[Homologie de contact pour les nœuds, topologie des cordes et algèbre des cordes]
Le fibré conormal lagrangien
The conormal Lagrangian
Accepté le :
Publié le :
DOI : 10.5802/jep.55
Keywords: Holomorphic curve, string topology, conormal bundle, knot invariant, Lagrangian submanifold, Legendrian submanifold
Mots-clés : Courbe holomorphe, topologie des cordes, fibré conormal, invariant de nœud, sous-variété lagrangienne, sous-variété legendrienne
Kai Cieliebak 1 ; Tobias Ekholm 2, 3 ; Janko Latschev 4 ; Lenhard Ng 5

@article{JEP_2017__4__661_0, author = {Kai Cieliebak and Tobias Ekholm and Janko Latschev and Lenhard Ng}, title = {Knot contact homology, string topology, and~the cord algebra}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {661--780}, publisher = {\'Ecole polytechnique}, volume = {4}, year = {2017}, doi = {10.5802/jep.55}, zbl = {1380.53101}, mrnumber = {3665612}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.55/} }
TY - JOUR AU - Kai Cieliebak AU - Tobias Ekholm AU - Janko Latschev AU - Lenhard Ng TI - Knot contact homology, string topology, and the cord algebra JO - Journal de l’École polytechnique — Mathématiques PY - 2017 SP - 661 EP - 780 VL - 4 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.55/ DO - 10.5802/jep.55 LA - en ID - JEP_2017__4__661_0 ER -
%0 Journal Article %A Kai Cieliebak %A Tobias Ekholm %A Janko Latschev %A Lenhard Ng %T Knot contact homology, string topology, and the cord algebra %J Journal de l’École polytechnique — Mathématiques %D 2017 %P 661-780 %V 4 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.55/ %R 10.5802/jep.55 %G en %F JEP_2017__4__661_0
Kai Cieliebak; Tobias Ekholm; Janko Latschev; Lenhard Ng. Knot contact homology, string topology, and the cord algebra. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 661-780. doi : 10.5802/jep.55. https://jep.centre-mersenne.org/articles/10.5802/jep.55/
[1] - “Topological strings, D-model, and knot contact homology”, Adv. Theo. Math. Phys. 18 (2014) no. 4, p. 827-956 | DOI | MR | Zbl
[2] - “Transverse string topology and the cord algebra”, J. Symplectic Geom. 13 (2015) no. 1, p. 1-16 | DOI | MR | Zbl
[3] - “Compactness results in symplectic field theory”, Geom. Topol. 7 (2003), p. 799-888 | DOI | MR | Zbl
[4] - “String topology” (1999), arXiv:math.GT/9911159
[5] - “Compactness for holomorphic curves with switching Lagrangian boundary conditions”, J. Symplectic Geom. 8 (2010) no. 3, p. 267-298 | DOI | MR | Zbl
[6] - “The role of string topology in symplectic field theory”, in New perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes, vol. 49, American Mathematical Society, Providence, RI, 2009, p. 113-146 | DOI | MR | Zbl
[7] - “Lifting pseudo-holomorphic polygons to the symplectisation of
[8] - “Non-triviality of the
[9] - “Morse flow trees and Legendrian contact homology in 1-jet spaces”, Geom. Topol. 11 (2007), p. 1083-1224 | DOI | MR | Zbl
[10] - “Rational symplectic field theory over
[11] - “Filtrations on the knot contact homology of transverse knots”, Math. Ann. 355 (2013) no. 4, p. 1561-1591 | DOI | MR | Zbl
[12] - “Knot contact homology”, Geom. Topol. 17 (2013) no. 2, p. 975-1112 | DOI | MR | Zbl
[13] - “The contact homology of Legendrian submanifolds in
[14] - “Orientations in Legendrian contact homology and exact Lagrangian immersions”, Internat. J. Math. 16 (2005) no. 5, p. 453-532 | DOI | MR | Zbl
[15] - “Legendrian contact homology in
[16] - “Isotopies of Legendrian 1-knots and Legendrian 2-tori”, J. Symplectic Geom. 6 (2008) no. 4, p. 407-460 | DOI | MR | Zbl
[17] - “A complete knot invariant from contact homology”, arXiv:1606.07050 | DOI | Zbl
[18] - “Exact Lagrangian immersions with one double point revisited”, Math. Ann. 358 (2014) no. 1-2, p. 195-240 | DOI | MR | Zbl
[19] - “Exact Lagrangian immersions with a single double point”, J. Amer. Math. Soc. 29 (2016) no. 1, p. 1-59 | DOI | MR | Zbl
[20] - “Introduction to symplectic field theory”, Geom. Funct. Anal. (2000), p. 560-673, Special Volume, Part II, GAFA 2000 (Tel Aviv, 1999) | MR | Zbl
[21] - “Morse theory for Lagrangian intersections”, J. Differential Geom. 28 (1988) no. 3, p. 513-547 | DOI | MR | Zbl
[22] - Lagrangian intersection Floer theory: anomaly and obstruction. Part I, AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society, Providence, RI, 2009 | MR | Zbl
[23] - “Knot contact homology detects cabled, composite, and torus knots”, arXiv:1509.01642 | DOI | Zbl
[24] - “Knots are determined by their complements”, J. Amer. Math. Soc. 2 (1989) no. 2, p. 371-415 | DOI | MR | Zbl
[25] - Differential topology, Graduate Texts in Math., vol. 33, Springer-Verlag, New York-Heidelberg, 1976 | MR | Zbl
[26] - The Floer memorial volume (H. Hofer, C. H. Taubes, A. Weinstein & E. Zehnder, eds.), Progress in Mathematics, vol. 133, Birkhäuser Verlag, Basel, 1995 | MR | Zbl
[27] - “A general Fredholm theory. I. A splicing-based differential geometry”, J. Eur. Math. Soc. (JEMS) 9 (2007) no. 4, p. 841-876 | DOI | MR | Zbl
[28] - “Dehn surgery, the fundamental group and SU
[29] - “A remark on the group rings of order preserving permutation groups.”, Canad. Math. Bull. 11 (1968), p. 679-680 | DOI | MR | Zbl
[30] - “Knot and braid invariants from contact homology. I”, Geom. Topol. 9 (2005), p. 247-297 | DOI | MR | Zbl
[31] - “Knot and braid invariants from contact homology. II”, Geom. Topol. 9 (2005), p. 1603-1637, With an appendix by the author and Siddhartha Gadgil | DOI | MR | Zbl
[32] - “Framed knot contact homology”, Duke Math. J. 141 (2008) no. 2, p. 365-406 | DOI | MR | Zbl
[33] - “Combinatorial knot contact homology and transverse knots”, Adv. Math. 227 (2011) no. 6, p. 2189-2219 | DOI | MR | Zbl
[34] - “A topological introduction to knot contact homology”, in Contact and symplectic topology, Bolyai Soc. Math. Stud., vol. 26, János Bolyai Math. Soc., Budapest, 2014, p. 485-530 | DOI | MR | Zbl
[35] - “The conormal torus is a complete knot invariant”, arXiv:1604.03520
[36] - “Open and closed string field theory interpreted in classical algebraic topology”, in Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ. Press, Cambridge, 2004, p. 344-357 | DOI | MR | Zbl
[37] - “String topology background and present state”, in Current developments in mathematics, 2005, Int. Press, Somerville, MA, 2007, p. 41-88 | Zbl
- - “Definition of the cord algebra of knots using Morse thoery”, Algebraic Geometric Topology 24 (2024) no. 6, p. 2971 | DOI:10.2140/agt.2024.24.2971
- - “Tangle contact homology”, International Journal of Mathematics 35 (2024) no. 12 | DOI:10.1142/s0129167x24500447
- - “2-knot homology and Roseman move”, Journal of Knot Theory and Its Ramifications 31 (2022) no. 06 | DOI:10.1142/s0218216522500390
- - “Augmentations and link group representations”, Algebraic Geometric Topology 21 (2021) no. 6, p. 2857 | DOI:10.2140/agt.2021.21.2857
- - “2-Knot homology and Yoshikawa move”, Journal of Knot Theory and Its Ramifications 29 (2020) no. 09, p. 2050067 | DOI:10.1142/s0218216520500674
- - “THE CONORMAL TORUS IS A COMPLETE KNOT INVARIANT”, Forum of Mathematics, Pi 7 (2019) | DOI:10.1017/fmp.2019.1
- - “Floer Homologies, with Applications”, Jahresbericht der Deutschen Mathematiker-Vereinigung 121 (2019) no. 3, p. 155 | DOI:10.1365/s13291-018-0193-x
- - “A complete knot invariant from contact homology”, Inventiones mathematicae 211 (2018) no. 3, p. 1149 | DOI:10.1007/s00222-017-0761-1
Cité par 8 documents. Sources : Crossref