , an element of is distorted if and only if it is non-spreading.
Accepté le :
Publié le :
DOI : 10.5802/jep.78
Keywords: Topological dynamics, homeomorphism, distortion, conjugacy class
Mot clés : Dynamique topologique, homéomorphisme, distorsion, classe de conjugaison
Emmanuel Militon 1
@article{JEP_2018__5__565_0, author = {Emmanuel Militon}, title = {Conjugacy class of homeomorphisms and distortion elements in groups~of~homeomorphisms}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {565--604}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.78}, zbl = {06988588}, mrnumber = {3852261}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.78/} }
TY - JOUR AU - Emmanuel Militon TI - Conjugacy class of homeomorphisms and distortion elements in groups of homeomorphisms JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 565 EP - 604 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.78/ DO - 10.5802/jep.78 LA - en ID - JEP_2018__5__565_0 ER -
%0 Journal Article %A Emmanuel Militon %T Conjugacy class of homeomorphisms and distortion elements in groups of homeomorphisms %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 565-604 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.78/ %R 10.5802/jep.78 %G en %F JEP_2018__5__565_0
Emmanuel Militon. Conjugacy class of homeomorphisms and distortion elements in groups of homeomorphisms. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 565-604. doi : 10.5802/jep.78. https://jep.centre-mersenne.org/articles/10.5802/jep.78/
[1] - “Pseudo-rotations of the closed annulus: variation on a theorem of J. Kwapisz”, Nonlinearity 17 (2004) no. 4, p. 1427-1453 | DOI | MR | Zbl
[2] - Simplicité des groupes de transformations de surfaces, Ensaios Matemáticos, vol. 14, Sociedade Brasileira de Matemática, Rio de Janeiro, 2008 | MR | Zbl
[3] - “Distortion in transformation groups”, Geom. Topol. 10 (2006), p. 267-293, with an appendix by Yves de Cornulier | DOI | MR
[4] - “Curves on -manifolds and isotopies”, Acta Math. 115 (1966), p. 83-107 | DOI | MR | Zbl
[5] - A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012 | MR
[6] - “On the group of all homeomorphisms of a manifold”, Trans. Amer. Math. Soc. 97 (1960), p. 193-212 | DOI | MR | Zbl
[7] - “Distortion elements in group actions on surfaces”, Duke Math. J. 131 (2006) no. 3, p. 441-468 | DOI | MR | Zbl
[8] - “Homotopy groups of the space of homeomorphisms on a -manifold”, Illinois J. Math. 10 (1966), p. 563-573 | MR
[9] - Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000 | Zbl
[10] - Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995, with a supplementary chapter by Katok and Leonardo Mendoza | MR | Zbl
[11] - “Combinatorics of torus diffeomorphisms”, Ergodic Theory Dynam. Systems 23 (2003) no. 2, p. 559-586 | DOI | MR | Zbl
[12] - “Un théorème d’indice pour les homéomorphismes du plan au voisinage d’un point fixe”, Ann. of Math. (2) 146 (1997) no. 2, p. 241-293 | DOI | Zbl
[13] - “Distortion elements for surface homeomorphisms”, Geom. Topol. 18 (2014) no. 1, p. 521-614 | DOI | MR | Zbl
[14] - “Rotation sets for maps of tori”, J. London Math. Soc. (2) 40 (1989) no. 3, p. 490-506 | DOI | MR
[15] - “Growth of maps, distortion in groups and symplectic geometry”, Invent. Math. 150 (2002) no. 3, p. 655-686 | DOI | MR | Zbl
Cité par Sources :