Central limit theorems for simultaneous Diophantine approximations
[Théorème central limite pour des approximations diophantiennes simultanées]
Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 1-35.

Nous étudions la loi de probabilité modulo 1 des valeurs prises sur les entiers par r formes linéaires de d variables à coefficients aléatoires. Nous montrons un théorème central limite, « en moyenne » et « presque sûr », pour le nombre de points atteignant simultanément des cibles de rayon décroissant à une vitesse n -r/d . D’après le théorème de Khintchine-Groshev sur les approximations diophantiennes, r/d est le seuil critique à partir duquel le nombre des points tend vers l’infini.

We study the distribution modulo 1 of the values taken on the integers of r linear forms in d variables with random coefficients. We obtain quenched and annealed central limit theorems for the number of simultaneous hits into shrinking targets of radii n -r/d . By the Khintchine-Groshev theorem on Diophantine approximations, r/d is the critical exponent for the infinite number of hits.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.37
Classification : 60F05, 37A17, 11K60
Keywords: Central limit theorem, weakly dependent random variables, diophantine approximation, linear forms, space of lattices
Mot clés : Théorème central limite, variables aléatoires faiblement dépendantes, approximation diophantienne, formes linéaires, espace de réseaux

Dmitry Dolgopyat 1 ; Bassam Fayad 2 ; Ilya Vinogradov 3

1 University of Maryland, Department of Mathematics 4176 Campus Dr., College Park, MD 20742-4015, USA
2 Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris Diderot 58-56, avenue de France, Boite Courrier 7012, 75205 Paris Cedex 13, France
3 Princeton University, Department of Mathematics Fine Hall, Washington Rd., Princeton NJ 08544, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2017__4__1_0,
     author = {Dmitry Dolgopyat and Bassam Fayad and Ilya Vinogradov},
     title = {Central limit theorems for simultaneous {Diophantine} approximations},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1--35},
     publisher = {\'Ecole polytechnique},
     volume = {4},
     year = {2017},
     doi = {10.5802/jep.37},
     zbl = {1387.60046},
     mrnumber = {3583273},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.37/}
}
TY  - JOUR
AU  - Dmitry Dolgopyat
AU  - Bassam Fayad
AU  - Ilya Vinogradov
TI  - Central limit theorems for simultaneous Diophantine approximations
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2017
SP  - 1
EP  - 35
VL  - 4
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.37/
DO  - 10.5802/jep.37
LA  - en
ID  - JEP_2017__4__1_0
ER  - 
%0 Journal Article
%A Dmitry Dolgopyat
%A Bassam Fayad
%A Ilya Vinogradov
%T Central limit theorems for simultaneous Diophantine approximations
%J Journal de l’École polytechnique — Mathématiques
%D 2017
%P 1-35
%V 4
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.37/
%R 10.5802/jep.37
%G en
%F JEP_2017__4__1_0
Dmitry Dolgopyat; Bassam Fayad; Ilya Vinogradov. Central limit theorems for simultaneous Diophantine approximations. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 1-35. doi : 10.5802/jep.37. https://jep.centre-mersenne.org/articles/10.5802/jep.37/

[1] J. S. Athreya, A. Ghosh & J. Tseng - “Spiraling of approximations and spherical averages of Siegel transforms”, J. London Math. Soc. (2) 91 (2015) no. 2, p. 383-404 | DOI | MR | Zbl

[2] J. S. Athreya, A. Ghosh & J. Tseng - “Spherical averages of Siegel transforms for higher rank diagonal actions and applications” (2014), arXiv:1407.3573

[3] J. S. Athreya, A. Parrish & J. Tseng - “Ergodic theory and Diophantine approximation for linear forms and translation surfaces”, Nonlinearity 29 (2016) no. 8, p. 2173-2190 | DOI | Zbl

[4] D. Badziahin, V. V. Beresnevich & S. Velani - “Inhomogeneous theory of dual Diophantine approximation on manifolds”, Adv. Math. 232 (2013), p. 1-35 | DOI | MR | Zbl

[5] V. V. Beresnevich, V. I. Bernik, D. Y. Kleinbock & G. A. Margulis - “Metric Diophantine approximation: the Khintchine-Groshev theorem for nondegenerate manifolds”, Moscow Math. J. 2 (2002) no. 2, p. 203-225 | DOI | MR | Zbl

[6] V. V. Beresnevich & S. Velani - “Classical metric Diophantine approximation revisited: the Khintchine-Groshev theorem”, Internat. Math. Res. Notices (2010) no. 1, p. 69-86 | MR | Zbl

[7] J. W. S. Cassels - An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 45, Cambridge University Press, New York, 1957 | MR | Zbl

[8] I. P. Cornfeld, S. V. Fomin & Y. G. Sinaĭ - Ergodic theory, Grundlehren Math. Wiss., vol. 245, Springer-Verlag, New York, 1982 | MR | Zbl

[9] S. G. Dani - “Divergent trajectories of flows on homogeneous spaces and Diophantine approximation”, J. reine angew. Math. 359 (1985), p. 55-89, Erratum: Ibid, 360 (1985), p. 214 | MR | Zbl

[10] D. Dolgopyat - “Limit theorems for partially hyperbolic systems”, Trans. Amer. Math. Soc. 356 (2004) no. 4, p. 1637-1689 | DOI | MR | Zbl

[11] D. Dolgopyat & B. Fayad - “Deviations of ergodic sums for toral translations II. Boxes” (2012), arXiv:1211.4323

[12] R. J. Duffin & A. C. Schaeffer - “Khintchine’s problem in metric Diophantine approximation”, Duke Math. J. 8 (1941), p. 243-255 | DOI | MR | Zbl

[13] S. Edwards - “The rate of mixing for diagonal flows on spaces of affine lattices” (2013), preprint, diva2:618047

[14] D. El-Baz, J. Marklof & I. Vinogradov - “The distribution of directions in an affine lattice: two-point correlations and mixed moments”, Internat. Math. Res. Notices (2015) no. 5, p. 1371-1400 | MR | Zbl

[15] A. Groshev - “A theorem on a system of linear forms”, Dokl. Akad. Nauk SSSR 19 (1938), p. 151-152

[16] G. H. Hardy & E. M. Wright - An introduction to the theory of numbers, The Clarendon Press, Oxford University Press, New York, 1979 | Zbl

[17] A. Khintchine - “Ein Satz über Kettenbrüche, mit arithmetischen Anwendungen”, Math. Z. 18 (1923), p. 289-306 | DOI | Zbl

[18] A. Khintchine - “Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann. 92 (1924), p. 115-125 | DOI | Zbl

[19] D. Y. Kleinbock & G. A. Margulis - “Bounded orbits of nonquasiunipotent flows on homogeneous spaces”, in Sinaĭ’s Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, vol. 171, American Mathematical Society, Providence, RI, 1996, p. 141-172 | MR | Zbl

[20] D. Y. Kleinbock & G. A. Margulis - “Logarithm laws for flows on homogeneous spaces”, Invent. Math. 138 (1999) no. 3, p. 451-494 | DOI | MR | Zbl

[21] D. Y. Kleinbock, R. Shi & B. Weiss - “Pointwise equidistribution with an error rate and with respect to unbounded functions”, Math. Ann. (2016), doi:10.1007/s00208-016-1404-3, arXiv:1505.06717

[22] S. Le Borgne - “Principes d’invariance pour les flots diagonaux sur SL (d,)/ SL (d,), Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) no. 4, p. 581-612 | DOI | MR | Zbl

[23] J. Marklof - “The n-point correlations between values of a linear form”, Ergodic Theory Dynam. Systems 20 (2000) no. 4, p. 1127-1172 | DOI | MR

[24] J. Marklof - “Distribution modulo one and Ratner’s theorem”, in Equidistribution in number theory, an introduction, NATO Sci. Ser. II Math. Phys. Chem., vol. 237, Springer, Dordrecht, 2007, p. 217-244 | DOI | MR | Zbl

[25] W. Philipp - Mixing sequences of random variables and probabilistic number theory, Mem. Amer. Math. Soc., vol. 114, American Mathematical Society, Providence, RI, 1971 | Zbl

[26] M. Ratner - “The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature”, Israel J. Math. 16 (1973), p. 181-197 | DOI | MR | Zbl

[27] J. D. Samur - “A functional central limit theorem in Diophantine approximation”, Proc. Amer. Math. Soc. 111 (1991) no. 4, p. 901-911 | DOI | MR | Zbl

[28] W. M. Schmidt - “A metrical theorem in Diophantine approximation”, Canad. J. Math. 12 (1960), p. 619-631 | DOI | MR | Zbl

[29] W. M. Schmidt - “Metrical theorems on fractional parts of sequences”, Trans. Amer. Math. Soc. 110 (1964), p. 493-518 | DOI | MR | Zbl

[30] W. M. Schmidt - “Badly approximable systems of linear forms”, J. Number Theory 1 (1969), p. 139-154 | DOI | MR | Zbl

[31] Y. G. Sinaĭ - “The central limit theorem for geodesic flows on manifolds of constant negative curvature”, Soviet Math. Dokl. 1 (1960), p. 983-987 | MR | Zbl

[32] A. Strömbergsson - “An effective Ratner equidistribution result for SL(2,) 2 , Duke Math. J. 164 (2015) no. 5, p. 843-902 | DOI | MR

Cité par Sources :