Nous étudions des opérateurs paraboliques dans le demi-espace supérieur parabolique . Nous supposons que les coefficients sont réels, bornés, mesurables, uniformément elliptiques, mais pas nécessairement symétriques. Nous montrons que la mesure parabolique associée est absolument continue par rapport à la mesure de surface sur au sens défini par . Notre argument donne aussi une preuve simplifiée du résultat correspondant pour la mesure elliptique.
We study parabolic operators in the parabolic upper half space . We assume that the coefficients are real, bounded, measurable, uniformly elliptic, but not necessarily symmetric. We prove that the associated parabolic measure is absolutely continuous with respect to the surface measure on in the sense defined by . Our argument also gives a simplified proof of the corresponding result for elliptic measure.
Accepté le :
Publié le :
DOI : 10.5802/jep.74
Keywords: Second order parabolic operator, non-symmetric coefficients, Dirichlet problem, parabolic measure, $A_\infty $-condition, Carleson measure estimate.
Mot clés : Opérateur parabolique du second ordre, coefficients non symétriques, problème de Dirichlet, mesure parabolique, condition $A_\infty $, estimée de la mesure de Carlson.
Pascal Auscher 1 ; Moritz Egert 2 ; Kaj Nyström 3
@article{JEP_2018__5__407_0, author = {Pascal Auscher and Moritz Egert and Kaj Nystr\"om}, title = {The {Dirichlet} problem for second order parabolic operators in divergence form}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {407--441}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.74}, zbl = {06988584}, mrnumber = {3808890}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.74/} }
TY - JOUR AU - Pascal Auscher AU - Moritz Egert AU - Kaj Nyström TI - The Dirichlet problem for second order parabolic operators in divergence form JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 407 EP - 441 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.74/ DO - 10.5802/jep.74 LA - en ID - JEP_2018__5__407_0 ER -
%0 Journal Article %A Pascal Auscher %A Moritz Egert %A Kaj Nyström %T The Dirichlet problem for second order parabolic operators in divergence form %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 407-441 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.74/ %R 10.5802/jep.74 %G en %F JEP_2018__5__407_0
Pascal Auscher; Moritz Egert; Kaj Nyström. The Dirichlet problem for second order parabolic operators in divergence form. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 407-441. doi : 10.5802/jep.74. https://jep.centre-mersenne.org/articles/10.5802/jep.74/
[1] - “Analyticity of layer potentials and solvability of boundary value problems for divergence form elliptic equations with complex coefficients”, Adv. Math. 226 (2011) no. 5, p. 4533-4606 | DOI | MR | Zbl
[2] - “Non-negative solutions of linear parabolic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), p. 607-694, Addendum, Ibid. 25 (1971), p. 221–228 | Numdam | MR | Zbl
[3] - “On non-autonomous maximal regularity for elliptic operators in divergence form”, Arch. Math. (Basel) 107 (2016) no. 3, p. 271-284 | DOI | MR | Zbl
[4] - “ well-posedness of boundary value problems and the Kato square root problem for parabolic systems with measurable coefficients”, J. Eur. Math. Soc. (JEMS) (to appear)
[5] - “Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators”, Acta Math. 187 (2001) no. 2, p. 161-190 | MR | Zbl
[6] - “Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients”, Calc. Var. Partial Differential Equations 55 (2016) no. 5, Art. 124, 49 pages | MR | Zbl
[7] - “Weighted norm inequalities for maximal functions and singular integrals”, Studia Math. 51 (1974), p. 241-250 | DOI | MR | Zbl
[8] - “Estimates of harmonic measure”, Arch. Rational Mech. Anal. 65 (1977) no. 3, p. 275-288 | DOI | MR | Zbl
[9] - “BMO solvability and the condition for second order parabolic operators”, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017) no. 5, p. 1155-1180 | DOI | MR | Zbl
[10] - On Kato’s conjecture and mixed boundary conditions, Sierke Verlag, Göttingen, 2015, PhD Thesis | Zbl
[11] - “Behavior near the boundary of positive solutions of second order parabolic equations”, J. Fourier Anal. Appl. 3 (1997), p. 871-882, special issue, proceedings of the conference dedicated to Professor Miguel de Guzmán (El Escorial, 1996) | DOI | MR | Zbl
[12] - “Behavior near the boundary of positive solutions of second order parabolic equations. II”, Trans. Amer. Math. Soc. 351 (1999) no. 12, p. 4947-4961 | DOI | MR | Zbl
[13] - “Estimates of caloric measure and the initial-Dirichlet problem for the heat equation in Lipschitz cylinders”, Trans. Amer. Math. Soc. 279 (1983) no. 2, p. 635-650 | DOI | MR | Zbl
[14] - “Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators”, J. Amer. Math. Soc. 28 (2015) no. 2, p. 483-529 | DOI | MR | Zbl
[15] - The Dirichlet problem for parabolic operators with singular drift terms, Mem. Amer. Math. Soc., vol. 151 no. 719, American Mathematical Society, Providence, RI, 2001 | Zbl
[16] - “Square functions of Calderón type and applications”, Rev. Mat. Iberoamericana 17 (2001) no. 1, p. 1-20 | DOI | Zbl
[17] - “The Dirichlet problem in nonsmooth domains”, Ann. of Math. (2) 113 (1981) no. 2, p. 367-382 | DOI | MR
[18] - “Abstract boundary value problems for linear parabolic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 20 (1966), p. 395-419 | Numdam | MR | Zbl
[19] - “Square functions and the property of elliptic measures”, J. Geom. Anal. 26 (2016) no. 3, p. 2383-2410 | DOI | MR | Zbl
[20] - Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 83, American Mathematical Society, Providence, RI, 1994 | MR | Zbl
[21] - The method of layer potentials for the heat equation in time-varying domains, Mem. Amer. Math. Soc., vol. 114 no. 545, American Mathematical Society, Providence, RI, 1995 | Zbl
[22] - “Parabolic measure and the Dirichlet problem for the heat equation in two dimensions”, Indiana Univ. Math. J. 37 (1988) no. 4, p. 801-839 | DOI | MR | Zbl
[23] - Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 | Zbl
[24] - “Operators which have an functional calculus”, in Miniconference on operator theory and partial differential equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14, Austral. Nat. Univ., Canberra, 1986, p. 210-231 | MR | Zbl
[25] - “The Dirichlet problem for second order parabolic operators”, Indiana Univ. Math. J. 46 (1997) no. 1, p. 183-245 | DOI | MR | Zbl
[26] - “Square function estimates and the Kato problem for second order parabolic operators in ”, Adv. Math. 293 (2016), p. 1-36 | DOI | MR | Zbl
[27] - “ solvability of boundary value problems for divergence form parabolic equations with complex coefficients”, J. Differential Equations 262 (2017) no. 3, p. 2808-2939 | MR | Zbl
[28] - “Absolute continuity of parabolic measure and area integral estimates in non-cylindrical domains”, Indiana Univ. Math. J. 52 (2003) no. 2, p. 477-525 | DOI | MR | Zbl
Cité par Sources :