Optimal transport with Coulomb cost and the semiclassical limit of density functional theory
Journal de l’École polytechnique — Mathématiques, Volume 4 (2017), pp. 909-934.

We present some progress in the direction of determining the semiclassical limit of the Levy-Lieb or Hohenberg-Kohn universal functional in density functional theory for Coulomb systems. In particular we give a proof of the fact that for Bosonic systems with an arbitrary number of particles the limit is the multimarginal optimal transport problem with Coulomb cost and that the same holds for Fermionic systems with two or three particles. Comparisons with previous results are reported. The approach is based on some techniques from the optimal transportation theory.

Nous présentons des progrès récents en vue de la détermination de la limite semi-classique de la fonctionnelle universelle de Levy-Lieb ou Hohenberg-Kohn en théorie de la fonctionnelle de la densité pour des systèmes coulombiens. Nous donnons en particulier une preuve du fait que, pour des systèmes de bosons avec un nombre arbitraire de particules, la limite est le problème de transport optimal multi-marginal à coût coulombien, de même que pour les systèmes de fermions à deux ou trois particules. Nous établissons des comparaisons avec des résultats antérieurs. Nous nous appuyons sur certaines techniques de la théorie du transport optimal.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.59
Classification: 49J45, 49N15, 49K30
Keywords: Density functional theory, multimarginal optimal transportation, Monge-Kantorovich problem, duality theory, Coulomb cost
Mot clés : Théorie de la fonctionnelle de la densité, transport optimal multi-marginal, problème de Monge-Kantorovich, théorie de la dualité, coût coulombien

Ugo Bindini 1; Luigi De Pascale 2

1 Scuola Normale Superiore, Piazza dei Cavalieri 5, 56127 Pisa, Italy
2 Dipartimento di Matematica e Informatica, Università di Firenze Viale Morgagni 67/A, 50134 Firenze, Italy
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2017__4__909_0,
     author = {Ugo Bindini and Luigi De Pascale},
     title = {Optimal transport with {Coulomb} cost and the semiclassical limit of density functional theory},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {909--934},
     publisher = {\'Ecole polytechnique},
     volume = {4},
     year = {2017},
     doi = {10.5802/jep.59},
     mrnumber = {3714366},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.59/}
}
TY  - JOUR
AU  - Ugo Bindini
AU  - Luigi De Pascale
TI  - Optimal transport with Coulomb cost and the semiclassical limit of density functional theory
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2017
SP  - 909
EP  - 934
VL  - 4
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.59/
DO  - 10.5802/jep.59
LA  - en
ID  - JEP_2017__4__909_0
ER  - 
%0 Journal Article
%A Ugo Bindini
%A Luigi De Pascale
%T Optimal transport with Coulomb cost and the semiclassical limit of density functional theory
%J Journal de l’École polytechnique — Mathématiques
%D 2017
%P 909-934
%V 4
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.59/
%R 10.5802/jep.59
%G en
%F JEP_2017__4__909_0
Ugo Bindini; Luigi De Pascale. Optimal transport with Coulomb cost and the semiclassical limit of density functional theory. Journal de l’École polytechnique — Mathématiques, Volume 4 (2017), pp. 909-934. doi : 10.5802/jep.59. https://jep.centre-mersenne.org/articles/10.5802/jep.59/

[1] L. Ambrosio, N. Gigli & G. Savaré - Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008 | Zbl

[2] U. Bindini - Γ-convergence and optimal transportation in density functional theory, University of Pisa, November 2016, Master Thesis

[3] A. Braides - Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications, vol. 22, Oxford University Press, Oxford, 2002 | MR | Zbl

[4] G. Buttazzo, T. Champion & L. De Pascale - “Continuity and estimates for multimarginal optimal transportation problems with singular costs”, Appl. Math. Optim. (2017), on-line first | DOI | Zbl

[5] G. Buttazzo, L. De Pascale & P. Gori-Giorgi - “Optimal-transport formulation of electronic density-functional theory”, Phys. Rev. A 85 (2012) no. 6, #062502 | DOI

[6] M. Colombo, L. De Pascale & S. Di Marino - “Multimarginal optimal transport maps for one-dimensional repulsive costs”, Canad. J. Math. 67 (2015) no. 2, p. 350-368 | DOI | MR | Zbl

[7] C. Cotar, G. Friesecke & C. Klüppelberg - “Density functional theory and optimal transportation with Coulomb cost”, Comm. Pure Appl. Math. 66 (2013) no. 4, p. 548-599 | DOI | MR | Zbl

[8] C. Cotar, G. Friesecke & C. Klüppelberg - “Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional” (2017), arXiv:1706.05676 | Zbl

[9] G. Dal Maso - An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993 | MR | Zbl

[10] L. De Pascale - “Optimal transport with Coulomb cost. Approximation and duality”, ESAIM Math. Model. Numer. Anal. 49 (2015) no. 6, p. 1643-1657 | DOI | MR | Zbl

[11] M. Levy - “Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem”, Proc. Nat. Acad. Sci. U.S.A. 76 (1979) no. 12, p. 6062-6065 | DOI | MR

[12] M. Lewin - “Semi-classical limit of the Levy-Lieb functional in density functional theory” (2017), arXiv:1706.02199

[13] E. H. Lieb - “Density functionals for Coulomb systems”, Int. J. Quantum Chem. 24 (1983) no. 3, p. 243-277 | DOI

Cited by Sources: