Superlensing using hyperbolic metamaterials: the scalar case
[Propriété de superlensing de dispositifs constitués de méta-matériaux hyperboliques : le cas scalaire]
Journal de l’École polytechnique — Mathématiques, Tome 4 (2017) , pp. 973-1003.

Dans cet article, on s’intéresse à la propriété de superlensing des méta-matériaux, c’est-à-dire à la possibilité d’imager un objet arbitraire, sans condition sur le rapport entre sa taille et la longueur d’onde de la lumière incidente. Nous proposons et analysons deux types de dispositifs constitués de méta-matériaux hyperboliques, qui possèdent cette propriété. L’étude de tels milieux est délicate, car les EDP qui les modélisent changent de type : elles sont elliptiques dans certaines régions de l’espace et hyperboliques dans les autres.

This paper is devoted to superlensing using hyperbolic metamaterials: the possibility to image an arbitrary object using hyperbolic metamaterials without imposing any conditions on the size of the object and the wave length. To this end, two types of schemes are suggested and their analysis are given. The superlensing devices proposed are independent of the object. It is worth noting that the study of hyperbolic metamaterials is challenging due to the change of type of the modeling equations, elliptic in some regions, hyperbolic in some others.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.61
Classification : 35B30,  35B40,  35J05,  35J70,  35M10,  35L53,  78A25
Mots clés : Matériaux à indice négatif, méta-matériaux hyperboliques, superlensing, équations elliptiques dégénérées
@article{JEP_2017__4__973_0,
     author = {Eric Bonnetier and Hoai-Minh Nguyen},
     title = {Superlensing using hyperbolic metamaterials: the scalar case},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {973--1003},
     publisher = {\'Ecole polytechnique},
     volume = {4},
     year = {2017},
     doi = {10.5802/jep.61},
     mrnumber = {3714368},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.61/}
}
Eric Bonnetier; Hoai-Minh Nguyen. Superlensing using hyperbolic metamaterials: the scalar case. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017) , pp. 973-1003. doi : 10.5802/jep.61. https://jep.centre-mersenne.org/articles/10.5802/jep.61/

[1] H. Ammari, G. Ciraolo, H. Kang, H. Lee & G. W. Milton - “Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance”, Arch. Rational Mech. Anal. 208 (2013) no. 2, p. 667-692 | Article | Zbl 1282.78004

[2] G. Bouchitté & B. Schweizer - “Cloaking of small objects by anomalous localized resonance”, Quart. J. Mech. Appl. Math. 63 (2010) no. 4, p. 437-463 | Article | MR 2738456 | Zbl 1241.78001

[3] D. G. Bourgin & R. Duffin - “The Dirichlet problem for a vibrating string equation”, Bull. Amer. Math. Soc. 45 (1939), p. 851-859 | Article | Zbl 0023.04201

[4] H. Brezis - Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011 | Zbl 1220.46002

[5] - Topics in the mathematical modelling of composite materials, Progress in Nonlinear Differential Equations and their Applications 31 (1997) | MR 1493036

[6] J. Droxler, J. Hesthaven & H.-M. Nguyen, In preparation

[7] P. Grisvard - Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, vol. 69, SIAM, Philadelphia, PA, 2011 | MR 3396210 | Zbl 1231.35002

[8] Z. Jacob, L. V. Alekseyev & E. Narimanov - “Optical hyperlens: far-field imaging beyond the diffraction limit”, Optics Express 14 (2006), p. 8247-8256 | Article

[9] F. John - “The Dirichlet problem for a hyperbolic equation”, Amer. J. Math. 63 (1941), p. 141-154 | Article | MR 3346 | Zbl 67.0362.02

[10] R. V. Kohn, J. Lu, B. Schweizer & M. I. Weinstein - “A variational perspective on cloaking by anomalous localized resonance”, Comm. Math. Phys. 328 (2014) no. 1, p. 1-27 | Article | MR 3196978 | Zbl 1366.78002

[11] Y. Lai, H. Chen, Z. Zhang & C. T. Chan - “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell”, Phys. Rev. Lett. 102 (2009), 093901 | Article

[12] Z. Liu, H. Lee, C. Sun & Z. Zhang - “Far-field optical hyperlens magnifying sub-diffraction-limited objects”, Science 315 (2007), p. 1686-1686 | Article

[13] G. W. Milton & N.-A. Nicorovici - “On the cloaking effects associated with anomalous localized resonance”, Proc. Roy. Soc. London Ser. A 462 (2006) no. 2074, p. 3027-3059 | Article | MR 2263683 | Zbl 1149.00310

[14] H.-M. Nguyen - “Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients”, Trans. Amer. Math. Soc. 367 (2015) no. 9, p. 6581-6595 | Article | MR 3356948

[15] H.-M. Nguyen - “Superlensing using complementary media”, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015) no. 2, p. 471-484 | Article | MR 3325246 | Zbl 1316.35275

[16] H.-M. Nguyen - “Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime”, J. Eur. Math. Soc. (JEMS) 17 (2015) no. 6, p. 1327-1365 | Article | MR 3353803 | Zbl 1341.35031

[17] H.-M. Nguyen - “Localized and complete resonance in plasmonic structures”, ESAIM Math. Model. Numer. Anal. 49 (2015) no. 3, p. 741-754 | Article | MR 3342226 | Zbl 1320.78005

[18] H.-M. Nguyen - “Cloaking using complementary media in the quasistatic regime”, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016) no. 6, p. 1509-1518 | Article | MR 3569240 | Zbl 1375.35113

[19] H.-M. Nguyen - “Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients”, J. Math. Pures Appl. (9) 106 (2016) no. 2, p. 342-374 | Article | MR 3515306 | Zbl 1343.35074

[20] H.-M. Nguyen - “Reflecting complementary and superlensing using complementary media for electromagnetic waves” (2015), arXiv:1511.08050

[21] H.-M. Nguyen - “Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime”, J. Anal. Math. (to appear), arXiv:1511.08053 | Zbl 1341.35031

[22] H.-M. Nguyen - “Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object: the acoustic case”, SIAM J. Math. Anal. (to appear), arXiv:1607.06492 | Zbl 1375.78019

[23] H.-M. Nguyen & L. H. Nguyen - “Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations”, Trans. Amer. Math. Soc. Ser. B 2 (2015), p. 93-112 | Article | MR 3418646 | Zbl 1336.35126

[24] N. A. Nicorovici, R. C. McPhedran & G. W. Milton - “Optical and dielectric properties of partially resonant composites”, Phys. Rev. B 49 (1994), p. 8479-8482 | Article

[25] J. B. Pendry - “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85 (2000), p. 3966-3969 | Article

[26] J. B. Pendry - “Perfect cylindrical lenses”, Optics Express 1 (2003), p. 755-760 | Article

[27] A. Poddubny, I. Iorsh, P. Belov & Y. Kivshar - “Hyperbolic metamaterials”, Nature Photonics 7 (2013), p. 948-957 | Article

[28] M. H. Protter - “Unique continuation for elliptic equations”, Trans. Amer. Math. Soc. 95 (1960), p. 81-91 | Article | MR 113030 | Zbl 0094.07901

[29] S. A. Ramakrishna & J. B. Pendry - “Spherical perfect lens: solutions of Maxwell’s equations for spherical geometry”, Phys. Rev. B 69 (2004), 115115

[30] V. Veselago - “The electrodynamics of substances with simultaneously negative values of ε and μ”, Uspehi Fiz. Nauk 92 (1964), p. 517-526 | Article