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THETA OPERATOR EQUALS FONTAINE OPERATOR ON
MODULAR CURVES

BY YUANYANG JTANG

AsstrAacT. — Inspired by [Pan26], we give a new proof that for an overconvergent modular
eigenform f of weight 1 + k with k € Z3 1, assuming that its associated Galois representation
py  Galg — GLg2 (@p) is irreducible, then f is classical if and only if the associated Galois
representation py is de Rham at p. For the proof, we prove that theta operator 0F coincides
with Fontaine operator in a suitable sense.

Risumic (L’opérateur théta et 'opérateur de Fontaine sur les courbes modulaires)

En nous inspirant de [Pan26], nous donnons une nouvelle preuve du fait que pour une forme
modulaire surconvergente f de poids 14k avec k € Z>1, si sa représentation galoisienne associée
py : Galg — GLZ(@p) est irréductible, alors f est classique si et seulement si py est de Rham
en p. Pour ce faire, nous démontrons que l'opérateur théta 6% coincide avec l'opérateur de
Fontaine en un sens convenable.
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1. InTRODUCTION
We fix a prime number p. Let G := GLs. For any neat open compact subgroup

K? =T[y, K¢ € G(A}), and K, C G(Qp), let Xkrr, be the compactified modular
curve, which is a scheme over Q, and Xgrf, be the analytification of Xx»rx, xg Cp.
We will fix KP from now on. Let S be a finite set of places of Q including p and oo,
such that for any ¢ ¢ S, Ky = GLy(Z), and write K° := [lsgs Ke- We define the
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350 Y. JianG

Hecke algebra T(K?) := C°(KP\G(A})/K?,Z), and T := C*(KS\G(A®) /K5, 7).
Then T is a commutative ring freely generated by T} and Sétl for £ ¢ S. Let k be a
positive integer.

Let p : Galg — GL2(Q,) be an irreducible Galois representation. If it is unram-
ified away from finitely many places, odd and de Rham at p of weight 0, %, then
Fontaine-Mazur conjecture predicts that it is associated to a modular eigenform
f € H(Xg» Kp,wk). This conjecture has been proved under certain generic condi-
tions in [Kis09], [Emel1], and is reproved in [Pan26] using different method.

The result of this note is the following classicality theorem, which proves the con-
jecture for “overconvergent” Galois representations:

Tueorewm 1.1 (Corollary 5.9). — Let f € Mf+k(Kp) = li_n>1Kp MLk(Kpr) be an
overconvergent modular T* -eigenform of weight 1+ k with k € Zx1. Assume that its

associated Galois representation py : Galg — GL2(Q,) is irreducible. Then f is a
classical modular form if and only if py is de Rham at p.

Remark 1.2. — By “eigenform”, we refer to the eigenform with respect to the action
of T, that is, with respect to the action of 7, and Sy for £ ¢ S. Note that the result
is false if we only require f to be a generalized eigenform. We say f is a classical form
if f lies in the image of Mj x(KP) := li%pr Mtk (KPKp) — Mf+k(Kp).

Remark 1.3. — For those f of finite slope, this result is proved in [Kis03]. In general,
this can be shown by combining [Pan22, Th.1.0.1] and [Pan26, Th.1.1.2]. Our note
intends to give a different and simple proof.

Our proof is inspired by that of [Pan26]. Let us explain the ingredient of our proof.
Given any overconvergent eigenform f € M f 1+, (KP), we denote its corresponding ideal
in T ® L as py, such that the action of T¥ on f factors as T — (T ® L)/p; = L,
where L is a finite extension of @,. Then f has the associated Galois representation
py : Galg — GLa(L) characterized by the Eichler-Shimura relation. By assumption,
ps is absolutely irreducible.

As a first step, we realize py in Emerton’s completed cohomology using the results
of [Pan22] as follows. In [Eme06], Emerton introduces the completed cohomology

RD(K?, Q) = (Rlimlim RO (Xscrsc, (O Z/p™) ) [1/3),
n K,

and H'(K? Q,) := H'(RI'(K?,Q,)), which carries the action of Galg xG(Q,) x
T(KP). The actions of Galg and of T(K?) are related by the Eichler-Shimura relation.

Let H* (K?,Q,)" be the subspace of G(Q,)-locally analytic vectors, on which g acts
by taking derivative. The main result of [Pan22] describes the b-isotypic component of
HY(K®, Qp)'®. Note that we have localized at the ideal p; C T* to kill the contribution
from HP.
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Tueorewm 1.4 (Theorem 5.1). For k € Z>1, we denote
(Pr)p = Homy ((k —1,0), H' (K", @)y ).
Then we have a B(Qyp) x Galg, xT(K?)-equivariant isomorphism
(ﬁk})Pf ®Qp Cp= (No)pf ® (Nk?)pf(_k)?
where (Ny,)p, = (M1Jr+k)

pss and (No)y, lies in an exact sequence

0 — lim H' (Xgri,, 0 )p, — (No)p, — (M]_3)p, — 0.
KP

Here M| := hﬂKp M} (KP?K,), and (—k) refers to the Tate twist.

We know that (Ni)y,[py] # 0 and thus pg rlps] := (r)p,[Ps] ®g, L # 0. By the
Eichler-Shimura relation and [BLRI1], we know that pr r[ps] = py ®1 W, where W
is a topological T(K?) x B(Q,)-module.

So far, we have realized py in the completed cohomology. The isomorphism above
shows that ps is Hodge-Tate of weight 0, k, where by our convention, the cyclotomic
character has Hodge-Tate weight —1. Let us denote by © the Sen operator acting on
ps ® Cp ([Sen73]), then

py @ Cp = (pr ©Cy)° @ (py ©Cp)°~ 7.
For such py, its de Rhamness is characterized by its Fontaine operator ([Fon04]),
which is a morphism
N*:(pr @ Cp)9=" — (py ® C) =" (k).

By [Fon04], py is de Rham if and only if N k — 0. The same argument also applies to
the infinite dimensional representation (py)p,, and we are led to study the Fontaine
operator of (p)p,. The following result describes the Fontaine operator in terms of
the classical theta operator:

Tueorem 1.5 (Theorem 5.2). — In terms of the isomorphism in Theorem 1.4, the
. ~ ~ 0=0 ~ ~
Fontaine operator N* : ((pr)p; ®q, Cp) = ((Pk)p; ®q, Cp)

ok -
N+ (No)p, — (M{_)p, —— (M, )p, = (Ni)y,,

where O is the theta operator as in [Col96, §4].

k(k) is given by

Given Theorem 1.5, we can describe the Fontaine operator for py [py] as
; 0% ot
No,Llps] — Ml—k,L[pf] —_— M1+k,L[Pf]»

with (—)z standing —@@pL. By the g-expansion principle, MLk’L[pf} 9—k> Mf+k7L[pf]
is injective, so the kernel of N* is given by H(.Zl,w'=%*m) [p;] by Theorem 1.4.
Hence p; is de Rham if and only if H'(Z,w'~* ™) [ps] # 0. This implies the
classicality of py.

Now we sketch a proof of Theorem 1.5. The idea is to realize the Fontaine operator
geometrically as in [Pan26]. In [Sch15], Scholze introduces the perfectoid modular
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curve at the infinite level Xgp» ~ 1'&11( Xkrk,, which carries an “affinoid” Hodge-
p

Tate map wur : Xgr — F =2 P'. Moreover, Scholze shows that Xx» is related to

Emerton’s completed cohomology as

RI(K?,Q,) ® Cp = RT(X kv an, Ox,cp ) = RD(Fan, 0),

where O := THT,«Oxp- We can further consider the subsheaf O c0O consisting of
GL2(Qp)-locally analytic vectors. By Theorem 4.4.6 of [Pan22|, we have

(1) HY(KP,Q,)"* & C, = H'(F,0™),
and thus
RHomy ((k — 1,0), RT(K?,Q,)") ® C, = RT(Z1, RHom, ((k — 1,0),0")).

Derinition 1.6. — For a neat open compact subgroup K C G(Q,), we denote by
Tk the natural morphism Xgr — Xg, and denote by mj (wf )™ the subsheaf
of ﬂ;((wch) consisting of G(Q,)-smooth vectors. We further denote by w®sm :=
THT (T (W, )™™) € D(Flan).

Then HO(F,w"™) (vesp. HO(F,i,i 'wh*™)) is the space of modular forms
(resp. overconvergent modular forms) of weight ¢ (with tame level KP and arbitrary

level at p).

In [Pil24], Pilloni computes explicitly RHomp((k — 1,0), 0') in terms of w’*™ as
follows:

Tueorem 1.7 (Theorem 3.7). — For k € Zx1, we have a B(Q,) x Galg, xT(KP)-
equivariant isomorphism in D(Flay,)

RHomb((k - 1a 0)7 Ola) ® X(l_k,O) = NO D Nk(_k)7
where Ny, 22 4,3~ witFsm[ 1], and Ny lies in a distinguished triangle

— C1 11— 1
OJl k,sm :NO ini 10.}1 k,,sm[_l] + ,

where x(1 =50 denotes a twist of B(Qp)-action, i is the embedding of oo into H,
and i~ s taking the stalk at oo. Moreover, taking RU(F1, =)y, , we get back the
isomorphism in Theorem 1.4.

Remark 1.8. We will prove that Ny and Ny are perverse sheaves on % (in the
sense of Definition 3.15). We expect this to be true for general Shimura varieties,
which hopefully will allow us to construct a finer version of Fontaine operators.

Following the construction of the Fontaine operator, it turns out that we can define
a “geometric Fontaine operator” between perverse sheaves
Nk : No — Nk,
which when taking RI'(Z, —),, gives back the classical Fontaine operator in Theo-

rem 1.5.
We describe this geometric Fontaine operator N* in this note:

JEP — M., 2026, tome 13
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Turorem 1.9 (Theorem 3.12). In terms of the isomorphism in Theorem 1.7, the
geometric Fontaine operator N* : Ng — Ny, is given by
k
N*:Ng — i ot Fsm—1] T it thsm—1] 2 Ny,
where 0% is the classical theta operator as in [Col96].

Theorem 1.5 follows from Theorem 1.9 by primitive comparison (Theorem 2.7),
so it reduces to proving Theorem 1.9. The idea of proving Theorem 1.9 is to observe
that N* is some kind of differential operator, and is also B(Q,)-equivariant. The two
conditions actually uniquely pin down the morphism, which follows from the simple
observation that for ¢ # ¢', there is no B(Q,)-equivariant O®"-linear morphism from
i iflw&sm Ny ,L'flwll,sm

* * .

Remark 1.10 (Comparison with [Pan26]). — Let us stress that our proof is very much
inspired by that of [Pan26]. The comparison with Pan’s proof will be given in Re-
mark 4.1. The main difference is that one obtain more symmetries and structures
after taking b-cohomology, which is an interesting phenomenon by itself, and is gen-
eralizable to general Shimura varieties.

1.1. Orcanization. — We sketch the structure of the paper. Readers should refer to
the beginning of each section for details. In Section 2, we will fix the set-up and recall
the results of geometric Sen theory from [Pan22|, [Pil24], [RC26], [RC22]. Section 3
will compute the b-cohomology (Theorem 1.7), define the geometric Fontaine operator
(Corollary 3.11), and state the main theorem (Theorem 1.9). The rest of the section
will involve some reduction of the proof. Section 4 will finish the proof of Theorem 1.9.
Finally, in Section 5, we finish the proof of Theorem 1.1.

1.2. NOTATIONS AND CONVENTIONS. Let us fix some notation. We fix a prime p, and
write C,, for the completion of @p. We fix a compatible system of p™-th roots of unity.
We denote by Q,((pe) the algebraic extension of Q, by (,n for all n, and by Q, o
its p-adic completion.

Let G := GLs. Let B C G be the Borel subgroup of upper-triangular matrices,
and denote its Levi decomposition as B = TU, where T is the subgroup of diagonal
matrices. Let g := gly(Q,), and b := Lie B. For (a,b) € C¥2, denote by (a,b) the
character of b, (a,b) : (§¥) — az + bz. For (a,b) € Z®2, we denote by x(*? the
character of B(Q,) mapping x(*? : (6Y%) — x%2°, and we will write — ® x(@) to
mean twisting B(Q))-action by x (@)

For any abelian category A (or some stable oo-category) and for any X,Y € A,
we will write [X — Y] to refer to some extension of Y by X in A. More precisely,
if we write Z = [X — Y, this means that there exists a short exact sequence (or a
distinguished triangle)

X—>Z—>Y+—1>

in A. In this note, we will use this notation when A = Perv, that is, the category of
perverse sheaves (as in Definition 3.15).

JILP — M., 2026, tome 13



354 Y. Jiane

We will use both perverse t-structure and natural t-structure of derived category
D(Fay) of sheaves on the flag variety. For any F € D(Fl,,), we denote by H'(F)
its cohomology with respect to the natural t-structure, which is a sheaf on F#l,,,.

We will write (—) to mean Tate twist of Galois action. By convention, the cyclo-
tomic character xcye : Galg, — Q, is defined to have Hodge-Tate weight —1.

In order to simplify some cohomological argument, we will use the solid formalism
of [CS19] for dealing with topological vector spaces. In particular, sheaves have values
in @Qp-solid spaces without assuming otherwise. Let J be such a sheaf on a site X.
Then we denote by H° ()N( , F) the space of its global sections, and if S is a profinite set,
we denote by F(S) the sheaf on X valued in (non-condensed) vector spaces, sending
U — HY(U,9)[S].

For complete Huber pairs (R, R™) with a pseudo-uniformizer w, R and Rt are
regarded as condensed rings using w-adic topology, and R is regarded as an analytic
ring as R := (R, R")g. Throughout the paper, Z,, Q, and C, are regarded as
analytic rings via the analytic structure induced from Z, o := (Zp, Zy)q.

We will work with objects in the derived category by default. We will define — ®Z,, —
to be the derived solid tensor product — ®z, o —. We use the same convention for
— ®c, — or — ®q, —- In the paper, we usually work with Banach spaces or LB
spaces. In this situation, thanks to [RJRC22, Lem. 3.13], solid tensor products coincide
with classical completed tensor products of Banach spaces, so there is no conflict of
notations.

We will mainly work with sheaves on the analytic site. For f : X — Y, we write f~!
for the pull-back functor. We will reserve f* for the pull-back functor of quasi-coherent
sheaves. We will also see ! in Definition 3.4, which is the pull-back functor of quasi-
coherent sheaves to the dagger neighborhood, whose underlying functor of analytic
sheaves coincides with i~!.

Without specifying otherwise, (—)12 (resp. (—)12) is always taking (resp. derived)
locally analytic vectors with respect to G(Q))-actions. The definition of the latter is
given in Definition 2.10.

In what follows, all the isomorphisms and the identifications are unique up to a
sign, and we ignore them systematically.

Acknowledgements. I would like to thank my advisor Vincent Pilloni for introduc-
ing me to the subject, for his constant encouragement and support, and for numerous
fruitful discussions that make this work possible. I also benefit greatly from conver-
sations with Lue Pan and Juan Esteban Rodriguez Camargo, and I want to thank
them for sharing their beautiful ideas. I would like to thank Longke Tang for sug-
gesting the stacky approach that simplifies the proof of Proposition 2.42. I want to
thank Vincent Pilloni, Lue Pan, Arthur-César Le Bras and Juan Esteban Rodriguez
Camargo for their comments and corrections on the earlier drafts of this work. I wish
to express special thanks to the anonymous referee for the careful proofreading of
this paper which improved greatly the presentation. I also want to thank George
Boxer, Valentin Hernandez, Andrew Graham, Arthur-César Le Bras, Zhouhang Mao,
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Junhui Qin, Liang Xiao, Qixiang Wang, Zhixiang Wu and Daming Zhou for helpful
exchanges. Part of this work was done during my stay at BICMR, and I would like
to thank Liang Xiao and Jun Yu for their hospitality.

2. PrREREQUISITES

This section is about the set-up and prerequisites around the geometric Sen theory.
The structure of the section is as follows. Section 2.1 will set up the notation, introduce
the infinite level modular curve, and Hodge-Tate period maps as in [Sch15]. Section
2.2 will introduce the derived functor of taking locally analytic vectors, following
[Pan22], [RJRC22] and [RJRC23]. Section 2.3 introduces equivariant quasi-coherent
sheaves on Z[, and Section 2.4 introduces certain automorphic sheaves, which are
Solidg, -valued sheaves on the analytic site #l,,. In Section 2.5, we sum up the main
result of “geometric Sen theory”, which relates the equivariant quasi-coherent sheave
to the automorphic sheaves. Section 2.6 defines a general formalism of defining the
arithmetic Sen operator, the functor Ey(—), and the Fontaine operator.

2.1. Serue. — We fix a neat open compact subgroup K? = Hm) K, C G(A’;). Let
S be a finite set of places of Q including p and oo, such that for any ¢ ¢ S, K, =
GLa(Zy), and write K° := [Trgs GL2(Z¢). We define the Hecke algebra T(K?) :=
CSO(K”\G(A?)/K”,Z), and T® := C°(K9\G(A®)/K®,Z). Then T is a commuta-
tive ring and is generated by T, and Sy for £ ¢ S. Concretely, T is isomorphic to
the commutative algebra over Z freely generated by SejEl and Ty for £ ¢ S. We endow
both T and T(KP) with the discrete topology.

For any open compact subgroup K, C G(Q,), let Xg»g, be the compactified mod-
ular curve over Spec Q, and Xx»x, be the analytification of Xg», X C,. We endow
it with the standard log structure at cusps as in [DLLZ23b, Ex. 2.1.2]. We will write

%CKpr,log = Q%ijxp (C), where C denotes the cusps. We see by definition that
Xkr K, = Xkrr, is Kummer étale for K, sufficiently small.
In [Sch15], Scholze proves the following:

Treorem 2.1 ([Sch15, Th.3.1.2]). — There exists a perfectoid space Xgr such that
Xgp ~ @K Xkrk,- Moreover, there exists a Hodge-Tate period map
P

mut @ Xie» — Fl:= B\G = P!,

which is affinoid in the sense that there exists a basis B of open affinoid subsets of
A, such that for any U € B, nyr(U) is affinoid.

From the above argument, we know that for K, small enough, Xk» is an object in

+

the pro-Kummer-étale site of Xx» Ky So it makes sense to evaluate OB log, X e xc
’ ’ P

on Xgw.

Noration 2.2. We denote O := THT,+OX jep -

JILP — M., 2026, tome 13



356 Y. JianG

Norarion 2.3. We will write D(H1,,) for the derived category of sheaves on Fl,,
with values in solid Q,-vector spaces, where Zl,, denotes #l endowed with its analytic
topology.

Levmma 2.4, — We have Rrur +Ox op = Tt Oxr in D(Flan).

Proof. We need to prove that Rimyr .(Ox,,) = 0 for i > 0 in the category of
solid Qp-vector spaces. For this, it suffices to show that for any profinite set S, and
for V€ B, H (r1.(V), Oxp (S)) = 0 for i > 0, where Ox,., (S) denotes the sheaf of
abelian groups over (X »)an, sending U to C°(S, Ox,, (U)) = C°(S, Cp)&¢, Ox ., (U).
Note that C°(S,C,) is perfectoid, and if we put S := Spa(C°(S,C,)), since m1(V)
is affinoid perfectoid, we know that Fﬁ%(V) x S is also affinoid perfectoid by [Sch12,
Prop. 6.18]. Then for ¢ > 0,
H'(mp(V), Oxser (5)) 2 H' (mgp (V) X, 8,021 vy, 8) 20,

by almost purity ([Sch12, Prop. 6.14]). |
The cohomology of the sheaf 0) computes the completed cohomology of [Eme06].

Derinirion 2.5 (Completed cohomology). — We define
RT(K?,Z/p") = limy RUet (X e, e 52 Z/0"),
KP
where RT¢ (X, K0 Z/p™) is equipped with the trivial condensed structure.
For any solid Z,-algebra R, we define the completed cohomology as
RI(K?, R) := (Rlim RT(K”, Z/p")) &z, R,

and Hi(K?,R) := H'(RT(K?, R)).

Remark 2.6. — In the original definition of [Eme06], one works with the open modular
curves, but in the curve case, the open and the proper curves give the same completed
cohomology. See for example [Pan22, §4.4.1].

Tueorewm 2.7 (Primitive Comparison). We have isomorphisms of solid Cy,-spaces
(2)  RI(K”,C,) = RT(Xk»,Ox,,) = RT(F, Raur..Ox,,) = RT(F,0).

Proof. All the isomorphisms follow from the previous lemma except the first one.
This is essentially in the proof of [Sch15, Th.4.2.1]. See also [Pan22, Cor. 4.4.3]. Note
that by primitive comparison in [Sch13, Th.1.3],

RI'(Xkrk,, OJDEK% /p") = RT(K*K,,Z/p"),
where both sides are discrete Z/p™-modules, and then one can take @ o and then
P

— @zp C, to obtain the desired isomorphism of solid Q,-spaces. O

JE.P — M., 2026, tome 13
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2.2, LOCALLY ANALYTIC VECTORS. As in [Pan22] and [Pan26], we will realize the Sen
operator and the Fontaine operator geometrically via the locally analytic vectors in
the completed cohomology.

In this subsection, we recall some prerequisites around locally analytic vectors.
Since we will be working in the derived category, we will define the functor taking
derived locally analytic vectors. This is introduced in [Pan22] and rewritten using
condensed math in [RJRC22].

For G an analytic group over Spa(Q,,Z,), let Og := H°(G,O) denote its ring of
analytic functions. Then we have two actions of G(Z,) := G(Spa(Qy,Z,)) on Og:

gx1 f(g)=Fg7'd), gxfd) =19, 9.9 €CGZy).

Clearly *; and *5 commute with each other.

Derinirion 2.8 ([RJRC22, Def. 4.20], [RJRC23, §6.2]). Let K be a locally com-
pact p-adic Lie group. A solid K -representation V over Q, is defined to be a solid
Qp-space equipped with an action of Q, o[K], where Q, o[K] := Z, n[K] ®z, Qp, and
Z, ol K] is the Iwasawa algebra. We denote the category of solid K-representations
by ReprYD(K).

Remark 2.9. — The typical examples are continuous Banach (or LB) K-representa-
tions. The main benefit with condensed formalism is that we can work comfortably
with the derived category. To simplify the notation, we will write as — @Qp — the
derived solid tensor product — ®épﬂ —. In the case of Banach K-representations, this
derived tensor product is concentrated in degree 0 and coincides with the classical
completed tensor product (Lemma 3.13 of [RJRC22]), so there is no clash between
notations.

Derintrion 2.10 ([RJRC22]). Let G be an analytic group (i.e., a group object in
the category of rigid varieties) over Spa(Qp,Z,). Let G’ C G be an open affinoid
subgroup. Let Og: := H°(G’,O¢). Note that G(Q,) := G(Spa(Qy,Z,)) is a locally
compact Lie group, and G'(Q,) is an open compact subgroup.

If V is a solid G'(Q,)-representation, we define the functor of taking the derived
G'(Qyp)-analytic vectors as

VR_G/(QP)-an — RF((G/(@p)v *173), Vv @QP OG’),

where *; 3 denotes the diagonal action of G'(Q,) on V & Ogs, in which the
action on O¢ is induced by left multiplication. Note that the action (G'(Qy),*2)
(resp. (Lie(G), *2)) on O induces an additional action of G'(Q,) (resp. Lie(G)) on
VR—G'(QP)—an'

Let V be a solid G(Q,)-representation. We define the derived G(Q,)-locally analytic
vectors as

VEGC@) I iy Y RGE)an,
Gn.Ca
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and the derived G(Q))-smooth vectors as
VEGCm .~ Tim RT(GA(Qy), V),
GnCG
with the colimits going through all the open affinoid subgroups G, of G. We will
write V1% when it causes no confusion. Note that we still have an action of Lie(G)
on V1l
We denote by Og,1 the stalk of Og at 1 € G(Q,). Then by definition,
VIR = (V8 06,1) " = lim RT(Gn(Qy),V & HY(Gy, 0)).
G,CG
We say that V is locally analytic if the natural morphism V12 — V is an iso-
morphism. We denote by Rep(lsp 5(G'(Qy)) the category of G'(Qp)-locally analytic
representations, which is a full subcategory of Repg_ (G'(Qyp)).

Lemva 2.11. — Let G be a compact p-adic Lie group. Let V be a solid representation
of G over Qpn, and let M € D(Q, ), which we regard as a solid representation of G
by putting the trivial action. Then

(V &g, M)Fl2 = yElag, M.
Proof. By shrinking G, we assume that G is uniform. Note that
(V &g, M) = RI(G,V &g, O¢ &g, M),
where O¢ denotes the ring of analytic functions on G, and
VG @ m > RI(G,V &g, Oc) ® M.

So by the definition of (—)%12, it suffices to show that for any uniform pro-p group G,
and for any solid representation V' of G,

RT(G,V & M) = RI'(G,V) ® M.

By definition, RT'(G,—) := RHomg(Qp, —), where Q, denotes the trivial represen-
tation. Now by Lazard-Serre theorem ([RJRC22, Th.5.7]), Q, admits a projective

resolution

0— QP,D[G]@@) e QP,D[G]@(S) — Q, — 0.

Therefore,
d
d

RI(G,V) = {V@(g) v )},

where the transition maps are induced by elements in Q, o(G)(x), independent of V.
Then
~ d\ ~ d\ ~
RT(G,V)® M = [V®(o> M sy @M}

while RT'(G,V & M) is also represented by the same complex. O

Corovrrary 2.12. — Let G be a compact Lie group. Let V, M be solid representations
of G over Qp o, and M is derived locally analytic. Then

(V @Qp M)R—la o VR—la @Qp M
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Proof. Since M is derived locally analytic, we know M =2 hﬂ cea MEG-1a gq by

replacing M by MEG-an and G by G, we can assume that M is derived G-analytic.
Then we have an isomorphism of G-representations

(M ® Og,*a % 1) = (M ® O0g, %1)
where #; denotes the action on O ; by left multiplication, and #;; denotes the action
on M. Then
RT(G, (V&M &® Og, *y x *a1 X %1)) = RT(G, (V& M & Og, *y X %1))
= RI(G,(V ® Og,*y x 1)) ® M
by the proof of Lemma 2.11. Replacing G by G’ C G, and taking colimits along
G’ C G, we obtain the desired isomorphism. O

In the case of modular curves, we will consider the following sheaves.

Noration 2.13. — We denote ola::HO((é)R-la) € D(F1,y), and denote by O™ C O
the subsheaf of O consisting of the G(Q,)-smooth vectors.

Proprosition 2.14 ([Pan22, Prop.4.3.15]). — The sheaf Ofla ¢ D(Flan) is concen-
trated in degree 0. In other words, O'& = (O)F-a,

Corovrrary 2.15. — We have isomorphisms of Galg, xT(KP) x G(Qy)-modules
RT(K?,Q,)""* & C, = RT(K?,C,)"*' = R['(F1,0").
Proof. — The first isomorphism follows from Lemma 2.11. By Theorem 2.7,
RI(K?,C,) = RI(A1,0).
Therefore, R R
RT(KP,C,)"'* = RT (A, 0)** = RI(71,0%).
By Proposition 2.14, the latter is isomorphic to RT'(.Z1, 0'). |

2.3. EQUIVARIANT SHEAVES ON ]

Noration 2.16 ([BB83]). — Let g := Lie(GLa), g" := g ® O, and let b° (resp. n)
be the sub-vector bundle of g° whose total space has the description

={(XecgxecF):Xcb,}, (resp.n’={(Xcg,xecF):Xcn,}).

Derinition 2.17. — Let U be any open affinoid subspace of .#I. For any open affinoid
subgroup G’ C GL2(Q,) such that G’ x U — # factors through U, we denote by
QCoh (U) the derived category of the G’-equivariant quasi-coherent sheaves on U
(in the sense of [And21]). More precisely,
QCohy/ (U) := lim QCoh(U x G"™).
[n]eA
Roughly, F € QCoh, (U) is equivalent to the data of F € QCoh(U) equipped with

F5IFRH 9(G’, O¢r) plus further compatibilities. In particular, we have an action of
g := Lie(GL2) on RI'(U, ).
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Let QCohy(U) denote the 2-colimit of QCohg,(U) for all small enough G' C
GL2(Q,) along restriction maps.

Derinition 2.18 (ON Banach sheaf). — Let X be a rigid variety over Spa(Qy,Z,),
and F € QCoh(X), then we say F is an ON Banach sheaf if there exists an analytic
cover {U;} of X, such that F|y, = @, 5, Ov;-

Remark 2.19. — Given F € QCoh(X), we say F is static if RI'(U, ¥) is concentrated
in degree 0 for any open affinoid subspace U C X. Note that the category of quasi-
coherent sheaves in [And21] has no t-structure, since the pull-back functor along an
open immersion is not exact. However, since @ Oy, is flat over Oy,, ON Banach

sheaves gives examples of static sheaves.

JEJ:

Derinrrion 2.20 ([RC26, Def. 2.3.5]). — Let G’ and U be as in Definition 2.17. We say
that F € QCoh¢, (U) is relative locally analytic if it is ON Banach, and there is an
analytic cover {U;}ies of X, such that F|y, admits an ON lattice F+ over O , with a
basic {v;} such that there is an open subgroup G” of G’ and € > 0, G” stabilize F,
and fix v; mod p* € I /p. This definition extends to all I € QCoh(U).

For later application, we will need the following category.

Derinition 2.21. We define QCohg(U)"O to be the category of pairs (F,4) with
J € QCohy(U) and a homotopy equivalence i between the morphisms ¥ — F® (n9)V
and 0. Note that ¥ — F ® (n”)" is indeed defined in QCohy(U) because the action
of n® commutes with that of g and of O.4.

Notariox 2.22. — If F is relative locally analytic, and n° acts on F by zero, then F
gives rise to an object in QCohg(U)“O. We denote as QCohgla(U)nO the subcategory
of QCohg(U)"O generated (under filtered colimit, extensions and taking idempotents)
by relative locally analytic modules that are killed by n°.

Note that relative locally analytic modules are static by definition, and in particular

0

QCohga(U)nO is not stable as a subcategory of QCohy(U)™ .

Examere 2.23. — For any (a,b) € Z92, x(@Y : B — G,, is an algebraic representa-
tion, which by Beilinson-Bernstein localization gives rise to a line bundle on .#l, which
we denote as w%’a) following the normalization of [Pil24]. Then wf;ia) € QCohgla(U)“o.

2.4. AUTOMORPHIC SHEAVES ON .Zl. We now go on to construct certain “automor-
phic sheaves” on .Zl via the Hodge-Tate period map (see [Pil24, §3] for details). Let B
be the opposite Borel subgroup of G consisting of lower-triangular matrices. We will
refer to objects in the following category as automorphic sheaves:

Derinition 2.24. — Let U be an open subspace of Zl. Let Mod(0*™ & T(K?)|y)
denote the category of O®™-modules in D (U, Qo) equipped with an action of
T(KP?), where we regard T(K?) as a constant sheaf over Fl,,.
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Here we do not assume any compatibility between the actions of O™ and T(KP).
In other words, we are considering the category of O™ @ T(KP)-modules, where the
tensor product is the push-out in the category of non-commutative rings.

Examprr 225, We have 05,012 € Mod(O05™ ® T(K?)).

Notariox 2.26. — For any algebraic representation V of B, we have an automorphic
vector bundle Vg»p K, over Ygrk, by [Mil90], which extends over Xg» K,, and we
define the associated sheaf V™ over .l as V™ = g .(
TK, - pr — prKp.

Then V¥ € Mod(0® @ T(K?)), and is further equipped with an action of G(Q,) x
Galg,, where the action of G(Q,) is smooth. We also write V!# := 0! @gam V™ €
Mod(0%™ @ T(KP)).

H_I}IIK ﬂf}i\?Kpr), where
P

It is worth pointing out that mg . also produces no higher cohomology here thanks
to Tate’s acyclicity on Xgrg, (see [Pil24, Prop.3.2(3)]).

Norarron 2.27. For (a,b) € Z®2, we denote by w(®?)™ the associated sheaf by
putting V to be the character x(*? : B — T (“—’bZ Gy,- Equivalently, we consider

(a,b),sm
XkrK,

: -1, (a,b)
THT, % (hﬂKp TK,YXgrx, ).

We note that in more classical term, w

the line bundle w on the finite level modular curve DCKpr, and w(@b)sm .—

gg}fgk = wg(_b) ® w%? . In particular, the
classical modular forms of weight 1+ k are given by HO(Z, w1~ whose asso-

ciated Galois representations are of Hodge-Tate weight 0, .

Noration 2.28. — We denote Q5 log i= Q% (D), where D denotes the cusps.
KP K108 KPKp
By Kodaira-Spencer isomorphism, we know wgclk_pgp = Qil)CKpK,,,log' We denote

1,la — Ql,sm Bgsm ola.

lsm _  (1,-1),sm _ —-101
Qlog =w - 7T-HTR"(TerQprKp,log)’ and Qlog : log

Notariox 2.29. — We denote as D™ := VI the associated sheaf on I for the
standard 2-dimensional representation Viiq of B; explicitly, for quasi-compact open
subspace U such that my1(U) = W;(i(UKP) C Xk» for small enough open subgroup
K, C G(Qp) and UKp C prKp7 then Dsm(U) = h—n}le ,H(}R((EKPKP|UKP)/UKP)7
where Ekri, |UKp denotes the universal generalized elliptic curve over Uk, C Xkrk,,
and Hig (Exrk,|vg,)/Urk,) = H(Uk,, R'm.Qf ) denotes the rel-

(Bxrrylug,)/Ukp,log
ative log-de Rham cohomology.

Noration 2.30. — We fix the Bruhat stratification on .#l = P! as .# = U,, U {0},
where oo is the unique B(Q),)-fixed point on .ZI, and U, = Al is its complement.
Let j and i denote respectively the embedding of U,, = A' and of oo into ..

We will write Dy := D(00an), the category of sheaves valued in the solid
Qp-spaces on the analytic site of co. Similar, we write Dy, := D(Uy, an). Note that
Doo = D(SolideYD). For any sheaf V¥™ on %I, we denote 7iV™ := jij~'V"™ and
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VI =, i1V where VS™ is regarded as an analytic sheaf of Q,-vector spaces
on Hl,,. We moreover denote

Hé(Uw,Vsm) = Hi(ﬁhj!vsm), Hi(oo,\?sm) & Hi(%,i*\?sm).
Note that the latter is the stalk of V™ at oo.

It is worth pointing out that in [Pil24, §2.3.3], wé‘;”’)’sm € D is defined for (a,b) €
(C;‘?Q, and forms a p-adic family. When (a, b) € Z%2, Wit iy [Pil24] differs from our
i~ 1w(@0)sm by a twist of B(Q,)-action, since B(Q,) acts on our i~ !w(®b)s™ smoothly.

Derinirion 2.31. — The space of the overconvergent modular forms of weight (a, b)

and tame level K? is defined as M(Ta b = HO (00, w(®sm) We will denote M,L_l :

M(T1 k) Note that we have fixed the tame level KP at the beginning, and we omit K?

from the expression.

The relation with the classical overconvergent modular forms of Coleman is
explained by [Pil24, Prop. 3.17], that is,

(M )PE) =l MY (KPTL (p)),

where M ;r 41 (KPT1(p™)) denotes the classical overconvergent modular forms of level
KPT'1(p") of Coleman ([Col97]). Note that the twist —®C,(woX) in [Pil24, Prop. 3.17]
doesn’t appear in our setting for the difference explained above.

2.5. GeomeTric SEN THEORY. — In this subsection, we collect results in geometric Sen
theory in [Pil24], [RC26], [RC22], which give reformulations of [Pan22]. The goal is to
define a functor VB, which connects the equivariant sheaves on #I to the automorphic
sheaves on #.

DEerintTION 2.32. We define the functor VB"21Ve ag
yBrave . QCohg(U) — Mod(0*™" @ T(KP)|u),
F— (R, o Lafp(F)) 75 22 (0 R ,, F)F5™,

The functor VB¢ is almost always derived, but we can modify the definition to
obtain a better functor.

Derinrion 2.33. — We define a functor VB : QCohg(U)“0 —Mod(0*™®T(K?)|y) by
VB((:}'7 7’)) = RI\(QO/HO, ola ®63‘q,\:\ gj)ﬂ

where we have a canonical action of g°/n® on F thanks to the null homotopy i of
F — F® (n°)V, which makes F a direct summand of RI'(n®,F), and we have an
action of g°/n® on 0 by [Pan22, Th.4.2.7].

Lemma 2.34. — The functor F — Fib(F — F @ (n°)V) defines a natural functor
RT(n°, —) : QCohy(U) — QCohg(U)“O. Then VB Ve = VB o RI'(nY, —).
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Proof. — For G = Fib(F — F ® (n°)V), there is a canonical homotopy equiva-
lence between § — G ® (n%)" and 0, and thus we obtain the functor R['(n% —) :
QCoh,(U) — QCohg(U)“O. Now we want to factorize VB*@¢, By Theorem 1.5 and
Theorem 1.7 of [RJRC22],

VB e (F) 2 (0 06, 5 )™ = RI(g, (0 ®6 , 5 $)™'*) = Rl (g,0" 0§ 1 F).
Here Corollary 2.12 is used. Now we can extend the action of g to g° = g ® O, and
RI(g,0" ©G,, o F) = RI(g°, 0" ®5 , o F) = RL(n%,¢°/n’, RT(0™ @, 5 F))

= RI'(g°/n’, 0" @6, o R (0", 7)),

where in the last step we use the fact that n% acts on 0' by zero ([Pan22, Th. 4.2.7]).
Therefore, we are done by putting VB := RI'(g°/n%, 0 @& —). |

Og,0

The following is the main theorem of geometric Sen theory:

Tueorewm 2.35 ([RC22, Th.5.2.5, Th.5.2.1]). — ForJF € QCohgla(U)“O, VB(F) is con-
centrated in degree 0. In particular, VB sends short exact sequences in QCOhga(U)no
to those in Mod(O™™ @ T(KP)|y).

Proof. — Since the property that VB(F) is concentrated in degree 0 is closed under
filtered colimit, idempotents and extensions, we are reduced to the case when F is
relatively locally analytic and the action of n' is trivial on F. We further fix an affinoid
open subgroup group G” C GLs3 as in Definition 2.20.

Then for any K, C G"(Qp), mr(F) equipped with the action of K, defines a
bundle over Xfrx, proét- Moreover, by Theorem 2.1, analytically over Xxr k., T (F)
admits a lattice F° such that F9/p® is almost isomorphic to ®J(O§KI’KP /p°) for
some ¢ > 0 and some index set J. In other words, nji1(F) as a pro-Kummer-étale
O x-module over Xkrk, is relatively locally analytic ON Banach ([RC26, Def. 3.2.1]).
Therefore, we can apply [RC26, Cor.3.3.3] and [RC22, Th.5.2.5] to 7 (F), which

implies that
R, o (i o F) 2 g, o H (07, 1350.F) 2 i, 0 mipp (H' (n°, 9)),
where 7k, « denotes the push-forward from Xgrr, prokst t0 Xxrk, an- Note that
RT(n,F) = 5 F @ n"V[-1]. Thus H' (Xgrk, an, RNk, «(mip(F))) is zero unless
i=0,1.
Let U' C U be an open affinoid subspace, such that wﬁr}(U’) is affinoid, and

descends for small enough K, to an open affinoid U%p C Xgrk,. For K, C K,
we denote by Uy, the preimage of U }(p along Xk K, = Xrkrr,- Then
P

Hi(U}(Z/),an7 RUK;,.,*(WET?)) = Hi(K;/w RP(”I}}(UI)pmkétaWET(?))%
and thus
RU(U', VB™™*(5)) 2= lim RT (U, an, Rvs (miip (5))).

K

Therefore, VB"*V¢(JF) is concentrated in degree 0, 1.
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A priori, VB(F ® (n°)V) € DZ°(0™|;). We know that
VB aive(F) = VB(RT(n°, F)) = VB(F) ® VB(F @ n®V)[-1].

We then know that VB(F®@n®"Y) is concentrated in degree 0. Replacing F with F@n",
we know that VB(F) € D00 ). O

The functor VB will allow us to reduce the calculation of automorphic sheaves to
those of equivariant sheaves. Let us give some examples:

Examrre 2.36. — VB(w(glz)l’a)) = w(ba)sm(q) ([Pil24, Cor. 3.14]), where (a) denotes the
Tate twist.

Another important example will be given in Theorem 3.2.

2.6. ArituMETIC SEN OPERATOR AND FONTAINE OPERATOR. — In this subsection, we dis-
cuss the following important functor Dien(—). We will try to make the construction
as formal as possible, as we will need to apply the functor to general derived objects.

NotaTion 2.37. For any (derived solid) Galg,-representation M over Q,, we denote
Darien (M) := (RD(H, M))FT-12)

with H := Galg,(¢,~) and I' := Gal(Q,((p=)/Qp) = Z,'. This construction gives a
lax symmetric monoidal functor

Dasitn - Repg (Galg,) — Repg (I,
We fix a generator © € Lie(T"). by results in [RJRC23, §4.3], we can identify
Rep}SpﬁD(F) with coModgia(r g,)(Solidg, ), and we have a morphism of co-algebras
iyt C(T, Qp) — Qp[t] by restricting to the formal neighborhood of 1 € I', where ¢

is the coordinate such that ¢(©) = 1.
Therefore, composing the base change along z'fl with D,.itn, we obtain

Darieh - Repg, (Galg,) — Repg, (I) — Modg, (e} (Solidg, ),

which is also lax symmetric monoidal, where Modg, e(Solidg, ) is endowed with the
convolution symmetric monoidal structure.

The following discussion concerns (discrete) vector spaces over Q. The main result
is Proposition 2.42. One can then apply them to the setting of condensed or solid
vector spaces by applying the construction point-wise.

Derinrrion 2.38. We denote by G, = Spec Q[X] the additive group scheme over Q.
We denote by G, its completion at the unit; more precisely, for any Q-algebra R,
Go(R) := Ni‘(R).

Remark 2.39. — @a is an fppf sheaf by results of de Jong (See Remark 2.2.18 of
[BL22]), and we can consider the fppf stacks BG, and BG,.
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Prorosirion 2,40 ([BL22, Ex.2.2.12 & Prop.2.4.4]). We have natural symmetric
monoidal equivalences of categories:

QCoh(BG,) = D(Q[O)),
and
QCoh(BG,) = coModgy(Modg) = Dew_torsion (Q[O]),
where

— QCoh(—) denotes the derived category of quasi-coherent sheaves;
— Do _torsion(Q[O]) denotes the full subcategory of D(Q[O]) such that all the coho-

mologies are ©°°-torsion.

Proof. — Tt suffices to note that in characteristic 0, G, = G¥. Then the results follow
from the corresponding results in [BL22]. A more general result with a more complete
proof is provided by [RC24, Prop. 4.2.5]. O

Later, we will consider the subspace where the action of © is nilpotent. This actually
has a simple geometric interpretation using stacks.

Derintrion 2.41 (The functor Ey). — Let M € D(Q), equipped with an endomor-
phism O, i.e., M € D(Q[O]), then we define the generalized eigenspace for © = 0 by

Eo(M) := RT(g)(M) := Fib(M — M[1/8)).
It is easy to see that Ey : D(Q[O]) = Dow_torsion(Q[O]) is the right adjoint to the

natural inclusion ¢ : Dgeo_torsion (Q[O]) — D(Q[O)]).
More generally, for k € Q, we denote Ex(M) := Fib(M — M[1/(© — k)]).

We thank Longke Tang for suggesting the following proof using stacks.

Prorosition 2.42 (Ey is lax symmetric monoidal). — The inclusion Ga — Gy induces
a map f: BG, = BG,. Then the following diagrams commute

QCoh(BG,) —=— D(Q[O)) QCoh(BG,) —=— D(Q[O))

] ] |5 |

QCOh(BGa> — D@“—torsion(@[g})v QCOh(BGa) — D@“’-torsion(@[('—)])a

where the horizontal equivalences are given by Proposition 2.40.
In particular, Ey : D(Q[O]) — Do torsion(Q[O)]) is lax symmetric monoidal for
the convolution symmetric monoidal structure.

Proof. — By adjunction, it suffices to show that the first diagram commutes. We need
to use the explicit construction of the equivalences in Proposition 2.40. See [BL22] for
details. Given a Q[t]-comodule M (resp. Q[t]-comodule), we have M — M ®qg Q][]
(resp. M — M ®¢ Q[t]), and then © : M — M corresponds to the coefficient of ¢
on the right hand side. Then it is straight-forward to verify that the first diagram
commutes. |
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DeriNition 2.43 (Arithmetic Sen operator). — We regard C, as an E-algebra object
in Repg (Galg, ). We will refer to an object M € Modc, (Repr,D (Galg,)) as a solid
semi-linear Galg, -representation over C,.

Given M € Modc, (ReprYD(GalQp)), Daitn(M) € Monp(CPW)(Repgp,D(F)),
and O is Qp((pee )-linear, as Daien(Cp) = Qp((poe ).

We will say that M admits an arithmetic Sen operator if the natural morphism
Daign (M) @Qp@pw) C, — M is an isomorphism, and in this case, © extends to a
unique Cp-linear endomorphism © of M, which we refer to as the arithmetic Sen
operator.

We will moreover say that M is Hodge-Tate if the action of © is semisimple, with
only finitely many eigenvalues, and all the eigenvalues are in Z. Note that in the
derived setting, this is a structure rather than a property.

Exampre 2.44. — Let p be a finite dimensional representation of Galg, over Q,. Then
Dasitn (p @ Cp) = Dsen(p)-

Examrre 2.45. By the proof of [RC22, Th.6.3.6], we know D,yien(0'?) is concen-
trated in degree 0, and O'* 2 D, 1, (0') ®Qp(4p°°) Cp, e, 02 admits arithmetic Sen
operator.

Derinrion 2,46 (The functor Ej). We regard BJ; as an E-algebra object in
Repg, (Galg,). We will refer to an object M € MOdBIR (Rep@p (Galg, )) as a solid
semi-linear Galg, -representation over Bjy.

Given M € Mod g+ (ReprYD(GalQp)), we define

ﬁarith(]\l) = M Darith(M/tn) € MOde(CPOO)[[t]] (Rep(lsp,[](]-—‘))a

as ﬁarith(B(J{R) = Qp(Cpe=)[t]- © acts on Qp(Cpe)[t] via d/dt, and the ©-action on
D.ritn (M) satisfies the Leibniz rule.
We define

Eo(M) := Hm( Bo(Darin(M/t")) B ¢,e0) Cp) — Bo(M[L/1]) 1= lim Bo(M 7).

where -¢+~% means twisting ©-action by —i.
More generally, for M € ModBIR(Fil(Repr)D(GalQp))), where Fil denotes the
category of filtered objects as in [BMS19, §5.1], we define

Ey(M) = Hm(Eo(Darien(M/ Fil™)) Bg, ¢,0e) Cp) — Eo(M[1/1]) := lim Eo(M - 7).

Assume that M/t is Hodge-Tate of weights ap < a1 < -+ < ap, i.e.,
M/t @ (M/no=,
i=0
then the ¢-adic ascending filtration on M (Fil", := t!M) induces a finite filtration on
Ey(M]1/t]), such that the non-trivial graded pieces are

gr,, (Eo(M[1/1])) = Eo(gr',, (M) = (M/t)9= (a,).
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Moreover, the nilpotent action of © on Eo(M[1/t]) is homotopic to zero when re-
stricted grl (by a fixed null homotopy given by the structure of being Hodge-Tate),
and in particular, @™ t! = (.

Derinirion 2.47 (Fontaine operator). — Assume that M/t is Hodge-Tate, and has
only two Hodge-Tate weights ag < a;. Then we have a fiber sequence

(M/1)9=7(ag) — Eo(M[1/t]) — (M/1)°="" (a1),

and the action of © on Eo(M[1/t]) plus the null-homotopy of ©-action on the graded
pieces induces a unique morphism

NS00 (M1)O= (@) — (M/1)°="(ap),
which we refer to as the Fontaine operator.

We now recall the theorem of Fontaine, which says that the property of being de
Rham is determined by the Fontaine operator.

Prorosirion 2.48 ([Fon04, Th.4.1]). — Let V be a finite dimensional Hodge-Tate
representation of Galg, over Q,. Then V' is de Rham if and only if the action of ©
on EO(V ®q, Bar) is zero.

In particular, if V' has only two Hodge-Tate weights ag < ay, then V is de Rham
if and only if the Fontaine operator N1~ = (.

3. GEoMETRIC FONTAINE OPERATOR

The goal of this section is to define the relevant objects and state the main geomet-
ric theorem (Theorem 3.12). Section 3.1 will recall the calculation of b-cohomology
of O in [Pan22], [Pil24], and define the geometric Fontaine operator (Corollary 3.11)
by applying the general construction in Definition 2.47. Section 3.2 will state the
main theorem (Theorem 3.12), which vaguely says that “geometric Fontaine oper-
ator=theta operator”. Section 3.3 defines perverse t-structures on D(F#l,n) and on
(some category related to) QCohg(ﬁl)“O. These t-structures will be used in some
later proofs. There are two separate cases in Theorem 3.12, but using BGG complex,
we prove in Section 3.4 that the two cases are equivalent. We will focus on one case,
and prove Theorem 3.12 in the next section.

3.1. b-conomoLocy or O

Notrarion 3.1. — For G = GL2(Q,), recall Og 1 from Definition 2.10. Note that O¢ 1
carries two (infinitesimal) actions of G, given respectively left multiplication and right
multiplication. We denote them as *; and *3 respectively. On O¢g 1 ®0 a1, there is a
third action coming from the action of G on O 4, which we denote as *3.

Then (Og1 ® Oz, *1.,3) gives an object in QCohga(fﬂ) (Definition 2.20). We set

' .= RT'(n°, OGJ@) >~ (0g1 ® O%)(noy*lﬁ).
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Then C'? € QCohga(ﬁl)“o. It still carries commuting actions (g, *1,3), (g,%2) and
(h,0y), with (b,0,) coming from the action of (h @ O = b°/n% x; 5). We also note
that C'? is GL2(Q,)-equivariant over .Z for the action * 2 3.

Tueorewm 3.2 ([Pil24, Th.4.1, Lem. 4.5, Lem. 4.6], [RC22, Th. 6.3.6])
We have an G(Q,) x Galg, -equivariant isomorphism in Mod(0*™ @ T(K?)),

VB(Cla7*173) o~ Ola7

along which (g,*2) corresponds to constant action of g. Moreover, 0y(1,0) acting
on C' induces the arithmetic Sen operator on O (Example 2.45).

We can then calculate the b-cohomology of O by first calculating that of (C'2, x5).
We start by introducing some notation.

Norarion 3.3 (The functor €, )). — For (a,b) € Z2, let M € Modg, e)(Solidg, )
equipped with a commuting action of b, we define the functor

& (a.p) (M) := Eo(RHomy((a,b), M)) @ x =),

where Ej is taking the nilpotent part with respect to the action of ©, and —®@y(~*~?

only twists the action of B(Q,) such that the action of B(Q,) on € ) (M) is smooth.
If M € ModB:irR (Repr.D(GalQp)) equipped with a commuting action of b, such
that M/t admits an arithmetic Sen operator, we define

& (ap) (M) := Eo(RHomy((a,b), M)) @ x>~

with EO as in Definition 2.46.

We will also define &, 4 (C'(i)) using the same formula, where E; is taking the
generalized eigenspace 6y (1,0) = 0, —(7) refers to a twist of action of 0y(1,0) by —i,
and b acts on C' via *q.

Then by Theorem 3.2,

VB(E(mb)(Cla(i)) = S(G,b)((‘)l""(i)).

DeriNtrion 3.4. We will use Notation 2.30.

We define

i'(F) := lim RI(U,9)
coelU

with the colimit taken over the open neighborhoods of oo € #. This gives a quasi-
coherent sheaf on the dagger space ool := @meU U, i.e., a point equipped with the
structure sheaf 07,00 :=1lim H(U,0.4).

We define ji : QCoh(U,) — QCoh(.Z#1) to be the left adjoint to j* : QCoh(.#l) —
QCoh(U)

This definition makes sure that for F € QCoh(#1), we have a fiber sequence in
QCoh(HA)

QT s F s it L

JEP — M., 2026, tome 13



THETA OPERATOR EQUALS FONTAINE OPERATOR ON MODULAR CURVES %6()

Tueorem 3.5 ([Pil24]). Let (a,b) € Z%2, k:==a — b+ 1.
(1) If k > 0, then we have a (B(Qp),*2) x 6y(1,0)-equivariant isomorphism in
QCohl™(U)™

RHomy ,,)((a,b), C"™) @ xT™Y 2 Ny @& Nyya,

where N1 4 =2 i*iTw%_b’_l_a)[—l], and Ny =2 [w(%_“’

0y(1,0) acts on Ny by —t fort € {b,1+ a}.
(2) If k < 0, then we have a (B(Qy),*2) x 6y(1,0)-equivariant isomorphism in
QCohl™(U)™

) —i*iTw;la’_b) [—1]]. Moreover,

RHom(b,*z)((a? b)a Cla) ® X(_a’_b) = [Nb - Nl'i'll[_lH )

(=a,

with Ny, = jij*wy _b), and N1y, = i*iTw;Z_b’_l_a)[—l]. Moreover, 0y(1,0) acts
on Ny by —t fort € {b,1+ a}.
In particular, if k # 0, we have isomorphisms
a7\ U Nz 1= b, 1+ a;
&(a) (C(1)) =
0, else,
with N; described as in (1) or (2).

Remark 3.6. Note that the action of 6y(1,0) on w(;l’b) is the scalar multiplication
by b, following the normalization of [Pil24].

We can now apply the functor VB(—).

Tueorem 3.7 ([Pil24]). — Let (a,b) € Z%2. Then

(1) ifa—b=> 0, then we have a T(K?) x B(Q,) x Galg, -equivariant isomorphism
in D(Flan)
RHomy ((a,b),0™) @ X7 = Ny,(=b) & Nija(—1 — a),
where N1y = i,w 0717005 1] and Ny, lies in a distinguished triangle
wEo=sm Ny s (T ] L,

(2) ifa—b <0, then we have a T(KP) x B(Q,) x Galg, -equivariant distinguished
triangle in D(Flan)

Ny(—b) — RHomy((a, b), Ola) ® x(fa’fb) — Nigo(—1—a),

where Niyq & i, =010 1] and Ny & jio(o—bhsm,
In particular, if a — b # —1, we have isomorphisms
ars o JNi, i=b1+a;
€ (a) (01(1)) =
0, else,
with N; described as in (1) or (2).

Proof. — Using Theorem 2.35 and Theorem 3.2, the results follow from Theorem 3.5
and Lemma 3.8 below. O
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Lemma 3.8. — We have VB(]-]*w( o b)) > (= e=bsm gng VB(i*iTwL(;Za’_b)) &

i*w(_av_b);sm.

Proof. — Given Example 2.36, we only note that the same formalism of VB also
works for ool (by extending the functor VB by colimits) and for U, and that VB
commutes with i as well as with j*. O

We can also apply the construction of Definition 2.46 to the period sheaves.

Derinirion 3.9 (de Rham period sheaves). — For n € N, we define the sheaf B, /t"
on Fl,, as FHTv*(BgR,log,prKp /t"|%,p ), Where BchrR,log,prKp is the pro-Kummer-
étale de Rham sheaf on Xgrg, ([DLLZ23b, Def.2.2.3]) and Xg» is regarded as the
object in the pro-Kummer-étale site of Xrr,. We further define IBdR = hmIB R/t

We define B;Fga /t™ as the sheaf of derived G(Qp)-locally analytic vectors of B, /t".
By Proposition 2.14, we know that IB%Jr la /t™ is concentrated in degree 0, and is ﬁltered
by 0'2(i) for 0 < i < n — 1. We define IB%lea = lim BJ;®/t" and Blfy := Biy"[1/1].

We define sumlarly OB la/ Fil" on Zl., as the subsheaf of G(Q,)-locally ana-
lytic vectors in mgr *(O]BdR Jog, Xxcr e, /Fil" |x,,,) for n € N, where OB}, Jog, Xxcr s, is
as in [DLLZ23b, Def.2.2.10]. We define OBJ;" := lim OBj:/Fil", and OBy :=
OBR2[1/1).

Remark 3.10. — We are using the non-standard notations and writing OIB%(TR :
OIB%IRJOg for simplicity of notations.

Cororrary 3.11 (Geometric Fontaine operator). — For (a,b) €Z%? k:=a+1—b+#£0,
we have a fiber sequence

Nonas(b1ra) — €(ap) Bir) — Nanin(b,14+a)»
and the action of © on E(a’b) (IBS?R) is induced by a unique morphism
N Noins140) — Nomax(b,1-4a)
which we refer to as the geometric Fontaine operator. Here g(a,b)(*) is as in Nota-

tion 3.3, and N;’s are as in Theorem 3.7.

Proof. — By Theorem 3.7, IB%(J{R/t is Hodge-Tate, and then the rest follows as in
Definition 2.46 and 2.47. |

3.2. GEOMETRIC FONTAINE OPERATOR. The main theorem of this article concerns an
alternative description of the geometric Fontaine operator N!*! in Corollary 3.11.

Turorem 3.12. — Let the notation be as in Corollary 3.11. Then the geometric
Fontaine operator N¥I Nmin(b,14a) = Nmax(b,1+a) can be described as follows:
(1) If k > 0, N* coincides with the composition

gk

a,—b),sm[_l] i*w(l—b,—l—a),sm[_” ~ N1+a~

k : Nb — i*w(_
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(2) If k <0, N7F coincides with either composition of the following square

N1+a —_ i*w(lfbvflfa)vsm[_l} Cou ; j!w(lfb,flfa),sm
9_% w Je—k
i*w(—a,—b),sm[_l] T jlw(—a,—b),sm Nba

where the Cousin map Cou is defined as the connecting morphism coming from the
natural extension

0 —s j!w(a,b),sm N w(a,b),sm N i*w(a,b),sm —0.

Remark 3.13. — If k = 0, with suitable formulation, the arithmetic Sen operator can
be described in the same way as (2). This case is essentially Proposition 6.3 of [Pil24].

The proof of Theorem 3.12 will be finished in Section 4.5. In fact, part (2) follows
from part (1) (Corollary 3.27). Roughly, parts (1) and (2) are related by the BGG
complex to be discussed in Section 3.4, and the case k < 0 injects into the case k > 0
in the perverse t-structure to be defined in Section 3.3. See the proof of Corollary 3.27
for details, especially (14).

Let us first explain one reduction step:

Remark 3.14. Although we have stated the theorem for general (a,b) € Z%? with
a—b+1 # 0, the cases for (a,b) and for (a + 1,b + 1) are essentially the same.
In particular, we could always restrict ourselves to the case (k,0). Let us explain the
reason here: taking the 1-dimensional representation det, we obtain the automorphic

1)

vector bundle wgcl ’ (with Hodge filtration and Gauss-Manin connection), and det

Kpr

the associated local system. By the Riemann-Hilbert correspondence ([DLLZ23b)),
we have

(1,1) ®

~Y
wapr OBdexKPKP,IOg = det ®Q, OBdR,prKP,log

OXKPKP
so we have a canonical map

e

1
Xrrxe, O det ™" — OBdar,x s, log-

Evaluating on Xg» and pushing forward to .#I, we obtain a canonical non-zero map
w(1)ssm ®q, det™! — t—lij}{a,

which is compatible with connections on both sides. The polarization gives a canonical
non-zero section s of W™ = ;-1 @ wpe. We choose an arbitrary generator of the
1-dimensional Q,-vector space det™!, say wvp, then s1 := s ® vy gives a section of
t’IOIB:ﬁ‘Qa. Now that Vam(s) = 0, we know V(s1) = 0, which implies by [Sch13,
Cor. 6.13] that s is a section of ¢~ B 3",

We note that the action of B(Q,) on s is given by det™! = (=1, —1). On the other
hand, the action of Galg, on s; is induced by its action on s € HO(Z1,wtDsm) which
is trivial.
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We note that the unique locally analytic function in Xx» whose GL2(Q,)-action
is given by determinant is ty € H°(Zl, 0') constructed in [Pan22, §4.3.1] (which is
denoted as t loc. cit.), which comes essentially from the Tate pairing. However, Galg,
acting on tg by Xcye. Therefore, we know that s; ¢ Bgﬁla, and its image along the
projection ¢~ BJ2* = 012(-1) is given by ¢~ 't,.

Thus by multiplying by s; on Bqr, the action of Galg, is unchanged, the Hecke
action is twisted by w®1)s™ and the action of B(Qp) is changed by det™!, so we can

reduce the case of (a,b) to that of (a — 1,0 — 1).

3.3. Perversity. — We can observe that RHomyg((a,b), 0') looks like a perverse
sheaf. In this subsection, we define a perverse t-structure on D(%l,,) to make this
idea precise. This will be used in the proof of Corollary 3.27.

3.3.1. Perverse t-structure on D(Flay). We will use the recollement of t-structures
from [BBDG18]. More precisely, we fix the Bruhat stratification .#l = {co} U U, and
assign them with dimension 0 and 1 respectively.
Derinirron 3.15. We define

PP>" = {F € D(Flan) : j*F € DG’ ,i'F € DY,
and

POS! = {F € D(Flaw) : j'F € D5’ i 'F € DI}
We define the category of (Bruhat) perverse sheaves as Perv := PD=0 N PDSO,
Remark 3.16. Here 7' is defined as follows: we first define the non-derived i}, as

taking the sections with support at co, and then define 7' as the right derived functor
of if).

Prorositiox 3.17 ([BBDG18, Th.1.4.10]). — (PDSCP D30 defines a t-structure of
D(Hlan)-

Levwa 3.18. — For (a,b) € Z%2, jiw(@b)sm y(@b)lsm gnq i (@b)sm[_1] are perverse
sheaves.
Proof. — iw(@?)™m[ 1] is clearly perverse. For w(®?)s™ e have i~ lw(®0)sm ¢ DO,

We claim that we have i'w(@?)sm ¢ D21 This is because HO(i'w(@b)sm) = 4l y(a:b)sm,
Assume that we have s € HO(co,ipw(®?)sm) then s gives rise to a section s €
HO(F1,w(®)sm) that is supported at oo. s arise from some sg € HO(Xf,w(®?),
but this forces s to be zero because the image of U, in Xk is dense. Now we have
ib(jgw(“’b)’sm) C igw(a’b)’sm, and thus we also obtain the perversity of jiw(®?sm 0

CoroLrrary 3.19. For (a,b) € Z°?, RHomy((a,b), 0') € Perv. Moreover, for any
ke Z, 8(%(,)((91&(%;)) € Perv.

Proof. This follows immediately from Theorem 3.7 and Lemma 3.18. O
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3.3.2. t-structure on quasi-coherent sheaves

It will also be useful to have a t-structure (perverse or natural) on QCohga(ﬁZ)“o,
such that the sheaves w%b),i*ﬁw%b)[—l], and 7 j*w%’b) lie in the heart. This part
will only be used in some technical proof, e.g. Lemma 4.17, proof of Lemma 4.15, and
that of Proposition 3.24.

The problem is that the derived co-category defined in [And21] does not carry a nat-
ural t-structure. We apply the following general construction to produce a t-structure

(on another suitable category):

Levwia 3.20. — Let €9 C QCohy (ﬁl)“0 be the full subcategory spanned by extensions
of w(;l’b),i*ﬂwf;z’b) [*1],]'!‘]'*&)';{[)) for all (a,b) € Z%2. Let BO<0 (resp. By) be the full
subcategory of QCohg(ﬂl)no generated by Coy under small colimits and extensions
(resp. small colimits, extensions and shift). Then By is a stable subcategory.

Let B :=Ind(By). Then B admits a “perverse t-structure ” (PBS?, PB>%) such that
Gy € PBZONPBS0 =PBY . We will denote by PH'(—) the i-th cohomology with respect
to this perverse t-structure.

Remark 3.21. The embedding €y — B is fully faithful. Thus the abelian category
PBY provides a convenient ambient category.

’ ’ ’ ’
Proof. — There is no nonzero map i*ifwf;l’b) — w(;l ) or to jgj*wgl )b ), which can be

seen by taking an affinoid chart around co. and we have a canonical colimit-preserving
fully faithful functor Ind(B$?) < Ind(By). Thus by adjoint functor theorem ([Lur09,
Cor.5.5.2.9]), we have a right adjoint L : Ind(By) — Ind(BS"). Let us denote
B := Ind(By). Since Ind(Bs°) is closed under extension, by [Lurl7, Prop.1.2.1.16],
Ind(B5°) defines a t-structure of B, say (PBS?,?B>9) such that B<? = Ind(BS").
Then we have €y C BOSO C PBSO. Moreover,

PB>0 =~ (F ¢ B|Hom(F', F[-1]) =0, VF' € PBS"}
=~ {F € B|[RHom(F', F) € D*°, VF' € PBS%}.

Now for any F € Gy, {F’ € B|[RHom(F',F) € D>} is closed under colimits and
extensions, and contains @y, which implies that it contains PBS?. Thus we know
@y C PB>Y. Hence @y C PBZ°NPBSV =rBY, O

Remark 3.22 (Natural t-structure). — Let C; C QCohg(ﬁl)”O be the full subcate-
gory spanned by extensions of w%’b),i*iwa;Z’b),j!j*w%’b) for all (a,b) € Z¥2. If we
replace Gy with €1, then the same proof still works, and produce another t-structure
(BSY, B2%) on B, such that ¢; C BY := BS® N B>, We will denote by H'(—) the
i-th cohomology with respect to this natural t-structure.

3.4. BGG comrLex. — In this subsection, we study the BGG complex, and the indu-

ced morphism on b-cohomologies. This will allow us to relate (1) and (2) in Theo-
rem 3.12. As a byproduct, we will also compute

RHomg(SymkflV, o),
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where V' denotes the standard representation of GLy, which is a reinterpretation of
[Eme06, Th. 0.5].

DeriNirion 3.23 (Verma modules). — For any (a,b)e Z2, let A4 5):=U(8) @y () x(@?)
denote the Verma module. In particular, we have

RHomg (A (43), C™*) = RHomy ((a, b), C').

Let k € Z>1 and m € Z. We have the classical Bernstein-Gelfand-Gelfand complex
of g-representations ([BGG76))

(3) 0— A(71+m,k+m) — A(kfler,m) — Symk_lv ®det™ — 0.

Then we have a distinguished triangle
(4) RHomgy(Sym* 'V @ det™, C') — RHomy((k — 1 +m,m), C'®)

— RHomyg((—1 +m, k +m),C'") 1,

Note that the sequence (4) is equivariant for (g, B(Q,))-actions, and also for the
horizontal action (h,0y). Recall that the action of 8,(1,0) is semisimple, and has
eigenvalues —k — m, —m by Theorem 3.5.

Therefore, the sequence (4) has a decomposition into 8(1,0) = —m and = —k—m
described by Theorem 3.5:

(5)  RHomg(Sym* ™V @ det™, (1) (10=—k=m __, () @+,

with N

W 2 adtwl ™ 1) and N 2 Gigtwl ™™, and

k+m —

(6) RHomg (Sym" ™'V @ det ™, C1)% (10=—m _, N( __, N2 +_1>’

with
N o [w;[’“*m’*m) — it hmmem g

and Ng,%) = i*ifw%_k_m’_m)[fl].

Prorositiox 3.24. — We have GL2(Q))-equivariant isomorphisms
™ RHomg(Sym* ™'V @ det ™, C'*) = Ngﬁm ®NO,
N’(ﬁgm o~ w%—m,—k—m) [_1]’ :Ngr(z) ~ w%—k—m,—nz)’

with y(1,0) acting on NEO) by the scalar —i (i=m,m+k).
Moreover, the sequences (5) and (6) coincide with the standard sequences (up to a
scalar in C)f)

(8) w%—m,—k—m)[f”—)Z‘*ﬂw%—m,—k—m)[il]%j!j*w;l—m,—k—m) =N

(9) w{(gllfkfm,fm) N [w%7k7m7fm) o i*iTwL(gllfkfm,fm)[_l]

— it hmmem gy L
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Proof. — When restricted to the open Bruhat strata U, = A! C 7, N,(:lmml =
N |ar =0, and thus

RHomQ(Symkilv ® det mv Cla)@,, (170):7k7m‘A1 = Nl(f-lzm|A1 [_”

— A
and
RHomg(Sym" ™'V @ det™, C'2)0 (10==m |, o (D[, o Q7o)

In particular, both are locally free of rank 1 over ©g when restricted to A (up to
shift).

As the action of g on Sym* ™'V ® det” can be upgraded to an action of GL2(Qp),
RHomg (Sym* ™'V @ det ™, C') is GLa(Q,)-equivariant.

Thus we know that

RHom (Sym* ™'V @ det ™, ¢'2)% (1.0)=—m

and RHomg (Sym" ™'V @ det ™, C12)% (1L0)=—k=mq]
are GL2(Q))-equivariant line bundles over .Zl (up to shift).

By the classification of (g, GL2(Q)))-equivariant line bundles on .#l in [Pil24,
Lem. 2.16, Prop. 2.18], we know that

RHomg(Symk_lV ® det™, Cla)Qh(1,0)=—k—m o wg(g{lifm,*kfm) [—1],

RHomy (Symk71V ® det ™, Cla)eb(l’o):*m = w%_k_m’_m).
This finishes the proof of (7).
This implies in particular that the map N,(ﬁgm — N,(igm is non-zero, and then by
Lemma 3.25 below, it coincides with the standard map
WM Ak

This gives the proof of (8). For (9), we note that NG = N s non-zero, and

thus it factors through i*ifw%_k_m’_m) [-1] — i*iTw;l_k_m’_m)[—l] by the natural
t-structure (Remark 3.22), which is forced to be the scalar multiplication again by
Lemma 3.25. (|

The following lemma is the “counterpart” of Lemma 4.22 over .ZI.

Lemwva 3.25

(1) For any x,x' € Z%2%, if f : iTwigZ — ilwy, is B(Qp)-equivariant, then either
f=0,0rx=x', and f is multiplication by a scalar in C,,.

(2) For any x € Z%%, any open U C FA, and for any f : wylv — wylu in
QCohy(U), if f # 0, then f is an isomorphism. The same holds for f ifws, — ifwy,
in QCoh, (oat).

Proof. — (1) Assume f # 0. Then f corresponds to a unique non-zero section
f€H (00, iTwX; ) that is B(Q,)-invariant. Then by definition, f can be extended to
a neighborhood oo € U C I where f is nowhere vanishing. Note that such extension
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has to be unique since the transition map H°(U, wiéﬂ_xl) — HO(U, w}l_x/) is injective
for U" C U. Using B(Q,)-action, we have B(Q,) - U = Zl, so f can be extended to
a nowhere vanishing B(Q,)-invariant global section H"(Zl, w%—x’)_ This implies that
w?;{x/ is isomorphic B(Qj)-equivariantly to O g, and thus x — x’ = 0 and x = x'.
By GAGA, we know in addition that f € C,,.

(2) By twisting, we can assume that y = (0,0), and then f corresponds to a
nonzero section s € H(U, O ;). Moreover, since f is g-equivariant, we know g-s = 0.
This implies that s is constant. Thus, f is an isomorphism. |

We can then apply VB(—) to Proposition 3.24.

Prorosition 3.26. For k € Zs1,m € Z, we have a GL2(Q),) x T(KP)-equivariant
isomorphisms

RHomg (Sym* 'V @ det ™, 0'#) =2 N{©)

k+m
0
Nitm

(—k —m) & Ny (=m),

10
( ) NS‘S) ~ w(l—k—m,—m),sm

~ w(l—m,—k—m),sm[_l]’

Moreover, we have a fiber sequence

(11)  RHomg(Sym" 'V @ det ™, 0') — RHomy((k — 1 +m,m), 0')
— RHomyg((—1 +m, k +m),0') e N

and the weight (k + m)-part and the weight m-part coincide respectively with the
standard sequences (up to a scalar in C))

(12) w(l_m’_k_m)’sm[—l] N i*w(l_m’_k_m)’sm[—l} &jgw(l_m’_k_m)’sm +_1>7

and

(13) w(lfkfm,fm),sm N [w(lfkfm,fm),sm . Z‘*w(lfkfm,fm),sm[il]
N i*w(lfk*mv*m)’sm[,l] +_1> )

Proof. — This follows from Proposition 3.24 by applying the functor VB and using
Lemma 3.8. O

Cororrary 3.27. — Theorem 3.12(2) follows from Theorem 3.12(1), and vice versa.

Proof. — By Remark 3.14, it suffices to consider (a,b) = (—1,k) or (k — 1,0) for
k € Zx1. Apply RHomgy(—,B!%;) to (3), and we have a morphism

7 €10 (BIRY) — €1 (BIRY) ® (1Y)%F,

which is compatible with the arithmetic Sen operator ©.
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By Theorem 3.7, let us denote
RHomy ((k — 1,0),0) =2 N g N

Nl(ql) o w(bmh)sm

k),

1], N(()l) o~ [w(lfk,o),sm _ i*w(kk,o),sm[_l]]

RHomy((—1, k), 0') 22 N @N(z
:N‘(Q) =87 w —k),sm

(=
[—
(=k),

[ 1] N(()Q) o~ ,L'*w(lfk,o),sm[il].

Hence, we obtain the following commutative diagram (in the category of perverse
sheaves) with the horizontal morphisms given by the geometric Fontaine operators
(in Corollary 3.11)

k,(1)
N(()l) N N,(Cl)

(14) l gk jCou

N(2) N( )
Nk (2)

Given Theorem 3.12(1), we have a unique factorization of N*1) . N(()l) — N,(Cl) as

k
NG — NP o o (1-k0em_q) O amem_g o D),

Since N(()U —» N((f) is perverse surjective, the lower triangle is forced to be commu-
tative, which is precisely the statement of Theorem 3.12(2).

The inverse direction is similar, where we use (14) and the fact that Cou is perverse
injective. |

4. Proor or THE MAIN THEOREM

We will finish the proof of Theorem 3.12. By Remark 3.14 and Corollary 3.27,
it suffices to consider (a,b) = (k — 1,0) for k € Z>1. We remark that a simpler
proof will appear in [Jia26]. We will use the notation of de Rham period sheaves from
Definition 3.9.

4.1. StraTEGY OF THE PrROOF. — The proof is a bit technical. We will start with a
sketch of the proof when (a,b) = (0,0) to illustrate the idea. The plan of this section
will be given at the end of this subsection.

When (a,b) = (0,0), the theta operator 8! is the (log) connection Vi : i,O05™ —

i os - For the Fontaine operator, we are looking at the action of © on

0— N; —» 3(070) (Big™) — No — 0,

1
and we want to understand the complex [Ny o, Ni]. Note that these maps are not
expected to be O%™-linear. As in [Pan26], we linearize the situation by resolving ]B%Q'R
by OBZ,. We consider the resolution in [Sch13]

+,la +,la +,la 1,sm
0 — Bk — OB — OB @Qy,, —0.
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The complex is compatible with the “t-adic filtration”, which we denote as
Fill OB} := t 7 (OB3?).

We can take E(o,o)(—) of the sequence. We will see that that the action of ©
on :9\(0,0) (grt OB}™) is zero (Lemma 4.4). Therefore, ©-action on :‘3\(070)((9]]335’{1&) also

induces a monodromy operator
~ ~ 1 -~ 1.
N €00 (815 OBGR") — E0,0)(erl1 OBGR").
As a result, we have the following commutative diagram:

No —4 €(0.0) (81 (OBIA) —Y— & g0 (erh (OB @ QL™

log
JNl lN’l JN o1

N1 —— E(,0)(grt 1 (OBIR™) —— o0 (g1t 1 (OBIZ") ® 5™,

where each row is a short exact sequence of perverse sheaves.

Moreover, we can endow grﬁ(OBIﬁla) with the Hodge filtration induced from OIB%II’;&,
and then the diagram is compatible with the filtrations.

By Theorem 3.7, the objects on the second row are concentrated in degree 1 for
the natural ¢-structure, while those on the first row are in degree [0, 1]. So it suffices

to understand

Fib(H'(N')) ——Y—— Fib(H'(N')) ® QL

Hl(No) —t E(0,0) (gré(OBjﬁ%a)) i’ E(0,0) (grf)(OBEa)) ® Qllclzm

hHl(Nl) HY(NY) HY(NY @1

Hl(Nl) — 8(0,0) (grt_1(OBIﬁ{1a)) — 3(0,0)(gri1(OBIﬁla)) ®Q11$Zm-

We want to understand the filtered morphism
Hl(ﬁl) : /8\(0,0) (grf)(O]le’{la)) — E(0,0) (gri1(OBI§a)),

so we can start by considering its graded pieces, which (up to twists) are symmetric
powers of Faltings’s extensions. These actually lie in the image of the functor VB,
so we can calculate it explicitly over the flag variety. As it turns out, H 1(]V 1Y induces
an isomorphism on gr® for any i # 0 (Proposition 4.12), and Fib(H* (]\71)) 4,08,
equipped with the trivial filtration.

Moreover, the connection V on OBgg induces a connection V : Fib(H'(N1)) =
1, O™ — 4, Q5™ We claim that it has to coincide with V. This is because V—Vaum
is a B(Qp)-equivariant O™-linear morphism 7,05 — i*Qngm7 which corresponds to
a B(Qy)-invariant weight 2 overconvergent modular forms. Any such form has to be
zero by Lemma 4.22. This shows that V = V!
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Using the diagram above, we have an isomorphism of filtered complex

1 Nl
[i*osm ( ) Z*Qll(;zm} ~ [i*osm VGM Z*Qll(;zm],

where both sides are equipped with the filtration from the stupid truncation. This
implies that H*(N') = V.
Most of the argument above generalizes to (a,b) = (k — 1,0) for general k € Z>4.

In Section 4.2, we will introduce the t-adic filtration Fil\. The rest of the section
mainly focus on proving Proposition 4.19, that is,

H'(Fib(N*)) 2 i,Sym*~t Ds™,

In Section 4.3, we will compute the derived locally algebraic vectors in OBggr, where
the main result is Proposition 4.11, which states that

H°(Fib(N*)/ Fil*) = Sym*~' D>,
In Section 4.4, we will compute the Sen operator for Faltings’s extension, which
shows that
H'(Fib(N*)) = H'(Fib(N*)/ Fil*).
Finally, we finish the proof of Theorem 3.12 in Section 4.5. The most non-trivial part

of the proof is Proposition 4.19. The key is to consider the action of §(070)(OB11&R) on
g(k_ljo)(OIB%ldaR), which induces a map

H'(Fib(N')) ® HO(Fil(N*)/ Fil*) — H'(Fil(N*)/ Fil*),
which one can verify to be an isomorphism.

Remark 4.1 (Comparison with [Pan26]). For people familiar with [Pan26], our
proof is parallel to that of [Pan26]. In fact, given Theorem 1.2.10 of [Pan26], we obtain
Theorem 1.9 by applying €x_1,0), with €10 (d*) = 6% and € (k—1,0) (Ek) becomes
the natural projection Ny — Mlek. The key simplification in our proof is that after
taking b-cohomology, € _1 ) (Ek) becomes much simpler, and induces an isomorphism
in H!. In [Pan26], Pan achieves the same goal using a non-canonical construction of
a lifting 000 OB, . Taking b-cohomology also simplifies the computation of
cohomology, as well as the proof of the classicality. Our proof generalizes naturally to
overconvergent Hilbert modular forms.

4.2. t-apic rirration. — For later usage, we introduce the following t-adic (ascend-
ing) filtration:

Derinirion 4.2 (t-adic filtration). We will write Fil* for the descending Hodge
filtration on OBgR or the filtrations induced on OBIR or OIB%(}’{Ia / Fil* etc.
We define another ascending t-adic filtration on OB4r via

Fil’,(OBgr) := t'OB ;.
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We denote the corresponding graded pieces as gri OBgr. We also use the notation
Fill and gr’ for the induced filtrations on OBL,, OB, OB/ Fil, gri(OBy) or
& (ay (OB / Fil“™) for (a,b) € Z®? etc.

Concretely, for ¢ € Z, we equip Fllf(OIB%dR) with the Hodge filtration and equip
Fil" (OBgr) with the induced filtration by putting

Fil; Fil" (OBgg) := Fil" Fil;(OBgg) := Fil"(OBqr) N Fil;(OBar),
equip gr!(OBgr) with the Hodge filtration by putting
Fil" grf(OBgr) := Fil" Fil}(OB4r)/ Fil" Fil;_, (OB4r),
and equip gr*(OBgr) with the induced filtration
Fil! gr" (OBgr) := Fil} Fil"(0OBggr)/ Fil} Fil" ™ (OBgR).

Exawrere 4.3. — By definition grh(OB;*) = OBI3*/(t), and has a descending fil-
tration induced by the Hodge filtration, where the non-trivial graded pieces are
grh g1/ OB 2 (QU)3 for j € N,

The t-adic graded pieces have the property that the action of © is semisimple after
taking b-cohomology in the case of regular weights.

Lemma 4.4. Let ¢ € Z. The Hodge filtration of OB4r induces a filtration Fil* on
grt(OBL,) where the non-trivial graded pieces are

gr! (grt (OBR)) =2 () o0~ (=)

for j € Zs;. For (a,b) € Z¥%,a # b+ 1, the action of © on g(a)b) (grt OB ) is zero.

Moreover, fori ¢ {—b,—1 —a}, grﬁ(g(a,b)(OB}fR)) = g(a,b) (grt OBY.) 2 0, and for
i€ {-b—-1—a}, grg(g(a’b)(OBéaR)) has a descending filtration, where the non-trivial
graded pieces are

~

g/ (2r5(& (a.p) (OBYR))) = N_; @gem (Q%ézm>®osm(j_i)7 J € L.
where N_; are as in Theorem 3.7.

Proof. — Multiplying by ¢ induces an isomorphism
gr§+1( B+ la/ Fllf-‘rl) >~ or ( B+ la/ F11Z+2)( Z)

In particular, it suffices to prove the claim for ¢ = 0. We proceed by induction on ¢.
The case when ¢ = 0 is obvious. Given the case for £ € N, we consider the short exact
sequence 0 — Bjﬁla — (‘)Biﬁla/ Fil'tt — OBY; 13”/ Fil® ®osm§21’sm — 0. Taking grf
gives 0 — O% — grf (OB / Fil‘T!) — grf (OBIA*/ Fil) @gem Ql ™ 5 0. On the
other hand, the projection OIB%+ 18”/ Fil‘t! — OIB%XRIa/ Fil'! = ol 1nduces a natural
splitting of the sequence above, and thus we have an O'?-linear isomorphism

T (OB Fil' ) = 0 @ (grf (OB / Fil’) @om Q™).

log
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We are done by induction. Note that the action of © on Qll(;z,m is zero. The last part
follows from Theorem 3.7 as

€ (a) (Qgg )™ (=) 2 (g™ @omm € (a ) (0(—i)) 2 0. 0
Revark 4.5. — We remark that there is a bit of subtlety in the term “O'-linear”

here. On gr.( IBB:RM / Fil**1) there are the action of O™ coming from the embedding
O%™ < OBgg, and that of 012 = B+ 12 /t. In particular, we have two different actions
of O although they coincide on the graded pieces. In what follows, when we say
“©%™_linear”, we refer to the former from the embedding O™ < OBggr, and when we
say “O'2-linear”, we refer to the latter.

On the other hand, the action of @™ and O'® are compatible on gr’ OIB(;;L , essen-
tially because they coincide in gr’ OBgr = 0. As a result, their actions are also

compatible on grt gr! OBy e,
4.3. LocALLY ALGEBRAIC VECTORS IN OBgr. — Using Theorem 2.35, it is easy to see
that OF-sm = Osm g Qllozm[ 1]. Interestingly, OBX™ is concentrated in degree 0. The

result of this section generalizes easily to general Shimura varieties.

Noration 4.6 ([DLLZ23b, Def.2.2.10(3)]). — Let OC := gr’ OBqgr, and denote by
OC™ its subsheaf of locally analytic vectors. Note that OC'® =2 OCT!2 by Proposi-
tion 2.14.

Prorosirion 4.7. We have a canonical isomorphism
OCH™ = RHomg(1,0C™) = 0™,

Proof. — By [Pan22, Th.4.2.2] (or [RC22, Th.5.1.4] for the general Shimura vari-
eties), we know that OC = myr . o mjp(O(N)), where O(N) is a colimit of algebraic
B = T N-representations, where N acts Mht multi;ﬁatiorl on N, and T acts by
conjugation, and O(N) is the colimit of the associated GLg-equivariant vector bundles
via localization. Then

OC"™ = OCH" = (17 . 0 T (O(N)) ® Og1)F™ =2 VB™Y(O(N) ® Og.1),

where VBV is as in Definition 2.32. Here O(N) is a filtered colimit of vector bundles,

so T = L7, and RmaT « = TuT,« by Lemma 2.4. Now

OCR-sm ~ VBnaive(RHOIng(l, (M@ Oc 1, *2))) = VBnaive<O( ))

where *5 denotes the action of g on Og,; by right multiplication, and thus
RHomg(1,0¢,1) = C,.
Now by Lemma 2.34 and Theorem 2.35, we have
VB*¢(O(N)) = VB(RT (n’, O(N))) = VB(0 5) = 0°™,
as desired. O
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CoroLLARY 4.8. We have a canonical isomorphism
Eo(RHomy(1, OBl)) = 052,
where Eo is as in Definition 2.46.
Proof. — By Proposition 4.7, the Hodge filtration on OB, induces a filtration on

RHomg(1,0BY%,), such that gr' = O°(4), and thus Ey(gr') 2 0 unless i = 0,
as desired. 0

CoroLLARY 4.9. — Let W be an algebraic representation of G, and let DdR,Kpr(W)
be the associated vector bundle with an integrable connection defined over Xgrp, .
Denote Dag, o (W)™ = WHT,*(hﬂK ﬂKngdpMKpr (W)). Then we have a canonical
filtered isomorphism

Eo(RHomg (WY, OBY%:)) & Dag, x» (W)™
that is compatible with connections.
Proof. — By the (logarithm) Riemann-Hilbert correspondence ([DLLZ23b, Th. 1.5]),

we have a natural filtered isomorphism that is compatible with the Gauss-Manin
connections

(15) DdR’Kp(W)Sm R@sm OBgr = W ®q, OBgr,

and thus
Dyr,ir (W)™ @p=m OB = W ®g, OBYy.
We can take E'O(RHomg(l, —)) on both sides. The LHS becomes Dgr,x» (W)™ by

Corollary 4.8, and the RHS becomes RHomg (WY, OB,), as desired. |
ExampLe 4.10. — In the case of modular curves, for W =Sym* V'V, Dag, g (W)™ =
SymF~1psm,

Cororrary 4.11. — Let k € Z>1, and consider

RHomg (Sym* ™'V, OBl ) — RHomy ((k — 1,0), OBl%)
as is induced by (3). Then it induces a filtered morphism
Sym* ™' D™ 2 Eo(RHomg(Sym* ™'V, OBYR ) — € 1—1.0) (OB
that is compatible with connections, and induces an isomorphism
Sym LD = HO(E 1 o (grh(OBar/ Fil*))).

Proof. — Only the last isomorphism requires some explication. By (3), we have a
fiber sequence of filtered sheaves

EO(RHomg(Symk_lvv OBgr)) — g(kfl,o)(OB}iaR) — g(—1,&)(015321%{)
By Lemma 4.4, (gr’ (g(—L 1 (OBY:))) = 0 is concentrated in cohomological degree 1 if
0< i<k, and €10 (OBER) = Ek_1,0)(OBRY).
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On the other hand, by Corollary 4.9, Eq(RHomg(Sym* ™!V, OB,)) = Sym*~! psm
is concentrated in degree 0, and gr’ = 0 unless 0 < i < k. Thus we have an isomor-
phism Sym*~!1Ds® = HO(€ ;. ) (OB / Fil*)). 0

4.4. Compuration or FarLtines’s ExTENsiON. — In this section, we compute the Sen
operator for Faltings’s extension in terms of Theorem 3.7.

Using Kodaira-Spencer isomorphism, we will identify o = wh=1sm By Def-
inition 4.2, for m € N, grm(OIB%jl'ﬁla) has an ascending filtration Fil} such that the
non-trivial graded pieces are

gri(gr™ OBR") = (™) O @i O(—i) 2 wmThmm=ila ()
for —m < i < 0.

Provosition 4.12. — Let (a,b) € Z% and k := |a — b+ 1]. Let m € Zsq, and
write Fppyp = gr™tF OBL’{Ia(min(b, 1+a)) equipped with the ascending filtration Fil..
We will use the notation of Theorem 3.7.

(1) If a+1 < b, then we have a short exact sequence in Perv

0 — Ean) (&t (Fontn)) — Etam) Fontr) — Eram (@ (Tmir)) — 0,

and the action of © on €, p)(Fmyr) is zero on the graded pieces, and is induced by
the composition

€ (a,b) (&6 (Fmsn)) 22 ()BT @ Ny 2 i s m=0hsm ]

Cou, jr(m=a—m=b)sm (Qllézm)(@m @ Ny = Eq ) (g 1 (Fintr))-

(2) If a+1 > b, then we have a short exact sequence in Perv

0 — Ean (&t (Fontn)) — Eram)Frntr) — Eram (@ (Fmir)) — 0,

and the action of © on €, ) (Fmyr) is zero on the graded pieces, and is induced by
the composition

E(a,b) (grb(Fman)) = (Qllc;zm)éé(m-s-k) BN,

o d(MImb e em ) o (QLEEM @ Ny o € (a1 (Frg)).

Remark 4.13. — We are repeatedly using the following trick:

& (b (W) 2 & (4 ) (W™ @em OF) 2 WX @ gam € (4.5 (O™).

Proof. — We first explain how to reduce the problem to a calculation over the flag
variety, and then the proof will be finished in Lemma 4.15.

The claim only depends on k by Remark 3.14. Therefore, in the case of (1), we con-
sider (a,b) = (k —1,0), and in the case of (2), we put (a,b) = (=1,k) for k € Z>;.
In this way, we are working with the Faltings’s extension gr* OIB%,;F}%a without the Tate
twist.
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By Theorem 4.2.2 of [Pan22], gr* OB, = (VR0)@gemw® DM and the Faltings’s
extension coincides (up to a sign) with the w(®=1""_twist of
0— w®(1) - Ve — W™ —0.
Note that our normalization is different from [Pan22], which changes the Hodge-Tate
weight here. The sequence above is the pull-back of the following sequence on #:
0 —>w(9(~)1’1) — V®0axm —>w%’0) — 0.

We define an ascending filtration Filfk on V ® O.4 such that gry = w%’o), and grt | &

w%l), which induces an ascending filtration on Sym*V®0 4 such that grt ; = wf;_i’i).
For k € Zxo, gr* O]B%:ﬁ’{la =~ Symk,, gr! (‘)ij{la, SO
(16) gI‘k OB:]}{M ~ w(O,—k),sm Rsm Symkv ® Ola7
that is G(Q,)-equivariant and compatible with filtrations Fil’ on both sides.
We consider the sheaf
Tt = (Sym™ V@ €', %1 5) € QCoh I (7)™,
where *; 3 is as in Notation 3.1. We will denote by *4 the g-action on Sym™FV.
We define an ascending filtration on F,4p = (Symm+kV ® O05) @o% C'™ as the
one induced from Sym™ VvV @ O 4.

Lemmya 4.14. We have a filtered isomorphism
VB(Fnik) = gr™ P OB @gom w(Omtk)sm

the action of g on the RHS is induced by %24 on Fp4k, and the arithmetic Sen
operator © on the RHS is induced by 0y(1,0).

Proofof the lemma. — This follows from (16) and Theorem 3.2. O

By Lemma 4.14, Theorem 2.35 and Lemma 3.8, the proof of Proposition 4.12
reduces to Lemma 4.15 below. ]

Levva 4.15. — Let k € Zzy and m € Zyzo. In what follows, €4 ) is taken with
respect to *g 4.

(1) We have a distinguished triangle

+1
Eim (i (Fmar)) — €1 k) Fmar) — E10)(806(Fmtn)) —,

and the action of 0y(1,0) on €1 k) (Fmir) is induced by the composition
~ . o (mAl, C o (mA1,0) A
€1 (81 (Tmn)) = duifelgy O [-1] =2 iyt T 2 €y (e (T
(2) We have a distinguished triangle
+1
Eh-1,0) & £ (Frmsr)) — E-1,0)(Fmir) — Eh—1,0) (816 (Frmir)) —,

and the action of 04(1,0) on €x_1,0)(Fmr) is induced by the composition

& (h-1,0) (816 (Fmtr)) = [W;?H’O) - i*ifwg+l’o)[*1]}

p

s it

= E(k-1,0) (gr’ 1 (Fmtr)),
where the map p is the natural projecting.
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The proof will be finished at the end of this subsection. The key idea is to reduce
the problem to the case m = k = 0 treated in [Pil24].

Lemma 4.16. For k € Z>1,m € Zxq, we have an isomorphism
1) (Fonsr) = E(1,0)(C™) @0 Wi = & 11,0y (Fonr),
which is compatible with respect to the action of 0y(1,0).
Proof. — Note
Sym™ Ry o [X(m+k,o) _ o mHR=10) X(O,m+k)].
So Ext(p ., ) ((—1, k), Sym™ "V @ C2) is filtered by
EXt(b,*2,4)((_17 k)a X(i7m+k_i) Y Cla) = EXt(b,*2)((_1 - ivi - m)v Cla)’ Oglgm + k‘,

on which © := 6y(1,0) acts by ¢ and m — ¢ by Theorem 3.5. So when taking Ey(—),
only the graded piece with ¢ = 0 and ¢« = m will survive. We have a b-equivariant map
Sym™ VYV — Sym™V @ x(%%) | and we have

€1 (Sym™ TV @ C1) 2 €y (Sym™V @ X" @ C)
>~ 8(,170)(Symmv ® Cla)7

that is,
&by (Frnik) = E—1.0)(Fm) = E(C1.0)(C™) @ T,

where for the last isomorphism, we use the filtration FilZ on Sym™V ® C' with
grt, = CP® w%ii’i), and €_10y(gr’;) = 0 unless i = 0. The isomorphism is clearly
compatible with © := 6y(1,0)-action.

The same argument also works for (k — 1,0) in place of (-1, k). O

We have the following reformulation of the results of [Pil24], describing the action
of © on 8(,1’0) (Cla).

Lemma 4.17 ([Pil24, Prop.6.3]). — We have an isomorphism
E(_1.0)(C1) = [i*z’Tw;iO)[—l] — W0 it O]
Moreover, consider © := 6y(1,0), O is given by the composition
€ 1.0)(C") — i.itwGV 1] = &y ) (C™),

where the first map is surjecting onto the top graded piece, and the second map is the
inclusion of the lowest graded piece. In particular, we have

Ker(0) = [i,ifwLO[-1] - w L0 2 jij*wL® | Coker(0) = [wf;iobi*m;i“)[q]]

Here Ker(©) and Coker(0©) are taken in PBY defined in Lemma 3.20.
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Proof. — Theorem 2.35 gives

(1,0)

0 — i w5 — €10 (C™) — iifwG” — 0.

This gives the first isomorphism by noting jij*w; (1,0) '*iTw%’o) [-1] — w%’o) . More-

over, © is zero on the top graded pieces. In partlcular we know © is induced by a

canonical map f : i*z’Tw;Z’ )[ 1] = 5ij w( 9 The claim is equivalent to saying that f

coincides with the Cousin map. We apply I'(©, —) to the sequence, and take PH*(—)
gives a long exact sequence

00— jij w(l 0) pHO(@ E-1,0) (C’la)) — 1yl ft 0)[ 1]
i>ju]*o.)((;lo) 5 le(@,E(_LO)(C ) L sz%O)[ 1] — 0.

Simple diagram chasing tells us that f = §. Now the long exact sequence given by
natural t-structure (Remark 3.22) H*(RI'(©, —)) tells us that H%(©, &y )(C'")) =

ju]*wf%’ ), and H2(®,€( 1 0)(013)) = iTw%’O). Moreover, [Pil24, Prop.6.3] tells us
that H'(©, &(_1,0)(C'*)) = (1 9 Hence
PHO(©,€(_1,0)(C™)) 2 jij wf% PN (0,€(1,0/(C™) = [wG” — it 1-1]).

By Lemma 3.25, we then know ¢ is an isomorphism, and p induces an isomorphism

i*iTw;Z’O) [—1] = i*iTw%’O)[—l]. Thus we are left with a triangle
i*iTw%’O)[—I] L J1j w(l 0 s, w%o) —>+1 ivitw (1 0).

Such extension is necessarily the excision extension. This implies ¢ coincides with the
Cousin map. 0

We can now finish the proof of Lemma 4.15.

Proof of Lemma 4.15. — Consider Fil} on € _ ) (F k). The graded pieces are

ok &y (WETTT) @

for 0 < i < m+ k. By Theorem 3.5, we know that grg_m_k E(—1,k)(Fmir) = 0 unless
i =m+ k or m, and

1 e @O = g,
(17) (m+k,0) lay ~ ; s, ,(m+1,0)

8( 1,k )( ®C )— # 1 W g [—1].

Note that all the terms lie in Gy, and in particular, we can work in PBY defined in
Lemma 3.20, and the triangle gives short exact sequences in PB%:

00— 8(,1,]6) (w%n,k) ® Cla) — 8(—1,k)(§m+k) — 8(71,k (w%n+k 0) Cla) — 0,

such that © acts trivially on the graded pieces. By Lemma 4.16 and Lemma 4.17,
we have

Coker(©) = [w ™ — i.ifw 1 [-1]]

— &1y (WY @ 0y = g, PO ).
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Since
RHom(w%ﬂH’o),i*iTw(%mH’o)) € DY,
we know that the map factors uniquely through i*iTw%H’o)[—l], which then by
Lemma 3.25 gives an isomorphism. This implies that & _q ) (w;ln’k) ® C') = Ker(0)
by Lemma 4.17, and the action of © is as described.
The proof for (k —1,0) is similar. Once we obtain (17), we have a surjection

p : Coker(©) = [w%“’o) - i*iTw%H’o)[—lﬂ

— €yl 0 @ 0 2 [ it )],

m—+1,0
GO

We then first project to i,ifw , and by the same argument using Lemma

3.25, we know p induces an isomorphism on the top graded piece p : i*ifwg;ﬂ’o) [—1] =

i*iTw<%+l’0)[—1]. Hence p induces a surjection p : w%lﬂ’o) — wgfﬂ’o), which again

by Lemma 3.25 is an isomorphism. Therefore, we know

Coker(0) E(k_LO)(wL(;ZnJrk’O) ® C'"?),

and we are again done by Lemma 4.17. a
4.5. Proor or Turorem 3.12. In this subsection, we finish the proof of Theo-
rem 3.12. By Remark 3.14 and Corollary 3.27, it suffices to consider (a,b) = (k—1,0)
for k € Z>:.

By Lemma 4.4, we have an exact sequence in Perv
0 — E—1,0)(8r" 1 OBER) — E—1,0)(OBYR) — E—1,0) (g5 OBYR) — 0,

and the action of © on gr! is zero, and thus its action on E(kq,o)(OB}fR) is induced
by a unique canonical map

(18) N* . gré g(kq,o)(O]BgéaR) — grt—k é\(kfl,(])(OBldaR)'

Lemvia 4.18. — The map N* as defined above is O™ -linear, filtered, and compati-
ble with connections, where both sides are equipped with the induced Hodge filtration
(Definition 4.2).
Proof. — By Proposition 2.42, Ey(—) is lax symmetric monoidal.

Therefore, E(a’b)(OBdR) is an E(O0™)-module in D(Q,[0]) (equipped with con-
volution symmetric monoidal structure). We know that Eq(O0%™) = O and © acts
on O°™ by zero. As a result, the action of © on g(%b) (OBgr) is O®™-linear, filtered, and

commutes with connections, and thus N* is also O%™-linear, filtered, and commutes
with connections. O

As a corollary, Fib(ﬁ k) inherits the O*™-module structure, the Hodge filtration
and the connection. By Lemma 4.4, Theorem 3.7, and Proposition 4.12; we see that
Sj<k—1

I:w(j_k"l‘l,_j)xsm — i*w(j_k+17_j)7sm[_]_]:|’ 0 <
Jj=k

J Pih( Nk o
(19)  gr/ Fib(N") = {w(j—k-s-l,—j),sm’

JIP — M., 2026, tome 13



388 Y. JianG

By Corollary 4.11, we have canonical Galg,-equivariant maps
Sym* ™ D™ — € 51,0y (OBgr) — € (k1.0 (276 OB{R),

that are compatible with connections.
Since the action of © on Sym”* 1 D™ is zero, this induces a canonical map

i : SymF D™ — Fib(N*),
that is O%-linear, filtered, and compatible with connections. Moreover, by Corol-
lary 4.11, upon projecting to Fib(]vk)/Filk, this induces an isomorphism

i : Sym D™ = HO(Fib(N¥)/ Fil®).

Prorosition 4.19. — For k € Z>1, we have a filtered B(Q,) x T(KP)-equivariant
O™ _linear isomorphism
(20) H'(Fib(N*)) 2 i,Sym*~t D>
that is compatible with connections.
Proof. — For k = 1, from (19), we see that H'(Fib(N'!)) 2 i, O™ as desired. For

the compatibility with connections, we use the following uniqueness: let V : 7,0 —

) . . . A lsm
Z*Qk;zm be any B(Q,)-equivariant connection, then V — Vg : 4,05 — Z*Ql(;zm is

a canonical O%™-linear map. In particular, it is B(Q))-invariant. This corresponds to
some f € M(TL_l) that is B(Q,)-invariant. We conclude that f = 0 by Lemma 4.22,
and thus V = Vau as desired.

For general k € Z>1, by Proposition 2.42, E(k_l,o)(OIB%haR) has a natural structure

of an 5(070)(OIB%}iaR)—module. In particular, we have
E(o,o)(OBhaR) ®@sm E(kq,o)(OB}fR) — g(kfl,())(OBliaR)

This map is compatible with ©-action, and with Hodge filtrations, and t-adic filtra-
tions. Thus this induces a map

(21)  Sym* 1D @gem i, O _k®1, HO(Fib(N*)) ®@gem H' (Fib(N1))

—s H'(Fib(N*)),

that is compatible with connections and Hodge filtrations. So it suffices to show that
the composition in (21) is an isomorphism. Since the map is compatible with the
Hodge filtrations, so it suffices to look at the graded piece gr’ for 0 < i < k — 1, and
we are reduced to proving Lemma 4.20 below. g

Lemva 4.20. By Proposition 2.42, E(k,llo)(ola) has a natural structure of an
8(0,0)(013)-m0dule. Then the induced map

HO(E(1-1,0)(0")) @0 H' (€(0,0)(0™)) — H'(E(1-1,0)(0™))
is an isomorphism.

Using VB, this is reduced to the corresponding question on ZI:

JE.P — M., 2026, tome 13



THETA OPERATOR EQUALS FONTAINE OPERATOR ON MODULAR CURVES %8()

Lemma 4.21. Let k € Z>1. By Proposition 2.42, € _1,) has a structure of an
8(070)(Cla)—m0dule, and the following composition induces an isomorphism

W " Bo €0,0)(C*) — €(14-1,0)(C™) ®0 5 €(0,0)(C™*) — E(1—1,0)(C").
where the first map is induced by w;l_k’o) — E(k_lyo)(Cla) in Theorem 3.5.
Proof. — We have the natural morphism as above. By Theorem 3.5, we know
€0.0)(C™) = (05 — iuiTOm[-1]], Ep_1.0)(C™) = [ F0 — it H0 1]

First, we see that w%_k’o) ®050m = w
an induced morphism

W50 B 4 init Oz [—1] — daitwGHO (1),

1—k,0) . . .
(% ) is an isomorphism. Therefore, we have

It suffices to show that it is an isomorphism. Note that both sides are concentrated
in 0o, so we can verify the isomorphism after applying 4.

Now we need to go through the proof of [Pil24, Prop. 5.7, Lem. 5.6]. We refer readers
to [Pil24] for the undefined notation. In what follows, 4 and %4 denote the left action
and right action respectively. We have by [Pil24, Lem. 5.5] that

itC"™ = (07, @)Cp OU\G,l)(h’*g@)*g):Oa
with %o on the LHS corresponding to id ® %4 on the right hand side. Then for any
x € C¥?
EXt(b,*2)(X7 iTcla) = (OT,I ®(Cp EXt(b,*d)(Xv OU\G,l))(b’*g®*g):0.
So now we are reduced to proving that the natural morphism

(22) H(& (31,00 (On\c.1)) ®c, H' (E(0,0)(Onc1)) — H' (E(r-1,0)(On\c.1))
is an isomorphism, where we are taking (b, *4) when applying € ;_1,0y. By the proof
of [Pil24, Lem. 5.5], we know for £ € Z3o, RHom . ,)((£,0), Op\g,1) is represented
by a complex
li ary 1 n _f—n_n d li w 1 n+1l_f—n
lim @nZOsz—nmx a" "d" — lim @n>71(Cp-—nma: a”~"d",
MEZLx1 p mEZLx1 p
where x, a,d are some variables on U\G. The differential d is given by

d(z a,@"a“”d”) = Z(@ —n)apz" et Tdm.

n>0 n>0

We see that the part n = —1 is always in the cokernel, and corresponds to
weight (¢ + 1)-part by [Pil24, Lem.5.5]. If we take the weight O-part, we see H® is
1-dimensional generated by z‘d’, and H' is also 1-dimensional generated by xz‘t1d*
(by taking n = ¢). In our situation, HO(S(k_17O)(OU\G71)) is generated by xzF~1dF—1,
Hl(E(k_LO)(OU\G’l)) is generated by zFd*~!, and HI(E(OVO)(OU\GJ)) is generated
by 2. By (#F=1d*=1) . 2 = 2¥d*~!, we know the map (22) is an isomorphism. O

Levwa 4.22. — If HO(co,w(@?)s)B(@) £ 0, then a = b.
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(a,0)sm Then it comes from

Proof. — Let f be a non-zero B(Z,)-invariant section w
a section at level KPT'3(p™) for n sufficiently large. By conjugating by diag(p,1) €

B(Q,), we can assume n = 1. Let « be a cusp on any connected component of
X%SFO . We can look at its g-expansion f =),y a;q* at x.

We consider the action of Frobenius ¢ that is given by the action of (Pgl ?),

so o(f) = (Pgl 9)f = f. But in terms of the g-expansion, ¢(f) = >,y aig”,

so ¢(f) = [ forces a; = 0 for i > 0. Then multiplying by f induces an isomorphism

- gg;;bp)r o = i;loxmo(p) that is compatible with Up,-operators, which implies that
olp

a="0. O
Now we can finish the proof of Theorem 3.12.

Proof of Theorem 3.12. Note that by Remark 3.14 and Corollary 3.27, we can re-
strict ourselves to the case (a,b) = (k — 1,0) with k € Z>;. We have the de Rham
complex ([DLLZ23b, Cor. 2.4.2])

(23) 0 — Bl — OBl — OBl ®om U™ — 0,

which after taking E(k,l’o) gives

0— E(k—l,o)(BliaR) — g(lc—l,o)((r)]BéaR) — g(k—l,o)(OB}iaR) Q}ozm — 0,

which is compatible with ©-actions, Hodge filtrations Fil*, and t-adic filtrations Fil’.
Then we have the following diagram

S(k 10)(o ) — gro he (k—1,0) (OBdR) L grOS(k 10)(OBdR) ® Q"

log
JN"? Jﬁk Jﬁ’f ®1

5(1@71,0)((91&(/{)) — grt S(kfl,o)(OBliaR) L grt 3(k71,o)(OBhaR) Qllozm’

where the rows are short exact sequences of perverse sheaves, and the category is in
the category of filtered sheaves over Zl,,, where all the objects are equipped with
Hodge filtrations, and Qllo’zm is endowed with the trivial filtration where only non-
trivial graded piece is gr'.

By Theorem 3.7, the objects on the second row are concentrated in degree 1 for
the natural t-structure, and those on the first row are in degree [1,2]. Therefore,

to understand N¥, we can take H'!(—), and we have the following diagram
(e

L — Y S TR ) KR
~ . R v ~ a 1,sm
€l 1.0)(0") —— erf €y ) (OBiR) —— grh €[, 4)(OBlR) ® Oy

~

a ° a \Y% ° a sm
8%1:-1,0)(01 (k) —— grty, E%k—l,o)(OBliR) —— gt E%k—l,o)(OB}iR) Qllog )
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with €}, ) == H'(E(op)(—)) and €* := Fib(H'(N*)), €} (O12) 2 j,p(0k—1)sm

(k—1,0)
and €(;,_, ) (0"(k)) = i,w®=1m which is compatible with Hodge filtrations and

all the rows and columns are fiber sequences. In particular,
gt (%) =2 €l 0)(0™), g™ (€F) = €(j,_1 0y (0" (k))[-1].

On the other hand, the first row shows that we have a filtered isomorphism €* =
i»dR(Sym"~! D*™), which shows that

gIO(cgk) ~ i*w(o,k—l),sm’ grk(cgk) ~ Z'*w(lf,—l),srn[_1]7
and the connecting morphism § in
g (67) — ¢F — g (7*) -2 gt (@)1

is by definition @*. O

5. ARITHMETIC COROLLARY

In this section, we prove the classicality of modular forms (Theorem 1.1) using the
result we have obtained above. In fact, both (1) and (2) of Theorem 3.12 give a proof
of Theorem 1.1. We will use Theorem 3.12(1) below.

We first recall the following result from [Pan22].

Tueorem 5.1. — For k € Z>1, we denote
pr. := RHomy ((k — 1,0), RT(K?,Q,)™)[1].
Then we have a B(Q,) x Galg, xT(KP)-equivariant isomorphism
Pk ®g, Cp = No & Ni(—k),
where Ny, = M(TL_k) [0], and Ny lies in a distinguished triangle

— 11 +1
RU(F1,0 (R0 (1] — No — M, [0] =

Here (=) refers to the Tate twist, and

RU(F1, w0 H0=m) 2= lim R (X ger g, , w0 H0).
KIJ

In particular, pp & C, is Hodge-Tate of weight 0,k (Definition 2.43), where ©
equals 0 on Ny and —k on Ni(—k).

Proof. Let us give a proof here. We know by Theorem 3.7,
RHomg((k —1,0), 0™)[1] @ x' 79 = No & Ny.(—k),
and Ny, 2 4,00 =F)m and we have a short exact sequence

(1—k,0),sm

0—w — No — d,wI™R0sm_1] 0.
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We then take cohomology RIT'(#l,—) and obtain by Corollary 2.15,
RHomy ((k — 1,0), RT(K?,Q,) %) & C, @ x(!7+:0)

>~ RHomy((k — 1,0), RT'(F1,0'))

=~ RT'(Z1, RHomg ((k — 1,0),0'))

=~ RT'(F1,No) ® RU(F1,Ny)(—k).

© y(1=50)
© y(1=50)

We are then done by putting Ny := RI'(#l,Np)[1] and Ny, := RI'(Fl, Ny,). O

As in Example 2.45, we have Darith(ola)®@p(<px)<cp =~ '8, Taking RT(.Z1, —), this
implies that RI'(K?,C,)®!® admits an arithmetic Sen operator © (Definition 2.43).
Thus py ® C, also admits an arithmetic Sen operator ©, which is zero on Ny and —k
on Ni(—k).

Now we consider py @Qp B, Since py, is of Hodge-Tate weight 0, k, As in Defini-
tion 2.47, we have a distinguished triangle in D(C,[©])

N~ s +1
(24) Ny, — Eo(pr ®g, Big) — No ——,

where Eo is as in Definition 2.46.
Tarorem 5.2. — In terms of the isomorphism in Theorem 1.4, © on o (P @Qp B;{R)
1s induced by the Fontaine operator N : Ng — Ny, given by the composition

k
0 art

: f
N:Ny— M b

(1—k,0) = N,

where 0% is the classical theta operator as in [Col96].

Proof. — We have a natural filtered morphism
RT(K?,Q,) ® Big/t" = RT(Xkr proket, Qp) @ Bl /t" — RT(F,BlL/t"),

where the first isomorphism follows from [DLLZ23a, Th. 4.6.1], and the second map
is induced by the map Q, — BdR’log’prKp |5 » - By Theorem 2.7, we know that the

map induces isomorphisms on the graded piece, so the map itself is an isomorphism.
Taking (—)%12

on both sides and taking 1'&1”, we have a filtered isomorphism
(RT (K7, @)™ Bq, Bp)7' = RI(F, Big").
We then take b-cohomology, invert ¢ and Eo(f) to obtain a filtered isomorphism

Eo(pr ® Bar) = RU(F, € j,_1,0)(BR)),

that is compatible with the arithmetic Sen operator ©. Then Theorem 5.2 follows
from Theorem 3.12 by taking RT'(.Zl, —). O

We will need to relate py[p ;] with py. We study more closely the Eichler-Shimura
relation.
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CONSTRUCTION 5.3. We define
TS .= lim Tm(T — End(RTe(X e, i, 5 Z/P"™)),
Ky,n

then by [DPS25, Cor. 9.11], it has only finitely many open maximal ideals m.

Replacing TS by TS ®z, W (IF) for large enough finite extension I over IF,,, we assume
that '/JI\‘S/m 2 F for any open maximal ideal m C TS. Moreover, by [Sch15, Cor. 5.1.11],
there is a continuous 2-dimensional determinant D of Galg,s valued in TS.

For any open maximal ideal m of TS , there is the determinant Dy, := Dlss /m valued
in F. Let Ry denote the pseudo-deformation ring over W (F) of the determinant of Dy,
as in [Chel4], which is a Noetherian complete local ring. Let RP® := ] Ru, where
the product is taken over the finite set of open maximal ideals of TS. Then by the
universal property, there is a unique continuous morphism RP® — TS. In particular,
we have an action of RP® on RT'(K?, W (F)), and thus also on M;E by Theorem 5.1.

Let us define the analytic ring structure Rﬁfﬂ on RY by putting for any profinite
set S,

RE(S] = lim R™[S}],
i

where the limit is taken over finite quotients S; of S.

Then by construction, R [Galg s| acts on RT'(KP?, W (F)/p"™). Moreover, for any
g € Galgg, let D"V be the universal determinant over RP®, and denote f,(X) :=
D"Y(X —g), which is a polynomial of degree 2. Then by the Eichler-Shimura relation,
the action of fryob, (Froby) is zero on Hgt(XKprw@, W(F)/p™) for £ ¢ S.

Let I denote the closed two-sided idea of RP® generated by fryob, (Froby) for £ ¢ S.
Then by Chebotarev’s density, the action of RE*[Galg, s] on H(K?, W (F)) factors
through R’ [Galg,s]/I.

Prorosirion 5.4. — Assume that f € MSL1 7k)(Kp) is an overconvergent modular
eigenform of weight 1 + k with k € Z>1 such that its associated Galois representa-
tion py is absolutely irreducible. Then the following are equivalent:

(1) There exists a modular eigenform f' € M _j)(KP) such that py = pgr;

(2) py is de Rham at p.

Remark 5.5. The implication from (1) to (2) is known by [Sai97].

Proof. — Assume that the coefficients of f lie in L, which is a finite extension of
W (F)[1/p], such that py is defined over L. By Construction 5.3, py determines a map
Xy : RP®* — L, and since T is dense in ']/fs, the action of RP® on f factors through x.

We will write (=) for — ®q, L. We denote by py the kernel of x7 : RP°*®@ L — L.
For any RP®* @ L-module V' concentrated in degree 0, let Vp] denote the subspace
where the action of py is zero.

For k € Zso, HO(F,w=#0)sm) = 0 and when k = 1, HO(Z1, w1 =F:0)sm) consists
of locally constant functions, which in particular do not give rise to irreducible Galois
representations py. Hence we know that for k € Zsy, HO(F,w(I=k0sm), = 0,
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and RI(F1,w—R0sm) o s concentrated in degree 1. By Theorem 5.1, (No),, and

(Pr)p, are concentrated in degree 0. Hence py. 1.[py] is a solid Galg x B(Q,) x T(K?)-
module that is concentrated in degree 0.

Levva 5.6. — There exists a solid B(Q,) x T(KP)-modules W over L, such that we
have a B(Q,) x T(KP)-equivariant isomorphism in Repg (Galg)

pr.Llps] = pr@L W.

Proof of the lemma. — We know I?O(Kp,Qp)lﬁpf = 0 as py is irreducible, and thus
Pr,Lp; = Homg((k — 1,0),]?1(1(?,@],)1%). In particular, by Construction 5.3, the
action of Galg on py,1[ps] factors through HO(RE[Galg,s]/I ®pges,y, L). Note that
H°(RP[Galg,s] ®pges,x, L) = Lg[Galg,s], and the image of I in Ln[Galg,s] is the
closed 2-sided ideal I generated by g®> — Tr(ps(g)) - g + det(ps(g)). By the proof in
[BLR91], we know that Ln[Galg,s]/I = Endr(ps) = Maxa(L).

In this way, pg,1[pf] is a solid Endz(ps) x B(Qp) x T(K?)-module. Hence if we put

(25) W= HomEndL(Pf)(pf7ﬁk,L[pf])7

by Morita equivalence, we have py [pf] = pf @1 W. O

Now by Theorem 5.1, we have

(26) (ps ®q, Cp) ®rac, (W &g, Cp) = pr,rlps] ® Cp = Norlps] @ Nir[ps](—F).
Considering the arithmetic Sen operator ©, we know that

(27) (pr ®q, Cp)°=" ® (W & Cp) = No,Llpy],

)

(28) (ps @, Cp)°~*(k) @ (W & Cp) = N Llpg]-

Theorem 5.1 tells us that Ng p[ps] = M(Tl’_k)yL[pf] # 0. So W is non-zero. By (26),
we know the Hodge-Tate weights of py lie in {0, k}. On the other hand, by Lemma 5.7
below, we know det p; is of Hodge-Tate weight k, so we know that p; has precisely
two distinct weights, 0 and k.

So we can consider its Fontaine operator, which is compatible with the Fontaine
operator of Eo(ﬁk @)@p B(TR) as in Definition 2.47. By Theorem 5.2, we know it is
induced by

plpy] 0" o
Nlpsl: No,olps] —— M(T1_k7o),L[pf] E— M(T17_k)7L[pf] = Ni,plpyl.

Note that the kernel of plp;] is H'(F,w=F0sm) [p,]. By Lemma 5.8 below,
oF e
M(Tl—/c,o)7L[pf] -— M(Tl,—k)7L[pf] is injective, so

Ker(N(py]) = Ker(plps]) = H' (1,0 F05m) 0],
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By Serre duality, we know

Hl(%’w(l—k,o),sm) ~ 11_) Hl(prKp)w(l—k,O))
KP
= lim H° (X i, , ™™ (=0))Y 2 lim Sgp, 1) (KPK) .
KP KP

Therefore, by Proposition 2.48, py is de Rham, if and only if N[ps] = 0, if and only
if Ker(N[pf]) # 0, if and only if H'(F,w=F0sm) Tn.] £ 0, if and only if py is
associated to a classical eigenform. This finishes the proof. a

Lemva 5.7. — For any overconvergent eigenform f € M(T1 k) with k € Zy1, det py
is Hodge-Tate of weight k.

Proof. — First, we prove that det py is of Hodge-Tate weight k. We know for £ { p
such that K? = Hf’m Ky is hyperspecial at ¢, det py(Froby) = £S; by the Eichler-

Shimura relation, where S, = [G(ZZ)(E(‘)1 [91 )G(Z@)]. Here we put an inverse so
that our Hecke operator acts on the left. We claim that there exist N € Zs( and
x : (Z/N)* — @;, such that for any ¢ 1 N such that K, is hyperspecial, S, =
k=1x(0). If f is N(Z,)-invariant, then for large enough n, f is I'y(p")-invariant,
where T'y(p") := {(? g) ca—1,b€ p"Zp} C GLa(p™) is the congruence subgroup.
Then we know that S, = ¢*~1(¢), where (—) is the diamond operator, which is a
character of finite order. In general, since the action of GL2(Q,) on f is smooth,
(IJPHIZP) for m large enough. Thus we
know (PZ)" (1)) f is N(Zy)-invariant, and it is also an eigenform with the same Hecke

we know f is invariant for some N(p™Z,) = (

eigenvalue as f. So we conclude by applying the above argument to (%" ‘1)) f.
Given the claim, we know det p;(Frob) = ¢¥x(¢), and x is of finite order. In par-
ticular, when restricting to an open subgroup, we know that det p; coincides with

Xfycl, and thus is of Hodge-Tate weight k. O
Lemma 5.8. Fork € Zz1 and f € M(TL_k)[pf], if ps : Galg — GL2(Q,) is irre-
ducible, then 0F : M(Tlfk,o) pf] — M(Tl,,k) [py] s injective.

Proof. — Note that M(Tkk,o) 6—k> M(Tl’,k) is injective when k > 1, and the kernel is
precisely the locally constant function when k = 1. To see this, we recall that in terms
of g-expansion, 6F is given by (qd/dq)*. For any f' € Ker(6"), there exists n € N such
that f’ is fixed by ((1) panP) C B(Qp), and we can write the g-expansion of f/, say
/= Eie(l/p")N anq". Then 0%(f') = 0 implies that a, = 0 if n # 0, and thus f is
locally constant. For such f’, py will be reducible. Thus we have Ker(68%)[ps] = 0 and
we are done. |

So far we have proved that the global Galois representation py is modular if it is
de Rham at p. Now we go on to prove the slightly stronger result that the form f
itself is a modular form.
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CoroLrary 5.9. Assume that f € M(TL_k)(Kp) is an overconvergent modular
T5-eigenform of weight 1+ k with k € Zx1 such that its associated Galois representa-
tion py¢ is absolutely irreducible. Then f is a classical modular form if and only if ps
is de Rham at p.

Remark 5.10. — Note that we only assume that f is an eigenform for the spheri-
cal Hecke algebra T* rather than T(KP). In particular, the result does not follow
immediately from considering the g-expansion.

Proof. — We consider the first map in (11)
Homg(Sym* ™'V, HV'*(K?, L))[ps] < Homg((k — 1,0), HY'*(K?, L))[ps] = pr.1lp]-
We claim that this is actually an equality. If we denote
Bj..1, = Homg (Sym* 'V, H"'*(KP, L)),
then gy 1 [py] is a Galg x B(Qp) x T(KP)-subrepresentation of py, r.[py].
Recall that by Lemma 5.6, we have an isomorphism
Pr,rlps] = pp @ W.
If fixing an Galg,-equivariant isomorphism (p; ® C,)®=% = L ® C,, (27) gives us an
isomorphism W & C, = lim S(k,—1)(KPKp)} [ps]. Moreover, both sides have a
canonical model over L, and the isomorphism is equivariant for the semi-linear action
of Galg,, so it descends to W = lignKpr(S(k,,l)(Kpr)X)Gal@p [ps]. In particular,
we see that W is an injective limit of finite dimensional spaces, and in particular,
W ®C, =W ®C, and thus ﬁk,L[pH ®C, = ﬁk,L[pf] ® C,.
From (27), we know that
(Pr,z[p)®C,) 9% 2 limy Sr. 1) (K7 K ) [,
(29) o
(Br,[p19C) 0= (k) = M,y [py).
On the other hand, by taking RT'(#1, —) of Proposition 3.26, we know

Pr,r, ® Cp = 1im Sy 1) (KPKp)yp, & M, —k),L(—k),
Kp

where by Serre duality, we have identified
Hl(xKPKp,vawg(lgf;i)) > HO(Xgrr,, whe V) (—C))Y = Stk,—1)(KPEKp)Y.

WX gep
Therefore, we see that
(B, 1l /]©Cy) =0 = lin Sy, 1) (K7 Kp) L [p ],
(30) K
(ﬁk,L[Pf](@Cp)@:_k(k) = Ma,—w,lbsl-
Moreover, by Proposition 3.26, the map
(P, Lps]©Cp) = (k) — (Br,lps]©C,y) O~ * (k)

1

coincides with the natural inclusion M _y) 1 < M(1 k)L
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Now consider V' := py, 1[ps]/p} [pr]- Then again by [BLRI1], we know V = p*,
and by comparing (29) and (30),

(V@ C)o=" =0, (V& C,)o= k) = M(Tl,_k),L[pf]/M(l,fk),L[pf]'

In particular, we know that I = @ and M _p r[ps] = M(Tl,—k)7L[pf]' O
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