[L’opérateur thêta et l’opérateur de Fontaine sur les courbes modulaires]
Inspired by [Pan26], we give a new proof that for an overconvergent modular eigenform $f$ of weight $1+k$ with $k\in \mathbb{Z}_{\ge 1}$, assuming that its associated Galois representation $\rho _{f}:\mathrm{Gal}_{\mathbb{Q}}\rightarrow \mathrm{GL}_{2}(\overline{\mathbb{Q}}_{p})$ is irreducible, then $f$ is classical if and only if the associated Galois representation $\rho _{f}$ is de Rham at $p$. For the proof, we prove that theta operator $\theta ^{k}$ coincides with Fontaine operator in a suitable sense.
En nous inspirant de [Pan26], nous donnons une nouvelle preuve du fait que pour une forme modulaire surconvergente $f$ de poids $1+k$ avec $k\in \mathbb{Z}_{\ge 1}$, si sa représentation galoisienne associée $\rho _{f}:\mathrm{Gal}_{\mathbb{Q}}\rightarrow \mathrm{GL}_{2}(\overline{\mathbb{Q}}_{p})$ est irréductible, alors $f$ est classique si et seulement si $\rho _{f}$ est de Rham en $p$. Pour ce faire, nous démontrons que l’opérateur thêta $\theta ^{k}$ coïncide avec l’opérateur de Fontaine en un sens convenable.
Accepté le :
Publié le :
Keywords: Perfectoid modular curve, Fontaine operator, classicality
Mots-clés : Courbe modulaire perfectoïde, opérateur de Fontaine, classicité
Yuanyang Jiang  1
CC-BY 4.0
@article{JEP_2026__13__349_0,
author = {Yuanyang Jiang},
title = {Theta operator equals {Fontaine} operator on modular curves},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {349--398},
year = {2026},
publisher = {\'Ecole polytechnique},
volume = {13},
doi = {10.5802/jep.329},
language = {en},
url = {https://jep.centre-mersenne.org/articles/10.5802/jep.329/}
}
TY - JOUR AU - Yuanyang Jiang TI - Theta operator equals Fontaine operator on modular curves JO - Journal de l’École polytechnique — Mathématiques PY - 2026 SP - 349 EP - 398 VL - 13 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.329/ DO - 10.5802/jep.329 LA - en ID - JEP_2026__13__349_0 ER -
%0 Journal Article %A Yuanyang Jiang %T Theta operator equals Fontaine operator on modular curves %J Journal de l’École polytechnique — Mathématiques %D 2026 %P 349-398 %V 13 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.329/ %R 10.5802/jep.329 %G en %F JEP_2026__13__349_0
Yuanyang Jiang. Theta operator equals Fontaine operator on modular curves. Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 349-398. doi: 10.5802/jep.329
[And21] - “Pseudocoherent and perfect complexes and vector bundles on analytic adic spaces”, 2021 | arXiv | Zbl
[BB83] - “A generalization of Casselman’s submodule theorem”, in Representation theory of reductive groups (Park City, Utah, 1982), Progress in Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, p. 35-52 | DOI | MR | Zbl
[BBDG18] - Faisceaux pervers, Astérisque, Société Mathématique de France, Paris, 2018 no. 100 | Zbl
[BGG76] - “A certain category of -modules”, Funkcional. Anal. i Priložen. 10 (1976) no. 2, p. 1-8 | MR
[BL22] - “Prismatic F-gauges”, 2022, Lecture notes available at https://www.math.ias.edu/~bhatt/teaching/mat549f22/lectures. pdf
[BLR91] - “Quotients of group rings arising from two-dimensional representations”, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991) no. 4, p. 323-328 | Zbl | MR
[BMS19] - “Topological Hochschild homology and integral -adic Hodge theory”, Publ. Math. Inst. Hautes Études Sci. 129 (2019) no. 1, p. 199-310 | DOI | Numdam | Zbl | MR
[Che14] - “The -adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings”, in Automorphic forms and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 414, Cambridge Univ. Press, Cambridge, 2014, p. 221-285 | DOI | Zbl
[Col96] - “Classical and overconvergent modular forms”, Invent. Math. 124 (1996) no. 1-3, p. 215-241 | DOI | Zbl | MR
[Col97] - “Classical and overconvergent modular forms of higher level”, J. Théor. Nombres Bordeaux 9 (1997) no. 2, p. 395-403 | Numdam | Zbl | MR
[CS19] - “Lectures on condensed mathematics” (2019), https://www.math.uni-bonn.de/people/scholze/Condensed.pdf
[DLLZ23a] - “Logarithmic adic spaces: some foundational results”, in -adic Hodge theory, singular varieties, and non-abelian aspects, Simons Symp., Springer, Cham, 2023, p. 65-182 | DOI | Zbl
[DLLZ23b] - “Logarithmic Riemann-Hilbert correspondences for rigid varieties”, J. Amer. Math. Soc. 36 (2023) no. 2, p. 483-562 | DOI | Zbl | MR
[DPS25] - “Infinitesimal characters in arithmetic families”, Selecta Math. (N.S.) 31 (2025) no. 4, article ID 76, 77 pages | DOI | Zbl | MR
[Eme06] - “On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms”, Invent. Math. 164 (2006) no. 1, p. 1-84 | DOI | Zbl | MR
[Eme11] - “Local-global compatibility in the -adic Langlands programme for ” (2011), preprint, http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
[Fon04] - “Arithmétique des représentations galoisiennes -adiques”, in Cohomologies -adiques et applications arithmétiques. III, Astérisque, vol. 295, Société Mathématique de France, Paris, 2004, p. 1-115 | Numdam | Zbl
[Jia26] - “Classicality of Hilbert modular forms”, 2026
[Kis03] - “Overconvergent modular forms and the Fontaine-Mazur conjecture”, Invent. Math. 153 (2003) no. 2, p. 373-454 | MR | DOI | Zbl
[Kis09] - “The Fontaine-Mazur conjecture for ”, J. Amer. Math. Soc. 22 (2009) no. 3, p. 641-690 | DOI | Zbl | MR
[Lur09] - Higher topos theory, Annals of Math. Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009 | Zbl | MR | DOI
[Lur17] - “Higher algebra”, 2017
[Mil90] - “Canonical models of (mixed) Shimura varieties and automorphic vector bundles”, in Automorphic forms, Shimura varieties, and -functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, p. 283-414 | Zbl | MR
[Pan22] - “On locally analytic vectors of the completed cohomology of modular curves”, Forum Math. Pi 10 (2022), article ID e7 | Zbl | MR | DOI
[Pan26] - “On locally analytic vectors of the completed cohomology of modular curves II”, Ann. of Math. (2) 203 (2026) no. 1, p. 121-281 | MR | DOI
[Pil24] - “Faisceaux equivariants sur et faisceaux automorphes”, Ann. Fac. Sci. Toulouse Math. (6) (2024) no. 4, p. 1155-1213 | DOI | MR | Zbl
[RC22] - “Locally analytic completed cohomology”, 2022 | arXiv | Zbl
[RC24] - “The analytic de Rham stack in rigid geometry”, 2024 | arXiv | Zbl
[RC26] - “Geometric Sen theory over rigid analytic spaces”, J. Eur. Math. Soc. (JEMS) (2026), online first | DOI
[RJRC22] - “Solid locally analytic representations of -adic Lie groups”, Represent. Theory 26 (2022), p. 962-1024 | Zbl | MR | DOI
[RJRC23] - “Solid locally analytic representations”, 2023 | arXiv | Zbl
[Sai97] - “Modular forms and -adic Hodge theory”, Invent. Math. 129 (1997) no. 3, p. 607-620 | Zbl | MR | DOI
[Sch12] - “Perfectoid spaces”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 245-313 | Numdam | Zbl | MR | DOI
[Sch13] - “-adic Hodge theory for rigid-analytic varieties”, Forum Math. Pi 1 (2013), article ID e1, 77 pages, Corrigendum: Ibid. 4 (2016), article no. e6 (4 pages) | Zbl | MR | DOI
[Sch15] - “On torsion in the cohomology of locally symmetric varieties”, Ann. of Math. (2) 182 (2015) no. 3, p. 945-1066 | Zbl | MR | DOI
[Sen73] - “Lie algebras of Galois groups arising from Hodge-Tate modules”, Ann. of Math. (2) 97 (1973), p. 160-170 | Zbl | MR | DOI
Cité par Sources :