Une courbe de du Val de genre est une courbe plane de degré ayant points de multiplicité , un point de multiplicité et pas d’autre singularité. Nous montrons que le corang de l’application de Gauss-Wahl pour une courbe de du Val générale de genre impair () est égal à . Ceci, joint aux résultats de [1], montre que la caractérisation, obtenue dans [3], des courbes de Brill-Noether-Petri ayant une application de Gauss-Wahl non surjective comme sections hyperplanes de surfaces K3 et limites de celles-ci, est optimale.
A genus- du Val curve is a degree- plane curve having 8 points of multiplicity , one point of multiplicity , and no other singularity. We prove that the corank of the Gauss-Wahl map of a general du Val curve of odd genus () is equal to one. This, together with the results of [1], shows that the characterization of Brill-Noether-Petri curves with non-surjective Gauss-Wahl map as hyperplane sections of K3 surfaces and limits thereof, obtained in [3], is optimal.
Accepté le :
Publié le :
DOI : 10.5802/jep.43
Keywords: Curves, K3 surfaces, vector bundles
Mot clés : Courbes, surfaces K3, fibrés vectoriels
Enrico Arbarello 1 ; Andrea Bruno 2
@article{JEP_2017__4__257_0, author = {Enrico Arbarello and Andrea Bruno}, title = {Rank-two vector bundles on {Halphen} surfaces and the {Gauss-Wahl} map for du {Val} curves}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {257--285}, publisher = {\'Ecole polytechnique}, volume = {4}, year = {2017}, doi = {10.5802/jep.43}, zbl = {1368.14050}, mrnumber = {3623355}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.43/} }
TY - JOUR AU - Enrico Arbarello AU - Andrea Bruno TI - Rank-two vector bundles on Halphen surfaces and the Gauss-Wahl map for du Val curves JO - Journal de l’École polytechnique — Mathématiques PY - 2017 SP - 257 EP - 285 VL - 4 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.43/ DO - 10.5802/jep.43 LA - en ID - JEP_2017__4__257_0 ER -
%0 Journal Article %A Enrico Arbarello %A Andrea Bruno %T Rank-two vector bundles on Halphen surfaces and the Gauss-Wahl map for du Val curves %J Journal de l’École polytechnique — Mathématiques %D 2017 %P 257-285 %V 4 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.43/ %R 10.5802/jep.43 %G en %F JEP_2017__4__257_0
Enrico Arbarello; Andrea Bruno. Rank-two vector bundles on Halphen surfaces and the Gauss-Wahl map for du Val curves. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 257-285. doi : 10.5802/jep.43. https://jep.centre-mersenne.org/articles/10.5802/jep.43/
[1] - “Explicit Brill-Noether-Petri general curves”, Comment. Math. Helv. 91 (2016) no. 3, p. 477-491 | DOI | MR | Zbl
[2] - “Mukai’s program for curves on a K3 surface”, Algebraic Geom. 1 (2014) no. 5, p. 532-557 | DOI | MR | Zbl
[3] - “On hyperplane sections of K3 surfaces”, Algebraic Geom. (to appear), arXiv:1507.05002 | Zbl
[4] - “Singularities of moduli spaces of sheaves on K3 surfaces and Nakajima quiver varieties” (2015), arXiv:1505.00759 | Zbl
[5] - “Le théorème de Torelli pour les surfaces K3: fin de la démonstration”, in Geometry of K3 surfaces: moduli and periods (Palaiseau, 1981/1982), Astérisque, vol. 126, Société Mathématique de France, Paris, 1985, p. 111-121 | Numdam | MR | Zbl
[6] - “Rational surfaces with a large group of automorphisms”, J. Amer. Math. Soc. 25 (2012) no. 3, p. 863-905 | DOI | MR | Zbl
[7] - “Determinantal equations for curves of high degree”, Amer. J. Math. 110 (1998) no. 3, p. 513-539, with an appendix with J. Harris | DOI | MR
[8] - “On the Mori cone of blow-ups of the plane” (2010), arXiv:1001.5243
[9] - “On Clifford’s theorem for singular curves”, Proc. London Math. Soc. (3) 108 (2014) no. 1, p. 225-252 | DOI | MR | Zbl
[10] - “Koszul cohomology and the geometry of projective varieties”, J. Differential Geometry 19 (1984) no. 1, p. 125-171, with an appendix by M. Green and R. Lazarsfeld | DOI | MR | Zbl
[11] - The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010 | DOI | Zbl
[12] - “Degenerations of K3 surfaces and Enriques surfaces”, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977) no. 5, p. 1008-1042 | MR | Zbl
[13] - “Universal families of extensions”, J. Algebra 83 (1983) no. 1, p. 101-112 | DOI | MR | Zbl
[14] - “The Clemens-Schmid exact sequence and applications”, in Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), Ann. of Math. Stud., vol. 106, Princeton Univ. Press, Princeton, NJ, 1984, p. 101-119 | MR | Zbl
[15] - “Curves and K3 surfaces of genus eleven”, in Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, p. 189-197 | MR | Zbl
[16] - “On rational surfaces. II”, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960), p. 271-293 | DOI | MR | Zbl
[17] - “Degeneration of surfaces with trivial canonical bundle”, Ann. of Math. (2) 113 (1981) no. 1, p. 45-66 | DOI | MR | Zbl
[18] - “Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri”, Acta Math. 168 (1992) no. 3-4, p. 249-272 | DOI | MR | Zbl
[19] - “On cohomology of the square of an ideal sheaf”, J. Algebraic Geom. 6 (1997) no. 3, p. 481-511 | MR | Zbl
[20] - “Hyperplane sections of Calabi-Yau varieties”, J. reine angew. Math. 544 (2002), p. 39-59 | MR | Zbl
Cité par Sources :