
Yuanyang Jiang
Theta operator equals Fontaine operator on modular curves
Tome 13 (2026), p. 349-398.

https://doi.org/10.5802/jep.329

© L’auteur, 2026.

Cet article est mis à disposition selon les termes de la licence
LICENCE INTERNATIONALE D’ATTRIBUTION CREATIVE COMMONS BY 4.0.
https://creativecommons.org/licenses/by/4.0/

Publié avec le soutien
du Centre National de la Recherche Scientifique

Publication membre du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 2270-518X

https://doi.org/10.5802/jep.329
https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org


Tome 13, 2026, p. 349–398 DOI: 10.5802/jep.329

THETA OPERATOR EQUALS FONTAINE OPERATOR ON

MODULAR CURVES

by Yuanyang Jiang

Abstract. — Inspired by [Pan26], we give a new proof that for an overconvergent modular
eigenform f of weight 1 + k with k ∈ Z⩾1, assuming that its associated Galois representation
ρf : GalQ → GL2(Qp) is irreducible, then f is classical if and only if the associated Galois
representation ρf is de Rham at p. For the proof, we prove that theta operator θk coincides
with Fontaine operator in a suitable sense.

Résumé (L’opérateur thêta et l’opérateur de Fontaine sur les courbes modulaires)
En nous inspirant de [Pan26], nous donnons une nouvelle preuve du fait que pour une forme

modulaire surconvergente f de poids 1+k avec k ∈ Z⩾1, si sa représentation galoisienne associée
ρf : GalQ → GL2(Qp) est irréductible, alors f est classique si et seulement si ρf est de Rham
en p. Pour ce faire, nous démontrons que l’opérateur thêta θk coïncide avec l’opérateur de
Fontaine en un sens convenable.
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1. Introduction

We fix a prime number p. Let G := GL2. For any neat open compact subgroup
Kp =

∏
ℓ∤p Kℓ ⊂ G(Ap

f ), and Kp ⊂ G(Qp), let XKpKp
be the compactified modular

curve, which is a scheme over Q, and XKpKp be the analytification of XKpKp ×Q Cp.
We will fix Kp from now on. Let S be a finite set of places of Q including p and ∞,
such that for any ℓ /∈ S, Kℓ = GL2(Zℓ), and write KS :=

∏
ℓ/∈S Kℓ. We define the
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350 Y. Jiang

Hecke algebra T(Kp) := C∞
c (Kp\G(Ap

f )/K
p,Z), and TS := C∞

c (KS\G(AS)/KS ,Z).
Then TS is a commutative ring freely generated by Tℓ and S±1

ℓ for ℓ /∈ S. Let k be a
positive integer.

Let ρ : GalQ → GL2(Qp) be an irreducible Galois representation. If it is unram-
ified away from finitely many places, odd and de Rham at p of weight 0, k, then
Fontaine-Mazur conjecture predicts that it is associated to a modular eigenform
f ∈ H0(XKpKp

, ωk). This conjecture has been proved under certain generic condi-
tions in [Kis09], [Eme11], and is reproved in [Pan26] using different method.

The result of this note is the following classicality theorem, which proves the con-
jecture for “overconvergent” Galois representations:

Theorem 1.1 (Corollary 5.9). — Let f ∈ M†
1+k(K

p) := lim−→Kp
M†

1+k(K
pKp) be an

overconvergent modular TS-eigenform of weight 1 + k with k ∈ Z⩾1. Assume that its
associated Galois representation ρf : GalQ → GL2(Qp) is irreducible. Then f is a
classical modular form if and only if ρf is de Rham at p.

Remark 1.2. — By “eigenform”, we refer to the eigenform with respect to the action
of TS , that is, with respect to the action of Tℓ and Sℓ for ℓ /∈ S. Note that the result
is false if we only require f to be a generalized eigenform. We say f is a classical form
if f lies in the image of M1+k(K

p) := lim−→Kp
M1+k(K

pKp) ↪→M†
1+k(K

p).

Remark 1.3. — For those f of finite slope, this result is proved in [Kis03]. In general,
this can be shown by combining [Pan22, Th. 1.0.1] and [Pan26, Th. 1.1.2]. Our note
intends to give a different and simple proof.

Our proof is inspired by that of [Pan26]. Let us explain the ingredient of our proof.
Given any overconvergent eigenform f ∈M†

1+k(K
p), we denote its corresponding ideal

in TS ⊗ L as pf , such that the action of TS on f factors as TS → (TS ⊗ L)/pf ∼= L,
where L is a finite extension of Qp. Then f has the associated Galois representation
ρf : GalQ → GL2(L) characterized by the Eichler-Shimura relation. By assumption,
ρf is absolutely irreducible.

As a first step, we realize ρf in Emerton’s completed cohomology using the results
of [Pan22] as follows. In [Eme06], Emerton introduces the completed cohomology

RΓ(Kp,Qp) :=
(
R lim←−

n

lim−→
Kp

RΓ(XKpKp
(C)an,Z/pn)

)
[1/p],

and H̃i(Kp,Qp) := Hi(RΓ(Kp,Qp)), which carries the action of GalQ×G(Qp) ×
T(Kp). The actions of GalQ and of T(Kp) are related by the Eichler-Shimura relation.

Let H̃1(Kp,Qp)
la be the subspace of G(Qp)-locally analytic vectors, on which g acts

by taking derivative. The main result of [Pan22] describes the b-isotypic component of
H̃1(Kp,Qp)

la. Note that we have localized at the ideal pf ⊂ TS to kill the contribution
from H̃0.

J.É.P. — M., 2026, tome 13
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Theorem 1.4 (Theorem 5.1). — For k ∈ Z⩾1, we denote

(ρ̃k)pf
:= Homb

(
(k − 1, 0), H̃1(Kp,Qp)

la
pf

)
.

Then we have a B(Qp)×GalQp
×T(Kp)-equivariant isomorphism

(ρ̃k)pf
⊗̂Qp

Cp
∼= (N0)pf

⊕ (Nk)pf
(−k),

where (Nk)pf
∼= (M†

1+k)pf
, and (N0)pf

lies in an exact sequence

0 −→ lim−→
Kp

H1(XKpKp , ω
1−k)pf

−→ (N0)pf
−→ (M†

1−k)pf
−→ 0.

Here M†
• := lim−→Kp

M†
• (K

pKp), and (−k) refers to the Tate twist.

We know that (Nk)pf
[pf ] ̸= 0 and thus ρ̃k,L[pf ] := (ρ̃k)pf

[pf ] ⊗Qp L ̸= 0. By the
Eichler-Shimura relation and [BLR91], we know that ρ̃k,L[pf ] ∼= ρf ⊗L W , where W

is a topological T(Kp)×B(Qp)-module.
So far, we have realized ρf in the completed cohomology. The isomorphism above

shows that ρf is Hodge-Tate of weight 0, k, where by our convention, the cyclotomic
character has Hodge-Tate weight −1. Let us denote by Θ the Sen operator acting on
ρf ⊗ Cp ([Sen73]), then

ρf ⊗ Cp
∼= (ρf ⊗ Cp)

Θ=0 ⊕ (ρf ⊗ Cp)
Θ=−k.

For such ρf , its de Rhamness is characterized by its Fontaine operator ([Fon04]),
which is a morphism

Nk : (ρf ⊗ Cp)
Θ=0 −→ (ρf ⊗ Cp)

Θ=−k(k).

By [Fon04], ρf is de Rham if and only if Nk = 0. The same argument also applies to
the infinite dimensional representation (ρ̃k)pf

, and we are led to study the Fontaine
operator of (ρ̃k)pf

. The following result describes the Fontaine operator in terms of
the classical theta operator:

Theorem 1.5 (Theorem 5.2). — In terms of the isomorphism in Theorem 1.4, the
Fontaine operator Nk :

(
(ρ̃k)pf

⊗̂Qp
Cp

)Θ=0 →
(
(ρ̃k)pf

⊗̂Qp
Cp

)Θ=−k
(k) is given by

Nk : (N0)pf
−→ (M†

1−k)pf

θk−−−→ (M†
1+k)pf

∼= (Nk)pf
,

where θk is the theta operator as in [Col96, §4].

Given Theorem 1.5, we can describe the Fontaine operator for ρ̃k,L[pf ] as

N0,L[pf ] −→M†
1−k,L[pf ]

θk−−−→M†
1+k,L[pf ],

with (−)L standing −⊗̂Qp
L. By the q-expansion principle, M†

1−k,L[pf ]
θk

−→M†
1+k,L[pf ]

is injective, so the kernel of Nk is given by H1(Fl, ω1−k,sm)L[pf ] by Theorem 1.4.
Hence ρf is de Rham if and only if H1(Fl, ω1−k,sm)L[pf ] ̸= 0. This implies the
classicality of pf .

Now we sketch a proof of Theorem 1.5. The idea is to realize the Fontaine operator
geometrically as in [Pan26]. In [Sch15], Scholze introduces the perfectoid modular

J.É.P. — M., 2026, tome 13
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curve at the infinite level XKp ∼ lim←−Kp
XKpKp

, which carries an “affinoid” Hodge-
Tate map πHT : XKp → Fl ∼= P1. Moreover, Scholze shows that XKp is related to
Emerton’s completed cohomology as

RΓ(Kp,Qp) ⊗̂ Cp
∼= RΓ(XKp,an,OXKp ) ∼= RΓ(Flan, Ô),

where Ô := πHT,∗OXKp . We can further consider the subsheaf Ola ⊂ Ô consisting of
GL2(Qp)-locally analytic vectors. By Theorem 4.4.6 of [Pan22], we have

(1) H̃i(Kp,Qp)
la ⊗̂ Cp

∼= Hi(Fl,Ola),

and thus

RHomb((k − 1, 0), RΓ(Kp,Qp)
la) ⊗̂ Cp

∼= RΓ(Fl, RHomb((k − 1, 0),Ola)).

Definition 1.6. — For a neat open compact subgroup K ⊂ G(Qp), we denote by
πK the natural morphism XKp → XK , and denote by π∗

K(ωℓ
XK

)sm the subsheaf
of π∗

K(ωℓ
XK

) consisting of G(Qp)-smooth vectors. We further denote by ωℓ,sm :=

πHT,∗(π
∗
K(ωℓ

XK
)sm) ∈ D(Flan).

Then H0(Fl, ωℓ,sm) (resp. H0(Fl, i∗i
−1ωℓ,sm)) is the space of modular forms

(resp. overconvergent modular forms) of weight ℓ (with tame level Kp and arbitrary
level at p).

In [Pil24], Pilloni computes explicitly RHomb((k − 1, 0),Ola) in terms of ωℓ,sm as
follows:

Theorem 1.7 (Theorem 3.7). — For k ∈ Z⩾1, we have a B(Qp) × GalQp
×T(Kp)-

equivariant isomorphism in D(Flan)

RHomb((k − 1, 0),Ola)⊗ χ(1−k,0) ∼= N0 ⊕Nk(−k),

where Nk
∼= i∗i

−1ω1+k,sm[−1], and N0 lies in a distinguished triangle

ω1−k,sm −→ N0 −→ i∗i
−1ω1−k,sm[−1] +1−−−→,

where χ(1−k,0),sm denotes a twist of B(Qp)-action, i is the embedding of ∞ into Fl,
and i−1 is taking the stalk at ∞. Moreover, taking RΓ(Fl,−)pf

, we get back the
isomorphism in Theorem 1.4.

Remark 1.8. — We will prove that N0 and Nk are perverse sheaves on Fl (in the
sense of Definition 3.15). We expect this to be true for general Shimura varieties,
which hopefully will allow us to construct a finer version of Fontaine operators.

Following the construction of the Fontaine operator, it turns out that we can define
a “geometric Fontaine operator” between perverse sheaves

Nk : N0 −→ Nk,

which when taking RΓ(Fl,−)pf
gives back the classical Fontaine operator in Theo-

rem 1.5.
We describe this geometric Fontaine operator Nk in this note:

J.É.P. — M., 2026, tome 13
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Theorem 1.9 (Theorem 3.12). — In terms of the isomorphism in Theorem 1.7, the
geometric Fontaine operator Nk : N0 → Nk is given by

Nk : N0 −→ i∗i
−1ω1−k,sm[−1] θk−−−→ i∗i

−1ω1+k,sm[−1] ∼= Nk,

where θk is the classical theta operator as in [Col96].

Theorem 1.5 follows from Theorem 1.9 by primitive comparison (Theorem 2.7),
so it reduces to proving Theorem 1.9. The idea of proving Theorem 1.9 is to observe
that Nk is some kind of differential operator, and is also B(Qp)-equivariant. The two
conditions actually uniquely pin down the morphism, which follows from the simple
observation that for ℓ ̸= ℓ′, there is no B(Qp)-equivariant Osm-linear morphism from
i∗i

−1ωℓ,sm → i∗i
−1ωℓ′,sm.

Remark 1.10 (Comparison with [Pan26]). — Let us stress that our proof is very much
inspired by that of [Pan26]. The comparison with Pan’s proof will be given in Re-
mark 4.1. The main difference is that one obtain more symmetries and structures
after taking b-cohomology, which is an interesting phenomenon by itself, and is gen-
eralizable to general Shimura varieties.

1.1. Organization. — We sketch the structure of the paper. Readers should refer to
the beginning of each section for details. In Section 2, we will fix the set-up and recall
the results of geometric Sen theory from [Pan22], [Pil24], [RC26], [RC22]. Section 3
will compute the b-cohomology (Theorem 1.7), define the geometric Fontaine operator
(Corollary 3.11), and state the main theorem (Theorem 1.9). The rest of the section
will involve some reduction of the proof. Section 4 will finish the proof of Theorem 1.9.
Finally, in Section 5, we finish the proof of Theorem 1.1.

1.2. Notations and conventions. — Let us fix some notation. We fix a prime p, and
write Cp for the completion of Qp. We fix a compatible system of pn-th roots of unity.
We denote by Qp(ζp∞) the algebraic extension of Qp by ζpn for all n, and by Qp,∞
its p-adic completion.

Let G := GL2. Let B ⊂ G be the Borel subgroup of upper-triangular matrices,
and denote its Levi decomposition as B = TU , where T is the subgroup of diagonal
matrices. Let g := gl2(Qp), and b := LieB. For (a, b) ∈ C⊕2

p , denote by (a, b) the
character of b, (a, b) :

( x y
0 z

)
7→ ax + bz. For (a, b) ∈ Z⊕2, we denote by χ(a,b) the

character of B(Qp) mapping χ(a,b) :
( x y
0 z

)
7→ xazb, and we will write − ⊗ χ(a,b) to

mean twisting B(Qp)-action by χ(a,b).
For any abelian category A (or some stable ∞-category) and for any X,Y ∈ A,

we will write [X − Y ] to refer to some extension of Y by X in A. More precisely,
if we write Z ∼= [X − Y ], this means that there exists a short exact sequence (or a
distinguished triangle)

X −→ Z −→ Y
+1−−−→

in A. In this note, we will use this notation when A = Perv, that is, the category of
perverse sheaves (as in Definition 3.15).

J.É.P. — M., 2026, tome 13
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We will use both perverse t-structure and natural t-structure of derived category
D(Flan) of sheaves on the flag variety. For any F ∈ D(Flan), we denote by Hi(F )

its cohomology with respect to the natural t-structure, which is a sheaf on Flan.
We will write (−) to mean Tate twist of Galois action. By convention, the cyclo-

tomic character χcycl : GalQp
→ Q×

p is defined to have Hodge-Tate weight −1.
In order to simplify some cohomological argument, we will use the solid formalism

of [CS19] for dealing with topological vector spaces. In particular, sheaves have values
in Qp-solid spaces without assuming otherwise. Let F be such a sheaf on a site X̃.
Then we denote by H0(X̃,F) the space of its global sections, and if S is a profinite set,
we denote by F(S) the sheaf on X̃ valued in (non-condensed) vector spaces, sending
U → H0(U,F)[S].

For complete Huber pairs (R,R+) with a pseudo-uniformizer ϖ, R and R+ are
regarded as condensed rings using ϖ-adic topology, and R is regarded as an analytic
ring as R□ := (R,R+)□. Throughout the paper, Zp, Qp and Cp are regarded as
analytic rings via the analytic structure induced from Zp,□ := (Zp,Zp)□.

We will work with objects in the derived category by default. We will define −⊗̂Zp
−

to be the derived solid tensor product − ⊗Zp,□ −. We use the same convention for
− ⊗̂Cp

− or − ⊗̂Qp
−. In the paper, we usually work with Banach spaces or LB

spaces. In this situation, thanks to [RJRC22, Lem. 3.13], solid tensor products coincide
with classical completed tensor products of Banach spaces, so there is no conflict of
notations.

We will mainly work with sheaves on the analytic site. For f : X → Y , we write f−1

for the pull-back functor. We will reserve f∗ for the pull-back functor of quasi-coherent
sheaves. We will also see i† in Definition 3.4, which is the pull-back functor of quasi-
coherent sheaves to the dagger neighborhood, whose underlying functor of analytic
sheaves coincides with i−1.

Without specifying otherwise, (−)la (resp. (−)R-la) is always taking (resp. derived)
locally analytic vectors with respect to G(Qp)-actions. The definition of the latter is
given in Definition 2.10.

In what follows, all the isomorphisms and the identifications are unique up to a
sign, and we ignore them systematically.

Acknowledgements. — I would like to thank my advisor Vincent Pilloni for introduc-
ing me to the subject, for his constant encouragement and support, and for numerous
fruitful discussions that make this work possible. I also benefit greatly from conver-
sations with Lue Pan and Juan Esteban Rodríguez Camargo, and I want to thank
them for sharing their beautiful ideas. I would like to thank Longke Tang for sug-
gesting the stacky approach that simplifies the proof of Proposition 2.42. I want to
thank Vincent Pilloni, Lue Pan, Arthur-César Le Bras and Juan Esteban Rodríguez
Camargo for their comments and corrections on the earlier drafts of this work. I wish
to express special thanks to the anonymous referee for the careful proofreading of
this paper which improved greatly the presentation. I also want to thank George
Boxer, Valentin Hernandez, Andrew Graham, Arthur-César Le Bras, Zhouhang Mao,
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exchanges. Part of this work was done during my stay at BICMR, and I would like
to thank Liang Xiao and Jun Yu for their hospitality.

2. Prerequisites

This section is about the set-up and prerequisites around the geometric Sen theory.
The structure of the section is as follows. Section 2.1 will set up the notation, introduce
the infinite level modular curve, and Hodge-Tate period maps as in [Sch15]. Section
2.2 will introduce the derived functor of taking locally analytic vectors, following
[Pan22], [RJRC22] and [RJRC23]. Section 2.3 introduces equivariant quasi-coherent
sheaves on Fl, and Section 2.4 introduces certain automorphic sheaves, which are
SolidQp

-valued sheaves on the analytic site Flan. In Section 2.5, we sum up the main
result of “geometric Sen theory”, which relates the equivariant quasi-coherent sheave
to the automorphic sheaves. Section 2.6 defines a general formalism of defining the
arithmetic Sen operator, the functor E0(−), and the Fontaine operator.

2.1. Setup. — We fix a neat open compact subgroup Kp =
∏

ℓ∤p Kℓ ⊂ G(Ap
f ). Let

S be a finite set of places of Q including p and ∞, such that for any ℓ /∈ S, Kℓ =

GL2(Zℓ), and write KS :=
∏

ℓ/∈S GL2(Zℓ). We define the Hecke algebra T(Kp) :=

C∞
c (Kp\G(Ap

f )/K
p,Z), and TS := C∞

c (KS\G(AS)/KS ,Z). Then TS is a commuta-
tive ring and is generated by Tℓ and Sℓ for ℓ /∈ S. Concretely, TS is isomorphic to
the commutative algebra over Z freely generated by S±1

ℓ and Tℓ for ℓ /∈ S. We endow
both TS and T(Kp) with the discrete topology.

For any open compact subgroup Kp ⊂ G(Qp), let XKpKp
be the compactified mod-

ular curve over SpecQ, and XKpKp
be the analytification of XKpKp

×QCp. We endow
it with the standard log structure at cusps as in [DLLZ23b, Ex. 2.1.2]. We will write
Ω1

XKpKp ,log
:= Ω1

XKpKp
(C), where C denotes the cusps. We see by definition that

XKpK′
p
→ XKpKp is Kummer étale for Kp sufficiently small.

In [Sch15], Scholze proves the following:

Theorem 2.1 ([Sch15, Th. 3.1.2]). — There exists a perfectoid space XKp such that
XKp ∼ lim←−Kp

XKpKp . Moreover, there exists a Hodge-Tate period map

πHT : XKp −→ Fl := B\G ∼= P1,

which is affinoid in the sense that there exists a basis B of open affinoid subsets of
Fl, such that for any U ∈ B, π−1

HT(U) is affinoid.

From the above argument, we know that for Kp small enough, XKp is an object in
the pro-Kummer-étale site of XKpKp . So it makes sense to evaluate OB+

dR,log,XKpKp

on XKp .

Notation 2.2. — We denote Ô := πHT,∗OXKp .

J.É.P. — M., 2026, tome 13



356 Y. Jiang

Notation 2.3. — We will write D(Flan) for the derived category of sheaves on Flan
with values in solid Qp-vector spaces, where Flan denotes Fl endowed with its analytic
topology.

Lemma 2.4. — We have RπHT,∗OXKp
∼= πHT,∗OKp in D(Flan).

Proof. — We need to prove that RiπHT,∗(OXKp ) = 0 for i > 0 in the category of
solid Qp-vector spaces. For this, it suffices to show that for any profinite set S, and
for V ∈ B, Hi(π−1

HT(V ),OXKp (S)) = 0 for i > 0, where OXKp (S) denotes the sheaf of
abelian groups over (XKp)an, sending U to C0(S,OXKp (U)) ∼= C0(S,Cp)⊗̂CpOXKp (U).
Note that C0(S,Cp) is perfectoid, and if we put S := Spa(C0(S,Cp)), since π−1

HT(V )

is affinoid perfectoid, we know that π−1
HT(V )× S is also affinoid perfectoid by [Sch12,

Prop. 6.18]. Then for i > 0,

Hi(π−1
HT(V ),OXKp (S)) ∼= Hi(π−1

HT(V )×Cp S,Oπ−1
HT(V )×CpS

) ∼= 0,

by almost purity ([Sch12, Prop. 6.14]). □

The cohomology of the sheaf Ô computes the completed cohomology of [Eme06].

Definition 2.5 (Completed cohomology). — We define

RΓ(Kp,Z/pn) := lim−→
Kp

RΓét(XKpKp,Q,Z/p
n),

where RΓét(XKpKp,Q,Z/p
n) is equipped with the trivial condensed structure.

For any solid Zp-algebra R, we define the completed cohomology as

RΓ(Kp, R) := (R lim←−
n

RΓ(Kp,Z/pn)) ⊗̂Zp
R,

and H̃i(Kp, R) := Hi(RΓ(Kp, R)).

Remark 2.6. — In the original definition of [Eme06], one works with the open modular
curves, but in the curve case, the open and the proper curves give the same completed
cohomology. See for example [Pan22, §4.4.1].

Theorem 2.7 (Primitive Comparison). — We have isomorphisms of solid Cp-spaces

RΓ(Kp,Cp) ∼= RΓ(XKp ,OXKp ) ∼= RΓ(Fl, RπHT,∗OXKp ) ∼= RΓ(Fl, Ô).(2)

Proof. — All the isomorphisms follow from the previous lemma except the first one.
This is essentially in the proof of [Sch15, Th. 4.2.1]. See also [Pan22, Cor. 4.4.3]. Note
that by primitive comparison in [Sch13, Th. 1.3],

RΓ(XKpKp
,O+

XKpKp
/pn) ∼= RΓ(KpKp,Z/pn),

where both sides are discrete Z/pn-modules, and then one can take lim−→Kp
, and then

− ⊗̂Zp Cp to obtain the desired isomorphism of solid Qp-spaces. □
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2.2. Locally analytic vectors. — As in [Pan22] and [Pan26], we will realize the Sen
operator and the Fontaine operator geometrically via the locally analytic vectors in
the completed cohomology.

In this subsection, we recall some prerequisites around locally analytic vectors.
Since we will be working in the derived category, we will define the functor taking
derived locally analytic vectors. This is introduced in [Pan22] and rewritten using
condensed math in [RJRC22].

For G an analytic group over Spa(Qp,Zp), let OG := H0(G,O) denote its ring of
analytic functions. Then we have two actions of G(Zp) := G(Spa(Qp,Zp)) on OG:

g ∗1 f(g′) := f(g−1g′), g ∗2 f(g′) := f(g′g), g, g′ ∈ G(Zp).

Clearly ∗1 and ∗2 commute with each other.

Definition 2.8 ([RJRC22, Def. 4.20], [RJRC23, §6.2]). — Let K be a locally com-
pact p-adic Lie group. A solid K-representation V over Qp is defined to be a solid
Qp-space equipped with an action of Qp,□[K], where Qp,□[K] := Zp,□[K]⊗Zp

Qp, and
Zp,□[K] is the Iwasawa algebra. We denote the category of solid K-representations
by RepQp,□

(K).

Remark 2.9. — The typical examples are continuous Banach (or LB) K-representa-
tions. The main benefit with condensed formalism is that we can work comfortably
with the derived category. To simplify the notation, we will write as − ⊗̂Qp

− the
derived solid tensor product −⊗L

Qp,□
−. In the case of Banach K-representations, this

derived tensor product is concentrated in degree 0 and coincides with the classical
completed tensor product (Lemma 3.13 of [RJRC22]), so there is no clash between
notations.

Definition 2.10 ([RJRC22]). — Let G be an analytic group (i.e., a group object in
the category of rigid varieties) over Spa(Qp,Zp). Let G′ ⊂ G be an open affinoid
subgroup. Let OG′ := H0(G′,OG′). Note that G(Qp) := G(Spa(Qp,Zp)) is a locally
compact Lie group, and G′(Qp) is an open compact subgroup.

If V is a solid G′(Qp)-representation, we define the functor of taking the derived
G′(Qp)-analytic vectors as

V R-G′(Qp)-an := RΓ((G′(Qp), ∗1,3), V ⊗̂Qp
OG′),

where ∗1,3 denotes the diagonal action of G′(Qp) on V ⊗̂ OG′ , in which the
action on OG′ is induced by left multiplication. Note that the action (G′(Qp), ∗2)
(resp. (Lie(G), ∗2)) on OG′ induces an additional action of G′(Qp) (resp. Lie(G)) on
V R-G′(Qp)-an.

Let V be a solid G(Qp)-representation. We define the derived G(Qp)-locally analytic
vectors as

V R-G(Qp)- la := lim−→
Gn⊂G

V R-Gn(Zp)-an,
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and the derived G(Qp)-smooth vectors as

V R-G(Qp)-sm := lim−→
Gn⊂G

RΓ(Gn(Qp), V ),

with the colimits going through all the open affinoid subgroups Gn of G. We will
write V R-la when it causes no confusion. Note that we still have an action of Lie(G)

on V R-la.
We denote by OG,1 the stalk of OG at 1 ∈ G(Qp). Then by definition,

V R-la ∼= (V ⊗̂ OG,1)
R-sm := lim−→

Gn⊂G

RΓ(Gn(Qp), V ⊗̂H0(Gn,O)).

We say that V is locally analytic if the natural morphism V R-la → V is an iso-
morphism. We denote by ReplaQp,□

(G′(Qp)) the category of G′(Qp)-locally analytic
representations, which is a full subcategory of RepQp,□

(G′(Qp)).

Lemma 2.11. — Let G be a compact p-adic Lie group. Let V be a solid representation
of G over Qp,□, and let M ∈ D(Qp,□), which we regard as a solid representation of G
by putting the trivial action. Then

(V ⊗̂Qp M)R-la ∼= V R-la ⊗̂Qp M.

Proof. — By shrinking G, we assume that G is uniform. Note that

(V ⊗̂Qp
M)R-G-an ∼= RΓ(G,V ⊗̂Qp

OG ⊗̂Qp
M),

where OG denotes the ring of analytic functions on G, and

V R-G-an ⊗̂m ∼= RΓ(G,V ⊗̂Qp OG) ⊗̂M.

So by the definition of (−)R-la, it suffices to show that for any uniform pro-p group G,
and for any solid representation V of G,

RΓ(G,V ⊗̂M) ∼= RΓ(G,V ) ⊗̂M.

By definition, RΓ(G,−) := RHomG(Qp,−), where Qp denotes the trivial represen-
tation. Now by Lazard-Serre theorem ([RJRC22, Th. 5.7]), Qp admits a projective
resolution

0 −→ Qp,□[G]⊕(
d
d) −→ · · · −→ Qp,□[G]⊕(

d
0) −→ Qp −→ 0.

Therefore,
RΓ(G,V ) ∼=

[
V ⊕(d0) −→ · · · −→ V ⊕(dd)

]
,

where the transition maps are induced by elements in Qp,□(G)(∗), independent of V .
Then

RΓ(G,V ) ⊗̂M ∼=
[
V ⊕(d0) ⊗̂M −→ · · · −→ V ⊕(dd) ⊗̂M

]
,

while RΓ(G,V ⊗̂M) is also represented by the same complex. □

Corollary 2.12. — Let G be a compact Lie group. Let V,M be solid representations
of G over Qp,□, and M is derived locally analytic. Then

(V ⊗̂Qp
M)R-la ∼= V R-la ⊗̂Qp

M.
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Proof. — Since M is derived locally analytic, we know M ∼= lim−→G′⊂G
MR-G′- la. So by

replacing M by MR-G′-an and G by G′, we can assume that M is derived G-analytic.
Then we have an isomorphism of G-representations

(M ⊗̂ OG, ∗M × ∗1) ∼= (M ⊗̂ OG, ∗1)

where ∗1 denotes the action on OG,1 by left multiplication, and ∗M denotes the action
on M . Then

RΓ(G, (V ⊗̂M ⊗̂ OG, ∗V × ∗M × ∗1)) ∼= RΓ(G, (V ⊗̂M ⊗̂ OG, ∗V × ∗1))
∼= RΓ(G, (V ⊗̂ OG, ∗V × ∗1)) ⊗̂M

by the proof of Lemma 2.11. Replacing G by G′ ⊂ G, and taking colimits along
G′ ⊂ G, we obtain the desired isomorphism. □

In the case of modular curves, we will consider the following sheaves.

Notation 2.13. — We denote Ola :=H0((Ô)R-la)∈D(Flan), and denote by Osm⊂Ola

the subsheaf of Ô consisting of the G(Qp)-smooth vectors.

Proposition 2.14 ([Pan22, Prop. 4.3.15]). — The sheaf ÔR-la ∈ D(Flan) is concen-
trated in degree 0. In other words, Ola ∼= (Ô)R-la.

Corollary 2.15. — We have isomorphisms of GalQp
×T(Kp)×G(Qp)-modules

RΓ(Kp,Qp)
R-la ⊗̂ Cp

∼= RΓ(Kp,Cp)
R-la ∼= RΓ(Fl,Ola).

Proof. — The first isomorphism follows from Lemma 2.11. By Theorem 2.7,

RΓ(Kp,Cp) ∼= RΓ(Fl, Ô).

Therefore,
RΓ(Kp,Cp)

R-la ∼= RΓ(Fl, Ô)R-la ∼= RΓ(Fl, ÔR-la).

By Proposition 2.14, the latter is isomorphic to RΓ(Fl,Ola). □

2.3. Equivariant sheaves on Fl

Notation 2.16 ([BB83]). — Let g := Lie(GL2), g0 := g ⊗ OFl, and let b0 (resp. n0)
be the sub-vector bundle of g0 whose total space has the description

b0 = {(X ∈ g, x ∈ Fl) : X ∈ bx}, (resp. n0 = {(X ∈ g, x ∈ Fl) : X ∈ nx}).

Definition 2.17. — Let U be any open affinoid subspace of Fl. For any open affinoid
subgroup G′ ⊂ GL2(Qp) such that G′ × U → Fl factors through U , we denote by
QCohG′(U) the derived category of the G′-equivariant quasi-coherent sheaves on U

(in the sense of [And21]). More precisely,

QCohG′(U) := lim−→
[n]∈∆

QCoh(U ×G′,n).

Roughly, F ∈ QCohG′(U) is equivalent to the data of F ∈ QCoh(U) equipped with
F → F ⊗̂H0(G′,OG′) plus further compatibilities. In particular, we have an action of
g := Lie(GL2) on RΓ(U,F).
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Let QCohg(U) denote the 2-colimit of QCohG′(U) for all small enough G′ ⊂
GL2(Qp) along restriction maps.

Definition 2.18 (ON Banach sheaf). — Let X be a rigid variety over Spa(Qp,Zp),
and F ∈ QCoh(X), then we say F is an ON Banach sheaf if there exists an analytic
cover {Ui} of X, such that F|Ui

∼=
⊕̂

j∈Ji
OUi

.

Remark 2.19. — Given F ∈ QCoh(X), we say F is static if RΓ(U,F) is concentrated
in degree 0 for any open affinoid subspace U ⊂ X. Note that the category of quasi-
coherent sheaves in [And21] has no t-structure, since the pull-back functor along an
open immersion is not exact. However, since

⊕̂
j∈Ji

OUi
is flat over OUi

, ON Banach
sheaves gives examples of static sheaves.

Definition 2.20 ([RC26, Def. 2.3.5]). — Let G′ and U be as in Definition 2.17. We say
that F ∈ QCohG′(U) is relative locally analytic if it is ON Banach, and there is an
analytic cover {Ui}i∈I of X, such that F|Ui

admits an ON lattice F+ over O+
Ui

, with a
basic {vi} such that there is an open subgroup G′′ of G′ and ε > 0, G′′ stabilize F+,
and fix vi mod pε ∈ F+/pε. This definition extends to all F ∈ QCohg(U).

For later application, we will need the following category.

Definition 2.21. — We define QCohg(U)n
0 to be the category of pairs (F, i) with

F ∈ QCohg(U) and a homotopy equivalence i between the morphisms F → F⊗ (n0)∨

and 0. Note that F → F ⊗ (n0)∨ is indeed defined in QCohg(U) because the action
of n0 commutes with that of g and of OFl.

Notation 2.22. — If F is relative locally analytic, and n0 acts on F by zero, then F

gives rise to an object in QCohg(U)n
0 . We denote as QCohrlag (U)n

0 the subcategory
of QCohg(U)n

0 generated (under filtered colimit, extensions and taking idempotents)
by relative locally analytic modules that are killed by n0.

Note that relative locally analytic modules are static by definition, and in particular
QCohrlag (U)n

0 is not stable as a subcategory of QCohg(U)n
0 .

Example 2.23. — For any (a, b) ∈ Z⊕2, χ(a,b) : B → Gm is an algebraic representa-
tion, which by Beilinson-Bernstein localization gives rise to a line bundle on Fl, which
we denote as ω(b,a)

Fl following the normalization of [Pil24]. Then ω
(b,a)
Fl ∈ QCohrlag (U)n

0 .

2.4. Automorphic sheaves on Fl. — We now go on to construct certain “automor-
phic sheaves” on Fl via the Hodge-Tate period map (see [Pil24, §3] for details). Let B
be the opposite Borel subgroup of G consisting of lower-triangular matrices. We will
refer to objects in the following category as automorphic sheaves:

Definition 2.24. — Let U be an open subspace of Fl. Let Mod(Osm ⊗ T(Kp)|U )
denote the category of Osm-modules in D(Uan,Qp,□) equipped with an action of
T(Kp), where we regard T(Kp) as a constant sheaf over Flan.
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Here we do not assume any compatibility between the actions of Osm and T(Kp).
In other words, we are considering the category of Osm ⊗ T(Kp)-modules, where the
tensor product is the push-out in the category of non-commutative rings.

Example 2.25. — We have Osm,Ola ∈ Mod(Osm ⊗ T(Kp)).

Notation 2.26. — For any algebraic representation V of B, we have an automorphic
vector bundle VKpKp

over YKpKp
by [Mil90], which extends over XKpKp

, and we
define the associated sheaf Vsm over Fl as Vsm := πHT,∗(lim−→Kp

π−1
Kp

VKpKp
), where

πKp : XKp → XKpKp .
Then Vsm ∈ Mod(Osm⊗T(Kp)), and is further equipped with an action of G(Qp)×

GalQp
, where the action of G(Qp) is smooth. We also write Vla := Ola ⊗Osm Vsm ∈

Mod(Osm ⊗ T(Kp)).

It is worth pointing out that πHT,∗ also produces no higher cohomology here thanks
to Tate’s acyclicity on XKpKp

(see [Pil24, Prop. 3.2(3)]).

Notation 2.27. — For (a, b) ∈ Z⊕2, we denote by ω(a,b),sm the associated sheaf by
putting V to be the character χ(a,b) : B → T

(a,b)−→ Gm. Equivalently, we consider
the line bundle ω

(a,b),sm
XKpKp

on the finite level modular curve XKpKp , and ω(a,b),sm :=

πHT,∗(lim−→Kp
π−1
Kp

ω
(a,b)
XKpKp

).

We note that in more classical term, ω(a,b)
XKpKp

∼= ω
⊗(−b)
E ⊗ ω⊗a

Et . In particular, the
classical modular forms of weight 1 + k are given by H0(Fl, ω(1,−k),sm), whose asso-
ciated Galois representations are of Hodge-Tate weight 0, k.

Notation 2.28. — We denote Ω1
XKpKp ,log

:= Ω1
XKpKp

(D), where D denotes the cusps.

By Kodaira-Spencer isomorphism, we know ω
(1,−1)
XKpKp

∼= Ω1
XKpKp ,log

. We denote
Ω1,sm

log := ω(1,−1),sm = πHT,∗(π
−1
Kp

Ω1
XKpKp ,log

), and Ω1,la
log := Ω1,sm

log ⊗̂Osm Ola.

Notation 2.29. — We denote as Dsm := Vsm
std the associated sheaf on Fl for the

standard 2-dimensional representation Vstd of B; explicitly, for quasi-compact open
subspace U such that π−1

HT(U) = π−1
Kp

(UKp
) ⊂ XKp for small enough open subgroup

Kp ⊂ G(Qp) and UKp ⊂ XKpKp , then Dsm(U) := lim−→Kp
H1

dR((EKpKp |UKp
)/UKp),

where EKpKp
|UKp

denotes the universal generalized elliptic curve over UKp
⊂ XKpKp

,
and H1

dR((EKpKp
|UKp

)/UKp
) := H0(UKp

, R1π∗Ω
•
(EKpKp |UKp

)/UKp ,log
) denotes the rel-

ative log-de Rham cohomology.

Notation 2.30. — We fix the Bruhat stratification on Fl ∼= P1 as Fl = Uw ∪ {∞},
where ∞ is the unique B(Qp)-fixed point on Fl, and Uw

∼= A1 is its complement.
Let j and i denote respectively the embedding of Uw

∼= A1 and of ∞ into Fl.
We will write D∞ := D(∞an), the category of sheaves valued in the solid

Qp-spaces on the analytic site of ∞. Similar, we write DUw
:= D(Uw,an). Note that

D∞ ∼= D(SolidQp,□
). For any sheaf Vsm on Fl, we denote j!V

sm := j!j
−1Vsm and

J.É.P. — M., 2026, tome 13



362 Y. Jiang

i∗V
sm := i∗i

−1Vsm, where Vsm is regarded as an analytic sheaf of Qp-vector spaces
on Flan. We moreover denote

Hi
c(Uw,V

sm) := Hi(Fl, j!V
sm), Hi(∞,Vsm) ∼= Hi(Fl, i∗V

sm).

Note that the latter is the stalk of Vsm at ∞.

It is worth pointing out that in [Pil24, §2.3.3], ω(a,b),sm
∞ ∈ D is defined for (a, b) ∈

C⊕2
p , and forms a p-adic family. When (a, b) ∈ Z⊕2, ω(a,b),sm

∞ in [Pil24] differs from our
i−1ω(a,b),sm by a twist of B(Qp)-action, since B(Qp) acts on our i−1ω(a,b),sm smoothly.

Definition 2.31. — The space of the overconvergent modular forms of weight (a, b)

and tame level Kp is defined as M†
(a,b) := H0(∞, ω(a,b),sm). We will denote M†

k+1 :=

M†
(1,−k). Note that we have fixed the tame level Kp at the beginning, and we omit Kp

from the expression.

The relation with the classical overconvergent modular forms of Coleman is
explained by [Pil24, Prop. 3.17], that is,

(M†
k+1)

B(Zp) ∼= lim−→
n

M†
k+1(K

pΓ1(p
n)),

where M†
k+1(K

pΓ1(p
n)) denotes the classical overconvergent modular forms of level

KpΓ1(p
n) of Coleman ([Col97]). Note that the twist −⊗Cp(ω0χ) in [Pil24, Prop. 3.17]

doesn’t appear in our setting for the difference explained above.

2.5. Geometric Sen theory. — In this subsection, we collect results in geometric Sen
theory in [Pil24], [RC26], [RC22], which give reformulations of [Pan22]. The goal is to
define a functor VB, which connects the equivariant sheaves on Fl to the automorphic
sheaves on Fl.

Definition 2.32. — We define the functor VBnaïve as

VBnaïve : QCohg(U) −→ Mod(Osm ⊗ T(Kp)|U ),

F 7−→ (RπHT,∗ ◦ Lπ∗
HT(F))

R-sm ∼= (Ô ⊗̂OFl
F)R-sm.

The functor VBnaïve is almost always derived, but we can modify the definition to
obtain a better functor.

Definition 2.33. — We define a functor VB : QCohg(U)n
0→Mod(Osm⊗T(Kp)|U ) by

VB((F, i)) := RΓ(g0/n0,Ola ⊗L
OFl,□

F),

where we have a canonical action of g0/n0 on F thanks to the null homotopy i of
F → F ⊗ (n0)∨, which makes F a direct summand of RΓ(n0,F), and we have an
action of g0/n0 on Ola by [Pan22, Th. 4.2.7].

Lemma 2.34. — The functor F 7→ Fib(F → F ⊗ (n0)∨) defines a natural functor
RΓ(n0,−) : QCohg(U)→ QCohg(U)n

0 . Then VBnaïve ∼= VB ◦RΓ(n0,−).
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Proof. — For G = Fib(F → F ⊗ (n0)∨), there is a canonical homotopy equiva-
lence between G → G ⊗ (n0)∨ and 0, and thus we obtain the functor RΓ(n0,−) :

QCohg(U) → QCohg(U)n
0 . Now we want to factorize VBnaïve. By Theorem 1.5 and

Theorem 1.7 of [RJRC22],

VBnaïve(F) ∼= (Ô⊗L
OFl,□

F)R-sm ∼= RΓ(g, (Ô⊗L
OFl,□

F)R-la) ∼= RΓ(g,Ola ⊗L
OFl,□

F).

Here Corollary 2.12 is used. Now we can extend the action of g to g0 = g⊗OFl, and

RΓ(g,Ola ⊗L
OFl,□

F) ∼= RΓ(g0,Ola ⊗L
OFl,□

F) ∼= RΓ(n0, g0/n0, RΓ(Ola ⊗L
OFl,□

F))

∼= RΓ(g0/n0,Ola ⊗L
OFl,□

RΓ(n0,F)),

where in the last step we use the fact that n0 acts on Ola by zero ([Pan22, Th. 4.2.7]).
Therefore, we are done by putting VB := RΓ(g0/n0,Ola ⊗L

OFl,□
−). □

The following is the main theorem of geometric Sen theory:

Theorem 2.35 ([RC22, Th. 5.2.5, Th. 5.2.1]). — For F ∈ QCohrlag (U)n
0 , VB(F) is con-

centrated in degree 0. In particular, VB sends short exact sequences in QCohrlag (U)n
0

to those in Mod(Osm ⊗ T(Kp)|U ).

Proof. — Since the property that VB(F) is concentrated in degree 0 is closed under
filtered colimit, idempotents and extensions, we are reduced to the case when F is
relatively locally analytic and the action of n0 is trivial on F. We further fix an affinoid
open subgroup group G′′ ⊂ GL2 as in Definition 2.20.

Then for any Kp ⊂ G′′(Qp), π∗
HT(F) equipped with the action of Kp defines a

bundle over XKpKp,proét. Moreover, by Theorem 2.1, analytically over XKpKp,, π∗
HT(F)

admits a lattice F0 such that F0/pε is almost isomorphic to
⊕

J(O
+
XKpKp

/pε) for
some ε > 0 and some index set J . In other words, π∗

HT(F) as a pro-Kummer-étale
ÔX -module over XKpKp

is relatively locally analytic ON Banach ([RC26, Def. 3.2.1]).
Therefore, we can apply [RC26, Cor. 3.3.3] and [RC22, Th. 5.2.5] to π∗

HT(F), which
implies that

RiηKp,∗(πHT,∗F) ∼= ηKp,∗H
i(n0, π∗

HTF)
∼= ηKp,∗ ◦ π∗

HT(H
i(n0,F)),

where ηKp,∗ denotes the push-forward from XKpKp,prokét to XKpKp,an. Note that
RΓ(n0,F) ∼= F ⊕ F ⊗ n0,∨[−1]. Thus Hi(XKpKp,an, RηKp,∗(π

∗
HT(F))) is zero unless

i = 0, 1.
Let U ′ ⊂ U be an open affinoid subspace, such that π−1

HT(U
′) is affinoid, and

descends for small enough Kp to an open affinoid U ′
Kp
⊂ XKpKp

. For K ′
p ⊂ Kp,

we denote by U ′
K′

p
the preimage of U ′

Kp
along XKpK′

p
→ XKpKp

. Then

Hi(U ′
K′

p,an
, RηK′

p,∗(π
∗
HTF))

∼= Hi(K ′
p, RΓ(π−1

HT(U
′)prokét, π

∗
HT(F))),

and thus
RΓ(U ′, VBnaïve(F)) ∼= lim−→

K′
p

RΓ(U ′
K′

p,an
, Rν∗(π

∗
HT(F))).

Therefore, VBnaïve(F) is concentrated in degree 0, 1.
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A priori, VB(F ⊗ (n0)∨) ∈ D⩾0(Osm|U ). We know that

VBnaïve(F) ∼= VB(RΓ(n0,F)) ∼= VB(F)⊕ VB(F ⊗ n0,∨)[−1].

We then know that VB(F⊗n0,∨) is concentrated in degree 0. Replacing F with F⊗n0,
we know that VB(F) ∈ D[0,0](Osm|U ). □

The functor VB will allow us to reduce the calculation of automorphic sheaves to
those of equivariant sheaves. Let us give some examples:

Example 2.36. — VB(ω
(b,a)
Fl ) ∼= ω(b,a),sm(a) ([Pil24, Cor. 3.14]), where (a) denotes the

Tate twist.

Another important example will be given in Theorem 3.2.

2.6. Arithmetic Sen operator and Fontaine operator. — In this subsection, we dis-
cuss the following important functor Darith(−). We will try to make the construction
as formal as possible, as we will need to apply the functor to general derived objects.

Notation 2.37. — For any (derived solid) GalQp -representation M over Qp, we denote

Darith(M) := (RΓ(H,M))R-Γ- la,

with H := GalQp(ζp∞ ) and Γ := Gal(Qp(ζp∞)/Qp) ∼= Z×
p . This construction gives a

lax symmetric monoidal functor

Darith : RepQp,□
(GalQp) −→ ReplaQp,□

(Γ),

We fix a generator Θ ∈ Lie(Γ). by results in [RJRC23, §4.3], we can identify
ReplaQp,□(Γ) with coModCla(Γ,Qp)(SolidQp

), and we have a morphism of co-algebras
i−1
1 : C la(Γ,Qp)→ QpJtK by restricting to the formal neighborhood of 1 ∈ Γ, where t

is the coordinate such that t(Θ) = 1.
Therefore, composing the base change along i−1

1 with Darith, we obtain

Darith : RepQp,□
(GalQp

) −→ ReplaQp,□
(Γ) −→ ModQp[Θ](SolidQp

),

which is also lax symmetric monoidal, where ModQp[Θ](SolidQp
) is endowed with the

convolution symmetric monoidal structure.

The following discussion concerns (discrete) vector spaces over Q. The main result
is Proposition 2.42. One can then apply them to the setting of condensed or solid
vector spaces by applying the construction point-wise.

Definition 2.38. — We denote by Ga
∼= SpecQ[X] the additive group scheme over Q.

We denote by Ĝa its completion at the unit; more precisely, for any Q-algebra R,
Ĝa(R) := Ni‘(R).

Remark 2.39. — Ĝa is an fppf sheaf by results of de Jong (See Remark 2.2.18 of
[BL22]), and we can consider the fppf stacks BGa and BĜa.
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Proposition 2.40 ([BL22, Ex. 2.2.12 & Prop. 2.4.4]). — We have natural symmetric
monoidal equivalences of categories:

QCoh(BĜa) ∼= D(Q[Θ]),

and
QCoh(BGa) ∼= coModQ[t](ModQ) ∼= DΘ∞-torsion(Q[Θ]),

where
– QCoh(−) denotes the derived category of quasi-coherent sheaves;
– DΘ∞-torsion(Q[Θ]) denotes the full subcategory of D(Q[Θ]) such that all the coho-

mologies are Θ∞-torsion.

Proof. — It suffices to note that in characteristic 0, Ga
∼= G#

a . Then the results follow
from the corresponding results in [BL22]. A more general result with a more complete
proof is provided by [RC24, Prop. 4.2.5]. □

Later, we will consider the subspace where the action of Θ is nilpotent. This actually
has a simple geometric interpretation using stacks.

Definition 2.41 (The functor E0). — Let M ∈ D(Q), equipped with an endomor-
phism Θ, i.e., M ∈ D(Q[Θ]), then we define the generalized eigenspace for Θ = 0 by

E0(M) := RΓ(Θ)(M) := Fib(M −→M [1/Θ]).

It is easy to see that E0 : D(Q[Θ]) → DΘ∞-torsion(Q[Θ]) is the right adjoint to the
natural inclusion ι : DΘ∞-torsion(Q[Θ]) ↪→ D(Q[Θ]).

More generally, for k ∈ Q, we denote Ek(M) := Fib(M →M [1/(Θ− k)]).

We thank Longke Tang for suggesting the following proof using stacks.

Proposition 2.42 (E0 is lax symmetric monoidal). — The inclusion Ĝa → Ga induces
a map f : BĜa → BGa. Then the following diagrams commute

QCoh(BĜa) D(Q[Θ])

QCoh(BGa) DΘ∞-torsion(Q[Θ]),

∼

∼

f∗ ι

QCoh(BĜa) D(Q[Θ])

QCoh(BGa) DΘ∞-torsion(Q[Θ]),

∼

f∗ E0

∼

where the horizontal equivalences are given by Proposition 2.40.
In particular, E0 : D(Q[Θ]) → DΘ∞-torsion(Q[Θ]) is lax symmetric monoidal for

the convolution symmetric monoidal structure.

Proof. — By adjunction, it suffices to show that the first diagram commutes. We need
to use the explicit construction of the equivalences in Proposition 2.40. See [BL22] for
details. Given a Q[t]-comodule M (resp. QJtK-comodule), we have M → M ⊗Q Q[t]

(resp. M → M ⊗Q QJtK), and then Θ : M → M corresponds to the coefficient of t

on the right hand side. Then it is straight-forward to verify that the first diagram
commutes. □
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Definition 2.43 (Arithmetic Sen operator). — We regard Cp as an E∞-algebra object
in RepQp,□

(GalQp). We will refer to an object M ∈ ModCp(RepQp,□
(GalQp)) as a solid

semi-linear GalQp-representation over Cp.
Given M ∈ ModCp(RepQp,□

(GalQp)), Darith(M) ∈ ModQp(ζp∞ )(Rep
la
Qp,□(Γ)),

and Θ is Qp(ζp∞)-linear, as Darith(Cp) ∼= Qp(ζp∞).
We will say that M admits an arithmetic Sen operator if the natural morphism

Darith(M) ⊗̂Qp(ζp∞ ) Cp → M is an isomorphism, and in this case, Θ extends to a
unique Cp-linear endomorphism Θ of M , which we refer to as the arithmetic Sen
operator.

We will moreover say that M is Hodge-Tate if the action of Θ is semisimple, with
only finitely many eigenvalues, and all the eigenvalues are in Z. Note that in the
derived setting, this is a structure rather than a property.

Example 2.44. — Let ρ be a finite dimensional representation of GalQp over Qp. Then
Darith(ρ⊗ Cp) ∼= Dsen(ρ).

Example 2.45. — By the proof of [RC22, Th. 6.3.6], we know Darith(O
la) is concen-

trated in degree 0, and Ola ∼= Darith(O
la) ⊗̂Qp(ζp∞ ) Cp, i.e., Ola admits arithmetic Sen

operator.

Definition 2.46 (The functor Ê0). — We regard B+
dR as an E∞-algebra object in

RepQp,□
(GalQp

). We will refer to an object M ∈ ModB+
dR
(RepQp,□

(GalQp
)) as a solid

semi-linear GalQp
-representation over B+

dR.
Given M ∈ ModB+

dR
(RepQp,□

(GalQp)), we define

D̂arith(M) := lim←−
n

Darith(M/tn) ∈ ModQp(ζp∞ )JtK(Rep
la
Qp,□(Γ)),

as D̂arith(B
+
dR)
∼= Qp(ζp∞)JtK. Θ acts on Qp(ζp∞)JtK via d/dt, and the Θ-action on

Darith(M) satisfies the Leibniz rule.
We define

Ê0(M) := lim←−(E0(Darith(M/tn)) ⊗̂Qp(ζp∞ ) Cp) −→ Ê0(M [1/t]) := lim−→
i

Ê0(M · t−i).

where ·t−i means twisting Θ-action by −i.
More generally, for M ∈ ModB+

dR
(Fil(RepQp,□(GalQp))), where Fil denotes the

category of filtered objects as in [BMS19, §5.1], we define

Ê0(M) := lim←−
n

(E0(Darith(M/Filn)) ⊗̂Qp(ζp∞ ) Cp) −→ Ê0(M [1/t]) := lim−→
n

Ê0(M · t−n).

Assume that M/t is Hodge-Tate of weights a0 < a1 < · · · < an, i.e.,

M/t ∼=
n⊕

i=0

(M/t)Θ=−ai ,

then the t-adic ascending filtration on M (Filt−i := tiM) induces a finite filtration on
Ê0(M [1/t]), such that the non-trivial graded pieces are

grt−ai
(Ê0(M [1/t])) ∼= E0(gr

t
−ai

(M)) ∼= (M/t)Θ=−ai(ai).
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Moreover, the nilpotent action of Θ on Ê0(M [1/t]) is homotopic to zero when re-
stricted grt∗ (by a fixed null homotopy given by the structure of being Hodge-Tate),
and in particular, Θn+1 ∼= 0.

Definition 2.47 (Fontaine operator). — Assume that M/t is Hodge-Tate, and has
only two Hodge-Tate weights a0 < a1. Then we have a fiber sequence

(M/t)Θ=−a0(a0) −→ Ê0(M [1/t]) −→ (M/t)Θ=−a1(a1),

and the action of Θ on Ê0(M [1/t]) plus the null-homotopy of Θ-action on the graded
pieces induces a unique morphism

Na1−a0 : (M/t)Θ=−a1(a1) −→ (M/t)Θ=−a0(a0),

which we refer to as the Fontaine operator.

We now recall the theorem of Fontaine, which says that the property of being de
Rham is determined by the Fontaine operator.

Proposition 2.48 ([Fon04, Th. 4.1]). — Let V be a finite dimensional Hodge-Tate
representation of GalQp

over Qp. Then V is de Rham if and only if the action of Θ
on Ê0(V ⊗Qp

BdR) is zero.
In particular, if V has only two Hodge-Tate weights a0 < a1, then V is de Rham

if and only if the Fontaine operator Na1−a0 = 0.

3. Geometric Fontaine operator

The goal of this section is to define the relevant objects and state the main geomet-
ric theorem (Theorem 3.12). Section 3.1 will recall the calculation of b-cohomology
of Ola in [Pan22], [Pil24], and define the geometric Fontaine operator (Corollary 3.11)
by applying the general construction in Definition 2.47. Section 3.2 will state the
main theorem (Theorem 3.12), which vaguely says that “geometric Fontaine oper-
ator=theta operator”. Section 3.3 defines perverse t-structures on D(Flan) and on
(some category related to) QCohg(Fl)n

0 . These t-structures will be used in some
later proofs. There are two separate cases in Theorem 3.12, but using BGG complex,
we prove in Section 3.4 that the two cases are equivalent. We will focus on one case,
and prove Theorem 3.12 in the next section.

3.1. b-cohomology of Ola

Notation 3.1. — For G = GL2(Qp), recall OG,1 from Definition 2.10. Note that OG,1

carries two (infinitesimal) actions of G, given respectively left multiplication and right
multiplication. We denote them as ∗1 and ∗2 respectively. On OG,1 ⊗̂ OFl, there is a
third action coming from the action of G on OFl, which we denote as ∗3.

Then (OG,1 ⊗̂ OFl, ∗1,3) gives an object in QCohrlag (Fl) (Definition 2.20). We set

C la := RΓ(n0,OG,1⊗̂OFl) ∼= (OG,1 ⊗̂ OFl)
(n0,∗1,3).
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Then C la ∈ QCohrlag (Fl)n
0 . It still carries commuting actions (g, ∗1,3), (g, ∗2) and

(h, θh), with (h, θh) coming from the action of (h ⊗ OFl
∼= b0/n0, ∗1,3). We also note

that C la is GL2(Qp)-equivariant over Fl for the action ∗1,2,3.

Theorem 3.2 ([Pil24, Th. 4.1, Lem. 4.5, Lem. 4.6], [RC22, Th. 6.3.6])
We have an G(Qp)×GalQp-equivariant isomorphism in Mod(Osm ⊗ T(Kp)),

VB(C la, ∗1,3) ∼= Ola,

along which (g, ∗2) corresponds to constant action of g. Moreover, θh(1, 0) acting
on C la induces the arithmetic Sen operator on Ola (Example 2.45).

We can then calculate the b-cohomology of Ola by first calculating that of (C la, ∗2).
We start by introducing some notation.

Notation 3.3 (The functor E(a,b)). — For (a, b) ∈ Z⊕2, let M ∈ ModQp[Θ](SolidQp)

equipped with a commuting action of b, we define the functor

E(a,b)(M) := E0(RHomb((a, b),M))⊗ χ(−a,−b),

where E0 is taking the nilpotent part with respect to the action of Θ, and −⊗χ(−a,−b)

only twists the action of B(Qp) such that the action of B(Qp) on E(a,b)(M) is smooth.
If M ∈ ModB+

dR
(RepQp,□

(GalQp
)) equipped with a commuting action of b, such

that M/t admits an arithmetic Sen operator, we define

Ê(a,b)(M) := Ê0(RHomb((a, b),M))⊗ χ(−a,−b),

with Ê0 as in Definition 2.46.
We will also define E(a,b)(C

la(i)) using the same formula, where E0 is taking the
generalized eigenspace θh(1, 0) = 0, −(i) refers to a twist of action of θh(1, 0) by −i,
and b acts on C la via ∗2.

Then by Theorem 3.2,

VB(E(a,b)(C
la(i)) ∼= E(a,b)(O

la(i)).

Definition 3.4. — We will use Notation 2.30.
We define

i†(F) := lim−→
∞∈U

RΓ(U,F)

with the colimit taken over the open neighborhoods of ∞ ∈ Fl. This gives a quasi-
coherent sheaf on the dagger space ∞† := lim←−∞∈U

U , i.e., a point equipped with the
structure sheaf OFl,∞ := lim−→∞∈U

H0(U,OFl).
We define j! : QCoh(Uw) → QCoh(Fl) to be the left adjoint to j∗ : QCoh(Fl) →

QCoh(U)

This definition makes sure that for F ∈ QCoh(Fl), we have a fiber sequence in
QCoh(Fl)

j!j
∗F −→ F −→ i∗i

†F
+1−−−→ .
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Theorem 3.5 ([Pil24]). — Let (a, b) ∈ Z⊕2, k := a− b+ 1.
(1) If k > 0, then we have a (B(Qp), ∗2) × θh(1, 0)-equivariant isomorphism in

QCohrlag (U)n
0

RHom(b,∗2)((a, b), C
la)⊗ χ(−a,−b) ∼= Nb ⊕N1+a,

where N1+a
∼= i∗i

†ω
(1−b,−1−a)
Fl [−1], and Nb

∼=
[
ω
(−a,−b)
Fl −i∗i†ω(−a,−b)

Fl [−1]
]
. Moreover,

θh(1, 0) acts on Nt by −t for t ∈ {b, 1 + a}.
(2) If k ⩽ 0, then we have a (B(Qp), ∗2) × θh(1, 0)-equivariant isomorphism in

QCohrlag (U)n
0

RHom(b,∗2)((a, b), C
la)⊗ χ(−a,−b) ∼= [Nb −N1+a[−1]] ,

with Nb
∼= j!j

∗ω
(−a,−b)
Fl , and N1+a

∼= i∗i
†ω

(1−b,−1−a)
Fl [−1]. Moreover, θh(1, 0) acts

on Nt by −t for t ∈ {b, 1 + a}.
In particular, if k ̸= 0, we have isomorphisms

E(a,b)(C
la(i)) ∼=

{
Ni, i = b, 1 + a;

0, else,

with Ni described as in (1) or (2).

Remark 3.6. — Note that the action of θh(1, 0) on ω
(a,b)
Fl is the scalar multiplication

by b, following the normalization of [Pil24].

We can now apply the functor VB(−).

Theorem 3.7 ([Pil24]). — Let (a, b) ∈ Z⊕2. Then
(1) if a− b ⩾ 0, then we have a T(Kp)×B(Qp)×GalQp

-equivariant isomorphism
in D(Flan)

RHomb((a, b),O
la)⊗ χ(−a,−b) ∼= Nb(−b)⊕N1+a(−1− a),

where N1+a
∼= i∗ω

(1−b,−1−a),sm[−1], and Nb lies in a distinguished triangle

ω(−a,−b),sm −→ Nb −→ i∗ω
(−a,−b),sm[−1] +1−−−→ .

(2) if a− b < 0, then we have a T(Kp)×B(Qp)×GalQp
-equivariant distinguished

triangle in D(Flan)

Nb(−b) −→ RHomb((a, b),O
la)⊗ χ(−a,−b) −→ N1+a(−1− a),

where N1+a
∼= i∗ω

(1−b,−1−a),sm[−1] and Nb
∼= j!ω

(−a,−b),sm.
In particular, if a− b ̸= −1, we have isomorphisms

E(a,b)(O
la(i)) ∼=

{
Ni, i = b, 1 + a;

0, else,

with Ni described as in (1) or (2).

Proof. — Using Theorem 2.35 and Theorem 3.2, the results follow from Theorem 3.5
and Lemma 3.8 below. □
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Lemma 3.8. — We have VB(j!j
∗ω

(−a,−b)
Fl ) ∼= j!ω

(−a,−b),sm and VB(i∗i
†ω

(−a,−b)
Fl ) ∼=

i∗ω
(−a,−b),sm.

Proof. — Given Example 2.36, we only note that the same formalism of VB also
works for ∞† (by extending the functor VB by colimits) and for Uw, and that VB

commutes with i† as well as with j∗. □

We can also apply the construction of Definition 2.46 to the period sheaves.

Definition 3.9 (de Rham period sheaves). — For n ∈ N, we define the sheaf B+
dR/t

n

on Flan as πHT,∗(B+
dR,log,XKpKp

/tn|XKp ), where B+
dR,log,XKpKp

is the pro-Kummer-
étale de Rham sheaf on XKpKp ([DLLZ23b, Def. 2.2.3]) and XKp is regarded as the
object in the pro-Kummer-étale site of XKpKp

. We further define B+
dR := lim←−B+

dR/t
n.

We define B+,la
dR /tn as the sheaf of derived G(Qp)-locally analytic vectors of B+

dR/t
n.

By Proposition 2.14, we know that B+,la
dR /tn is concentrated in degree 0, and is filtered

by Ola(i) for 0 ⩽ i ⩽ n− 1. We define B+,la
dR := lim←−n

B+,la
dR /tn and Bla

dR := B+,la
dR [1/t].

We define similarly OB+,la
dR /Filn on Flan as the subsheaf of G(Qp)-locally ana-

lytic vectors in πHT,∗(OB+
dR,log,XKpKp

/Filn |XKp ) for n ∈ N, where OB+
dR,log,XKpKp

is
as in [DLLZ23b, Def. 2.2.10]. We define OB+,la

dR := lim←−n
OB+,la

dR /Filn, and OB+
dR :=

OB+,la
dR [1/t].

Remark 3.10. — We are using the non-standard notations and writing OB+
dR :=

OB+
dR,log for simplicity of notations.

Corollary 3.11 (Geometric Fontaine operator). — For (a, b)∈Z⊕2, k :=a+1− b ̸=0,
we have a fiber sequence

Nmax(b,1+a) −→ Ê(a,b)(Bla
dR) −→ Nmin(b,1+a),

and the action of Θ on Ê(a,b)(Bla
dR) is induced by a unique morphism

N |k| : Nmin(b,1+a) −→ Nmax(b,1+a),

which we refer to as the geometric Fontaine operator. Here Ê(a,b)(−) is as in Nota-
tion 3.3, and Ni’s are as in Theorem 3.7.

Proof. — By Theorem 3.7, B+
dR/t is Hodge-Tate, and then the rest follows as in

Definition 2.46 and 2.47. □

3.2. Geometric Fontaine operator. — The main theorem of this article concerns an
alternative description of the geometric Fontaine operator N |k| in Corollary 3.11.

Theorem 3.12. — Let the notation be as in Corollary 3.11. Then the geometric
Fontaine operator N |k| : Nmin(b,1+a) → Nmax(b,1+a) can be described as follows:

(1) If k > 0, Nk coincides with the composition

Nk : Nb −→ i∗ω
(−a,−b),sm[−1] θk−−−→ i∗ω

(1−b,−1−a),sm[−1] ∼= N1+a.
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(2) If k < 0, N−k coincides with either composition of the following square

N1+a i∗ω
(1−b,−1−a),sm[−1] j!ω

(1−b,−1−a),sm

i∗ω
(−a,−b),sm[−1] j!ω

(−a,−b),sm Nb,

N−k

Cou

θ−k θ−k

Cou

where the Cousin map Cou is defined as the connecting morphism coming from the
natural extension

0 −→ j!ω
(a,b),sm −→ ω(a,b),sm −→ i∗ω

(a,b),sm −→ 0.

Remark 3.13. — If k = 0, with suitable formulation, the arithmetic Sen operator can
be described in the same way as (2). This case is essentially Proposition 6.3 of [Pil24].

The proof of Theorem 3.12 will be finished in Section 4.5. In fact, part (2) follows
from part (1) (Corollary 3.27). Roughly, parts (1) and (2) are related by the BGG
complex to be discussed in Section 3.4, and the case k < 0 injects into the case k > 0

in the perverse t-structure to be defined in Section 3.3. See the proof of Corollary 3.27
for details, especially (14).

Let us first explain one reduction step:

Remark 3.14. — Although we have stated the theorem for general (a, b) ∈ Z⊕2 with
a − b + 1 ̸= 0, the cases for (a, b) and for (a + 1, b + 1) are essentially the same.
In particular, we could always restrict ourselves to the case (k, 0). Let us explain the
reason here: taking the 1-dimensional representation det, we obtain the automorphic
vector bundle ω

(1,1)
XKpKp

(with Hodge filtration and Gauss-Manin connection), and det

the associated local system. By the Riemann-Hilbert correspondence ([DLLZ23b]),
we have

ω
(1,1)
XKpKp

⊗OXKpKp
OBdR,XKpKp ,log

∼= det⊗Qp OBdR,XKpKp ,log
.

so we have a canonical map

ω
(1,1)
XKpKp

⊗Qp
det−1 −→ OBdR,XKpKp ,log

.

Evaluating on XKp and pushing forward to Fl, we obtain a canonical non-zero map

ω(1,1),sm ⊗Qp
det−1 −→ t−1OB+,la

dR ,

which is compatible with connections on both sides. The polarization gives a canonical
non-zero section s of ω(1,1),sm ∼= ω−1

E ⊗ ωEt . We choose an arbitrary generator of the
1-dimensional Qp-vector space det−1, say v0, then s1 := s ⊗ v0 gives a section of
t−1OB+,la

dR . Now that ∇GM(s) = 0, we know ∇(s1) = 0, which implies by [Sch13,
Cor. 6.13] that s1 is a section of t−1B+,la

dR .
We note that the action of B(Qp) on s1 is given by det−1 = (−1,−1). On the other

hand, the action of GalQp
on s1 is induced by its action on s ∈ H0(Fl, ω(1,1),sm), which

is trivial.
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We note that the unique locally analytic function in XKp whose GL2(Qp)-action
is given by determinant is t0 ∈ H0(Fl,Ola) constructed in [Pan22, §4.3.1] (which is
denoted as t loc. cit.), which comes essentially from the Tate pairing. However, GalQp

acting on t0 by χcycl. Therefore, we know that s1 /∈ B+,la
dR , and its image along the

projection t−1B+,la
dR →→ Ola(−1) is given by t−1t0.

Thus by multiplying by s1 on BdR, the action of GalQp
is unchanged, the Hecke

action is twisted by ω(1,1),sm, and the action of B(Qp) is changed by det−1, so we can
reduce the case of (a, b) to that of (a− 1, b− 1).

3.3. Perversity. — We can observe that RHomb((a, b),O
la) looks like a perverse

sheaf. In this subsection, we define a perverse t-structure on D(Flan) to make this
idea precise. This will be used in the proof of Corollary 3.27.

3.3.1. Perverse t-structure on D(Flan). — We will use the recollement of t-structures
from [BBDG18]. More precisely, we fix the Bruhat stratification Fl = {∞}∪Uw, and
assign them with dimension 0 and 1 respectively.

Definition 3.15. — We define
pD⩾i := {F ∈ D(Flan) : j

∗F ∈ D
⩾i
Uw

, i!F ∈ D⩾i+1
∞ },

and
pD⩽i := {F ∈ D(Flan) : j

!F ∈ D
⩽i
Uw

, i−1F ∈ D⩽i+1
∞ }.

We define the category of (Bruhat) perverse sheaves as Perv := pD⩾0 ∩ pD⩽0.

Remark 3.16. — Here i! is defined as follows: we first define the non-derived i!0 as
taking the sections with support at ∞, and then define i! as the right derived functor
of i!0.

Proposition 3.17 ([BBDG18, Th. 1.4.10]). — (pD⩽0,p D⩾0) defines a t-structure of
D(Flan).

Lemma 3.18. — For (a, b) ∈ Z⊕2, j!ω(a,b),sm, ω(a,b),sm and i∗ω
(a,b),sm[−1] are perverse

sheaves.

Proof. — i∗ω
(a,b),sm[−1] is clearly perverse. For ω(a,b),sm, we have i−1ω(a,b),sm ∈ D⩽0

∞ .
We claim that we have i!ω(a,b),sm ∈ D⩾1

∞ . This is because H0(i!ω(a,b),sm) = i!0ω
(a,b),sm.

Assume that we have s ∈ H0(∞, i!0ω
(a,b),sm), then s gives rise to a section s ∈

H0(Fl, ω(a,b),sm) that is supported at ∞. s arise from some s0 ∈ H0(XK , ω(a,b)),
but this forces s to be zero because the image of Uw in XK is dense. Now we have
i!0(j!ω

(a,b),sm) ⊂ i!0ω
(a,b),sm, and thus we also obtain the perversity of j!ω(a,b),sm. □

Corollary 3.19. — For (a, b) ∈ Z⊕2, RHomb((a, b),O
la) ∈ Perv. Moreover, for any

k ∈ Z, E(a,b)(O
la(k)) ∈ Perv.

Proof. — This follows immediately from Theorem 3.7 and Lemma 3.18. □
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3.3.2. t-structure on quasi-coherent sheaves

It will also be useful to have a t-structure (perverse or natural) on QCohrlag (Fl)n
0 ,

such that the sheaves ω
(a,b)
Fl , i∗i

†ω
(a,b)
Fl [−1], and j!j

∗ω
(a,b)
Fl lie in the heart. This part

will only be used in some technical proof, e.g. Lemma 4.17, proof of Lemma 4.15, and
that of Proposition 3.24.

The problem is that the derived∞-category defined in [And21] does not carry a nat-
ural t-structure. We apply the following general construction to produce a t-structure
(on another suitable category):

Lemma 3.20. — Let C0 ⊂ QCohg(Fl)n
0 be the full subcategory spanned by extensions

of ω
(a,b)
Fl , i∗i

†ω
(a,b)
Fl [−1], j!j∗ω(a,b)

Fl for all (a, b) ∈ Z⊕2. Let B⩽0
0 (resp. B0) be the full

subcategory of QCohg(Fl)n
0 generated by C0 under small colimits and extensions

(resp. small colimits, extensions and shift). Then B0 is a stable subcategory.
Let B := Ind(B0). Then B admits a “perverse t-structure” (pB⩽0, pB⩾0) such that

C0 ⊂ pB⩾0 ∩ pB⩽0 = pB♡. We will denote by pHi(−) the i-th cohomology with respect
to this perverse t-structure.

Remark 3.21. — The embedding C0 ↪→ B is fully faithful. Thus the abelian category
pB♡ provides a convenient ambient category.

Proof. — There is no nonzero map i∗i
†ω

(a,b)
Fl → ω

(a′,b′)
Fl or to j!j

∗ω
(a′,b′)
Fl , which can be

seen by taking an affinoid chart around∞. and we have a canonical colimit-preserving
fully faithful functor Ind(B⩽0

0 ) ↪→ Ind(B0). Thus by adjoint functor theorem ([Lur09,
Cor. 5.5.2.9]), we have a right adjoint L : Ind(B0) → Ind(B⩽0

0 ). Let us denote
B := Ind(B0). Since Ind(B⩽0

0 ) is closed under extension, by [Lur17, Prop. 1.2.1.16],
Ind(B⩽0

0 ) defines a t-structure of B, say (pB⩽0, pB⩾0), such that pB⩽0 = Ind(B⩽0
0 ).

Then we have C0 ⊂ B⩽0
0 ⊂ pB⩽0. Moreover,

pB⩾0 ∼= {F ∈ B|Hom(F ′, F [−1]) ∼= 0, ∀F ′ ∈ pB⩽0}
∼= {F ∈ B|RHom(F ′, F ) ∈ D⩾0, ∀F ′ ∈ pB⩽0}.

Now for any F ∈ C0, {F ′ ∈ B|RHom(F ′, F ) ∈ D⩾0} is closed under colimits and
extensions, and contains C0, which implies that it contains pB⩽0. Thus we know
C0 ⊂ pB⩾0. Hence C0 ⊂ pB⩾0 ∩ pB⩽0 = pB♡. □

Remark 3.22 (Natural t-structure). — Let C1 ⊂ QCohg(Fl)n
0 be the full subcate-

gory spanned by extensions of ω
(a,b)
Fl , i∗i

†ω
(a,b)
Fl , j!j

∗ω
(a,b)
Fl for all (a, b) ∈ Z⊕2. If we

replace C0 with C1, then the same proof still works, and produce another t-structure
(B⩽0, B⩾0) on B, such that C1 ⊂ B♡ := B⩽0 ∩ B⩾0. We will denote by Hi(−) the
i-th cohomology with respect to this natural t-structure.

3.4. BGG complex. — In this subsection, we study the BGG complex, and the indu-
ced morphism on b-cohomologies. This will allow us to relate (1) and (2) in Theo-
rem 3.12. As a byproduct, we will also compute

RHomg(Sym
k−1V,Ola),
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where V denotes the standard representation of GL2, which is a reinterpretation of
[Eme06, Th. 0.5].

Definition 3.23 (Verma modules). — For any (a, b)∈Z⊕
p , let ∆(a,b) :=U(g)⊗U(b)χ

(a,b)

denote the Verma module. In particular, we have

RHomg(∆(a,b), C
la) ∼= RHomb((a, b), C

la).

Let k ∈ Z⩾1 and m ∈ Z. We have the classical Bernstein-Gelfand-Gelfand complex
of g-representations ([BGG76])

0 −→ ∆(−1+m,k+m) −→ ∆(k−1+m,m) −→ Symk−1V ⊗ detm −→ 0.(3)

Then we have a distinguished triangle

(4) RHomg(Sym
k−1V ⊗ detm, C la) −→ RHomb((k − 1 +m,m), C la)

−→ RHomb((−1 +m, k +m), C la)
+1−−−→ .

Note that the sequence (4) is equivariant for (g, B(Qp))-actions, and also for the
horizontal action (h, θh). Recall that the action of θh(1, 0) is semisimple, and has
eigenvalues −k −m,−m by Theorem 3.5.

Therefore, the sequence (4) has a decomposition into θh(1, 0) = −m and = −k−m

described by Theorem 3.5:

RHomg(Sym
k−1V ⊗ detm, C la)θh(1,0)=−k−m −→ N

(1)
k+m −→ N

(2)
k+m

+1−−−→,(5)

with N
(1)
k+m

∼= i∗i
†ω

(1−m,−k−m)
Fl [−1] and N

(2)
k+m

∼= j!j
∗ω

(1−m,−k−m)
Fl , and

RHomg(Sym
k−1V ⊗ detm, C la)θh(1,0)=−m −→ N(1)

m −→ N(2)
m

+1−−−→,(6)

with
N(1)

m
∼=

[
ω
(1−k−m,−m)
Fl − i∗i

†ω
(1−k−m,−m)
Fl [−1]

]
and N

(2)
m
∼= i∗i

†ω
(1−k−m,−m)
Fl [−1].

Proposition 3.24. — We have GL2(Qp)-equivariant isomorphisms

(7)
RHomg(Sym

k−1V ⊗ detm, C la) ∼= N
(0)
k+m ⊕N(0)

m ,

N
(0)
k+m

∼= ω
(1−m,−k−m)
Fl [−1], N(0)

m
∼= ω

(1−k−m,−m)
Fl ,

with θh(1, 0) acting on N
(0)
i by the scalar −i (i = m,m+ k).

Moreover, the sequences (5) and (6) coincide with the standard sequences (up to a
scalar in C×

p )

ω
(1−m,−k−m)
Fl [−1] −→ i∗i

†ω
(1−m,−k−m)
Fl [−1] Cou−−−−→ j!j

∗ω
(1−m,−k−m)
Fl

+1−−−→,(8)

and

(9) ω
(1−k−m,−m)
Fl −→

[
ω
(1−k−m,−m)
Fl − i∗i

†ω
(1−k−m,−m)
Fl [−1]

]
−→ i∗i

†ω
(1−k−m,−m)
Fl [−1] +1−−−→ .

J.É.P. — M., 2026, tome 13



Theta operator equals Fontaine operator on modular curves 375

Proof. — When restricted to the open Bruhat strata Uw
∼= A1 ⊂ Fl, N

(1)
k+m|A1 ∼=

N
(2)
m |A1 ∼= 0, and thus

RHomg(Sym
k−1V ⊗ detm, C la)θh(1,0)=−k−m|A1 ∼= N

(2)
k+m|A1 [−1]

∼= ω
(1−m,−k−m)
Fl |A1 [−1]

and

RHomg(Sym
k−1V ⊗ detm, C la)θh(1,0)=−m|A1 ∼= N(1)

m |A1 ∼= ω
(1−k−m,−m)
Fl |A1 .

In particular, both are locally free of rank 1 over OFl when restricted to A1 (up to
shift).

As the action of g on Symk−1V ⊗ detm can be upgraded to an action of GL2(Qp),
RHomg(Sym

k−1V ⊗ detm, C la) is GL2(Qp)-equivariant.
Thus we know that

RHomg(Sym
k−1V ⊗ detm, C la)θh(1,0)=−m

RHomg(Sym
k−1V ⊗ detm, C la)θh(1,0)=−k−m[1]and

are GL2(Qp)-equivariant line bundles over Fl (up to shift).
By the classification of (g,GL2(Qp))-equivariant line bundles on Fl in [Pil24,

Lem. 2.16, Prop. 2.18], we know that

RHomg(Sym
k−1V ⊗ detm, C la)θh(1,0)=−k−m ∼= ω

(1−m,−k−m)
Fl [−1],

RHomg(Sym
k−1V ⊗ detm, C la)θh(1,0)=−m ∼= ω

(1−k−m,−m)
Fl .

This finishes the proof of (7).
This implies in particular that the map N

(0)
k+m → N

(1)
k+m is non-zero, and then by

Lemma 3.25 below, it coincides with the standard map

ω
(1−m,−k−m)
Fl −→ i∗i

†ω
(1−m,−k−m)
Fl [−1].

This gives the proof of (8). For (9), we note that N
(1)
m → N

(2)
m is non-zero, and

thus it factors through i∗i
†ω

(1−k−m,−m)
Fl [−1] → i∗i

†ω
(1−k−m,−m)
Fl [−1] by the natural

t-structure (Remark 3.22), which is forced to be the scalar multiplication again by
Lemma 3.25. □

The following lemma is the “counterpart” of Lemma 4.22 over Fl.

Lemma 3.25

(1) For any χ, χ′ ∈ Z⊕2, if f : i†ωχ′

Fl → i†ωχ
Fl is B(Qp)-equivariant, then either

f = 0, or χ = χ′, and f is multiplication by a scalar in Cp.
(2) For any χ ∈ Z⊕2, any open U ⊂ Fl, and for any f : ωχ

Fl|U → ωχ
Fl|U in

QCohg(U), if f ̸= 0, then f is an isomorphism. The same holds for f : i†ωχ
Fl → i†ωχ

Fl

in QCohg(∞†).

Proof. — (1) Assume f ̸= 0. Then f corresponds to a unique non-zero section
f ∈H0(∞, i†ωχ−χ′

Fl ) that is B(Qp)-invariant. Then by definition, f can be extended to
a neighborhood ∞ ∈ U ⊂ Fl where f is nowhere vanishing. Note that such extension
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has to be unique since the transition map H0(U, ωχ−χ′

Fl )→ H0(U ′, ωχ−χ′

Fl ) is injective
for U ′ ⊂ U . Using B(Qp)-action, we have B(Qp) · U = Fl, so f can be extended to
a nowhere vanishing B(Qp)-invariant global section H0(Fl, ωχ−χ′

Fl ). This implies that
ωχ−χ′

Fl is isomorphic B(Qp)-equivariantly to OFl, and thus χ − χ′ = 0 and χ = χ′.
By GAGA, we know in addition that f ∈ Cp.

(2) By twisting, we can assume that χ = (0, 0), and then f corresponds to a
nonzero section s ∈ H0(U,OFl). Moreover, since f is g-equivariant, we know g · s = 0.
This implies that s is constant. Thus, f is an isomorphism. □

We can then apply VB(−) to Proposition 3.24.

Proposition 3.26. — For k ∈ Z⩾1,m ∈ Z, we have a GL2(Qp) × T(Kp)-equivariant
isomorphisms

(10)
RHomg(Sym

k−1V ⊗ detm,Ola) ∼= N
(0)
k+m(−k −m)⊕N(0)

m (−m),

N
(0)
k+m

∼= ω(1−m,−k−m),sm[−1], N(0)
m
∼= ω(1−k−m,−m),sm.

Moreover, we have a fiber sequence

(11) RHomg(Sym
k−1V ⊗ detm,Ola) −→ RHomb((k − 1 +m,m),Ola)

−→ RHomb((−1 +m, k +m),Ola)
+1−−−→ .

and the weight (k + m)-part and the weight m-part coincide respectively with the
standard sequences (up to a scalar in C×

p )

ω(1−m,−k−m),sm[−1]→ i∗ω
(1−m,−k−m),sm[−1] Cou−−−−→ j!ω

(1−m,−k−m),sm +1−−−→,(12)

and

(13) ω(1−k−m,−m),sm −→
[
ω(1−k−m,−m),sm − i∗ω

(1−k−m,−m),sm[−1]
]

−→ i∗ω
(1−k−m,−m),sm[−1] +1−−−→ .

Proof. — This follows from Proposition 3.24 by applying the functor VB and using
Lemma 3.8. □

Corollary 3.27. — Theorem 3.12(2) follows from Theorem 3.12(1), and vice versa.

Proof. — By Remark 3.14, it suffices to consider (a, b) = (−1, k) or (k − 1, 0) for
k ∈ Z⩾1. Apply RHomg(−,Bla

dR) to (3), and we have a morphism

nk : Ê(k−1,0)(B+,la
dR ) −→ Ê(−1,k)(B+,la

dR )⊗ (n∨)⊗k,

which is compatible with the arithmetic Sen operator Θ.
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By Theorem 3.7, let us denote

RHomb((k − 1, 0),Ola) ∼= N
(1)
k ⊕N

(1)
0 (−k),

N
(1)
k
∼= i∗ω

(1,−k),sm[−1], N
(1)
0
∼= [ω(1−k,0),sm − i∗ω

(1−k,0),sm[−1]],

RHomb((−1, k),Ola) ∼= N
(2)
k ⊕N

(2)
0 (−k),

N
(2)
k
∼= j!ω

(1,−k),sm[−1], N
(2)
0
∼= i∗ω

(1−k,0),sm[−1].

Hence, we obtain the following commutative diagram (in the category of perverse
sheaves) with the horizontal morphisms given by the geometric Fontaine operators
(in Corollary 3.11)

(14)

N
(1)
0 N

(1)
k

N
(2)
0 N

(2)
k

Nk,(1)

Cou

Nk,(2)

θk

Given Theorem 3.12(1), we have a unique factorization of Nk,(1) : N
(1)
0 → N

(1)
k as

N
(1)
0 −→−→ N

(2)
0
∼= i∗ω

(1−k,0),sm[−1] θk−−−→ i∗ω
(1,−k),sm[−1] ∼= N

(1)
k .

Since N
(1)
0 →→ N

(2)
0 is perverse surjective, the lower triangle is forced to be commu-

tative, which is precisely the statement of Theorem 3.12(2).
The inverse direction is similar, where we use (14) and the fact that Cou is perverse

injective. □

4. Proof of the main theorem

We will finish the proof of Theorem 3.12. By Remark 3.14 and Corollary 3.27,
it suffices to consider (a, b) = (k − 1, 0) for k ∈ Z⩾1. We remark that a simpler
proof will appear in [Jia26]. We will use the notation of de Rham period sheaves from
Definition 3.9.

4.1. Strategy of the proof. — The proof is a bit technical. We will start with a
sketch of the proof when (a, b) = (0, 0) to illustrate the idea. The plan of this section
will be given at the end of this subsection.

When (a, b) = (0, 0), the theta operator θ1 is the (log) connection ∇GM : i∗O
sm →

i∗Ω
1,sm
log . For the Fontaine operator, we are looking at the action of Θ on

0 −→ N1 −→ Ê(0,0)(B+,la
dR ) −→ N0 −→ 0,

and we want to understand the complex [N0
N1

−→ N1]. Note that these maps are not
expected to be Osm-linear. As in [Pan26], we linearize the situation by resolving B+

dR

by OB+
dR. We consider the resolution in [Sch13]

0 −→ B+,la
dR −→ OB+,la

dR −→ OB+,la
dR ⊗ Ω1,sm

log −→ 0.
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The complex is compatible with the “t-adic filtration”, which we denote as

Filti OB
+,la
dR := t−i(OB+,la

dR ).

We can take Ê(0,0)(−) of the sequence. We will see that that the action of Θ

on Ê(0,0)(gr
t
i OB

+,la
dR ) is zero (Lemma 4.4). Therefore, Θ-action on Ê(0,0)(OB+,la

dR ) also
induces a monodromy operator

Ñ1 : Ê(0,0)(gr
t
0 OB

+,la
dR ) −→ Ê(0,0)(gr

t
−1 OB

+,la
dR ).

As a result, we have the following commutative diagram:

N0 Ê(0,0)(gr
t
0(OB

+,la
dR )) Ê(0,0)(gr

t
0(OB

+,la
dR ))⊗ Ω1,sm

log

N1 Ê(0,0)(gr
t
−1(OB

+,la
dR )) Ê(0,0)(gr

t
−1(OB

+,la
dR ))⊗ Ω1,sm

log ,

ι

N1

∇

Ñ1 Ñ1 ⊗ 1

ι

where each row is a short exact sequence of perverse sheaves.
Moreover, we can endow grti(OB

+,la
dR ) with the Hodge filtration induced from OB+,la

dR ,
and then the diagram is compatible with the filtrations.

By Theorem 3.7, the objects on the second row are concentrated in degree 1 for
the natural t-structure, while those on the first row are in degree [0, 1]. So it suffices
to understand

Fib(H1(Ñ1)) Fib(H1(Ñ1))⊗ Ω1,sm
log

H1(N0) Ê(0,0)(gr
t
0(OB

+,la
dR )) Ê(0,0)(gr

t
0(OB

+,la
dR ))⊗ Ω1,sm

log

H1(N1) Ê(0,0)(gr
t
−1(OB

+,la
dR )) Ê(0,0)(gr

t
−1(OB

+,la
dR ))⊗ Ω1,sm

log .

∇

ι

H1(N1)

∇

H1(Ñ1) H1(Ñ1)⊗ 1

ι

We want to understand the filtered morphism

H1(Ñ1) : Ê(0,0)(gr
t
0(OB

+,la
dR )) −→ Ê(0,0)(gr

t
−1(OB

+,la
dR )),

so we can start by considering its graded pieces, which (up to twists) are symmetric
powers of Faltings’s extensions. These actually lie in the image of the functor VB,
so we can calculate it explicitly over the flag variety. As it turns out, H1(Ñ1) induces
an isomorphism on gri for any i ̸= 0 (Proposition 4.12), and Fib(H1(Ñ1)) ∼= i∗O

sm,
equipped with the trivial filtration.

Moreover, the connection ∇ on OBdR induces a connection ∇ : Fib(H1(Ñ1)) ∼=
i∗O

sm → i∗Ω
1,sm. We claim that it has to coincide with∇GM. This is because∇−∇GM

is a B(Qp)-equivariant Osm-linear morphism i∗O
sm → i∗Ω

1,sm
log , which corresponds to

a B(Qp)-invariant weight 2 overconvergent modular forms. Any such form has to be
zero by Lemma 4.22. This shows that ∇ = ∇GM!
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Using the diagram above, we have an isomorphism of filtered complex

[i∗O
sm H1(N1)
−−−−−−−→ i∗Ω

1,sm
log ] ∼= [i∗O

sm ∇GM−−−−−→ i∗Ω
1,sm
log ],

where both sides are equipped with the filtration from the stupid truncation. This
implies that H1(N1) ∼= ∇GM.

Most of the argument above generalizes to (a, b) = (k − 1, 0) for general k ∈ Z⩾1.
In Section 4.2, we will introduce the t-adic filtration Filt∗. The rest of the section
mainly focus on proving Proposition 4.19, that is,

H1(Fib(Ñk)) ∼= i∗Sym
k−1Dsm.

In Section 4.3, we will compute the derived locally algebraic vectors in OBdR, where
the main result is Proposition 4.11, which states that

H0(Fib(Ñk)/Filk) ∼= Symk−1Dsm.

In Section 4.4, we will compute the Sen operator for Faltings’s extension, which
shows that

H1(Fib(Ñk)) ∼= H1(Fib(Ñk)/Filk).

Finally, we finish the proof of Theorem 3.12 in Section 4.5. The most non-trivial part
of the proof is Proposition 4.19. The key is to consider the action of Ê(0,0)(OBla

dR) on
Ê(k−1,0)(OBla

dR), which induces a map

H1(Fib(Ñ1))⊗H0(Fil(Ñk)/Filk) −→ H1(Fil(Ñk)/Filk),

which one can verify to be an isomorphism.

Remark 4.1 (Comparison with [Pan26]). — For people familiar with [Pan26], our
proof is parallel to that of [Pan26]. In fact, given Theorem 1.2.10 of [Pan26], we obtain
Theorem 1.9 by applying E(k−1,0), with E(k−1,0)(d

k) = θk and E(k−1,0)(d
k
) becomes

the natural projection N0 → M†
1−k. The key simplification in our proof is that after

taking b-cohomology, E(k−1,0)(d
k
) becomes much simpler, and induces an isomorphism

in H1. In [Pan26], Pan achieves the same goal using a non-canonical construction of
a lifting Ola,(0,0) → OBla

dR. Taking b-cohomology also simplifies the computation of
cohomology, as well as the proof of the classicality. Our proof generalizes naturally to
overconvergent Hilbert modular forms.

4.2. t-adic filtration. — For later usage, we introduce the following t-adic (ascend-
ing) filtration:

Definition 4.2 (t-adic filtration). — We will write Fil∗ for the descending Hodge
filtration on OBdR or the filtrations induced on OB+

dR or OB+,la
dR /Filℓ etc.

We define another ascending t-adic filtration on OBdR via

Filt−i(OBdR) := tiOB+
dR.
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We denote the corresponding graded pieces as grt∗ OBdR. We also use the notation
Filt∗ and grt∗ for the induced filtrations on OBla

dR, OB
+,la
dR , OB+,la

dR /Filℓ, gri(OB+
dR) or

E(a,b)(OB+,la
dR /Filℓ+1) for (a, b) ∈ Z⊕2 etc.

Concretely, for i ∈ Z, we equip Filti(OBdR) with the Hodge filtration and equip
Filn(OBdR) with the induced filtration by putting

Filti Fil
n(OBdR) := Filn Filti(OBdR) := Filn(OBdR) ∩ Filti(OBdR),

equip grti(OBdR) with the Hodge filtration by putting

Filn grti(OBdR) := Filn Filti(OBdR)/Fil
n Filti−1(OBdR),

and equip grn(OBdR) with the induced filtration

Filti gr
n(OBdR) := Filti Fil

n(OBdR)/Fil
t
i Fil

n+1(OBdR).

Example 4.3. — By definition grt0(OB
+,la
dR ) = OB+,la

dR /(t), and has a descending fil-
tration induced by the Hodge filtration, where the non-trivial graded pieces are
grt0 gr

j OB+,la
dR
∼= (Ω1,la)⊗j for j ∈ N.

The t-adic graded pieces have the property that the action of Θ is semisimple after
taking b-cohomology in the case of regular weights.

Lemma 4.4. — Let i ∈ Z. The Hodge filtration of OBdR induces a filtration Fil∗ on
grti(OBla

dR) where the non-trivial graded pieces are

grj(grti(OBla
dR))

∼= (Ω1,la
log )

⊗
Ola (j−i)(−i)

for j ∈ Z⩾i. For (a, b) ∈ Z⊕2, a ̸= b+ 1, the action of Θ on Ê(a,b)(gr
t
i OBla

dR) is zero.
Moreover, for i /∈ {−b,−1− a}, grti(Ê(a,b)(OBla

dR)) := Ê(a,b)(gr
t
i OBla

dR)
∼= 0, and for

i ∈ {−b,−1− a}, grti(Ê(a,b)(OBla
dR)) has a descending filtration, where the non-trivial

graded pieces are

grj(grti(Ê(a,b)(OBla
dR)))

∼= N−i ⊗Osm (Ω1,sm
log )⊗Osm (j−i), j ∈ Z⩾i.

where N−i are as in Theorem 3.7.

Proof. — Multiplying by t induces an isomorphism

grti+1(OB
+,la
dR /Filℓ+1) ∼= grti(OB

+,la
dR /Filℓ+2)(−i).

In particular, it suffices to prove the claim for i = 0. We proceed by induction on ℓ.
The case when ℓ = 0 is obvious. Given the case for ℓ ∈ N, we consider the short exact
sequence 0 → B+,la

dR → OB+,la
dR /Filℓ+1 → OB+,la

dR /Filℓ⊗OsmΩ1,sm
log → 0. Taking grt0

gives 0 → Ola → grt0(OB
+,la
dR /Filℓ+1) → grt0(OB

+,la
dR /Filℓ) ⊗Osm Ω1,sm

log → 0. On the
other hand, the projection OB+,la

dR /Filℓ+1 →→ OB+,la
dR /Fil1 ∼= Ola induces a natural

splitting of the sequence above, and thus we have an Ola-linear isomorphism

grt0(OB
+,la
dR /Filℓ+1) ∼= Ola ⊕ (grt0(OB

+,la
dR /Filℓ)⊗Osm Ω1,sm

log ).
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We are done by induction. Note that the action of Θ on Ω1,sm
log is zero. The last part

follows from Theorem 3.7 as

E(a,b)((Ω
1,la
log )

⊗j(−i)) ∼= (Ω1,sm
log )⊗j ⊗Osm E(a,b)(O

la(−i)) ∼= 0. □

Remark 4.5. — We remark that there is a bit of subtlety in the term “Ola-linear”
here. On grt•(OB

+,la
dR /Filℓ+1), there are the action of Osm coming from the embedding

Osm ↪→ OBdR, and that of Ola = B+,la
dR /t. In particular, we have two different actions

of Osm, although they coincide on the graded pieces. In what follows, when we say
“Osm-linear”, we refer to the former from the embedding Osm ↪→ OBdR, and when we
say “Ola-linear”, we refer to the latter.

On the other hand, the action of Osm and Ola are compatible on grj OB+,la
dR , essen-

tially because they coincide in gr0 OBdR
∼= Ô. As a result, their actions are also

compatible on grti gr
j OB+,la

dR .

4.3. Locally algebraic vectors in OBdR. — Using Theorem 2.35, it is easy to see
that ÔR-sm ∼= Osm⊕Ω1,sm

log [−1]. Interestingly, OBR-sm
dR is concentrated in degree 0. The

result of this section generalizes easily to general Shimura varieties.

Notation 4.6 ([DLLZ23b, Def. 2.2.10(3)]). — Let OC := gr0 OBdR, and denote by
OCla its subsheaf of locally analytic vectors. Note that OCla ∼= OCR-la by Proposi-
tion 2.14.

Proposition 4.7. — We have a canonical isomorphism

OCR-sm ∼= RHomg(1,OCla) ∼= Osm.

Proof. — By [Pan22, Th. 4.2.2] (or [RC22, Th. 5.1.4] for the general Shimura vari-
eties), we know that OC ∼= πHT,∗ ◦ π∗

HT(O(N)), where O(N) is a colimit of algebraic
B = TN -representations, where N acts by right multiplication on N , and T acts by
conjugation, and O(N) is the colimit of the associated GL2-equivariant vector bundles
via localization. Then

OCla ∼= OCR-la ∼= (πHT,∗ ◦ π∗
HT(O(N)) ⊗̂ OG,1)

R-sm ∼= VBnaïve(O(N) ⊗̂ OG,1),

where VBnaïve is as in Definition 2.32. Here O(N) is a filtered colimit of vector bundles,
so π∗

HT = Lπ∗
HT, and RπHT,∗ = πHT,∗ by Lemma 2.4. Now

OCR-sm ∼= VBnaïve(RHomg(1, (O(N) ⊗̂ OG,1, ∗2))) ∼= VBnaïve(O(N)).

where ∗2 denotes the action of g on OG,1 by right multiplication, and thus

RHomg(1,OG,1) ∼= Cp.

Now by Lemma 2.34 and Theorem 2.35, we have

VBnaïve(O(N)) ∼= VB(RΓ(n0, O(N))) ∼= VB(OFl) ∼= Osm,

as desired. □
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Corollary 4.8. — We have a canonical isomorphism

Ê0(RHomg(1,OBla
dR))

∼= Osm,

where Ê0 is as in Definition 2.46.

Proof. — By Proposition 4.7, the Hodge filtration on OBla
dR induces a filtration on

RHomg(1,OBla
dR), such that gri ∼= Osm(i), and thus E0(gr

i) ∼= 0 unless i = 0,
as desired. □

Corollary 4.9. — Let W be an algebraic representation of G, and let DdR,KpKp(W )

be the associated vector bundle with an integrable connection defined over XKpKp
.

Denote DdR,Kp(W )sm := πHT,∗(lim−→Kp
πK−1

p
DdR,KpKp

(W )). Then we have a canonical
filtered isomorphism

Ê0(RHomg(W
∨,OBla

dR))
∼= DdR,Kp(W )sm

that is compatible with connections.

Proof. — By the (logarithm) Riemann-Hilbert correspondence ([DLLZ23b, Th. 1.5]),
we have a natural filtered isomorphism that is compatible with the Gauss-Manin
connections

DdR,Kp(W )sm ⊗Osm OBdR
∼= W ⊗Qp

OBdR,(15)

and thus
DdR,Kp(W )sm ⊗Osm OBla

dR
∼= W ⊗Qp OBla

dR.

We can take Ê0(RHomg(1,−)) on both sides. The LHS becomes DdR,Kp(W )sm by
Corollary 4.8, and the RHS becomes RHomg(W

∨,OBla
dR), as desired. □

Example 4.10. — In the case of modular curves, for W =Symk−1V ∨, DdR,Kp(W )sm =

Symk−1Dsm.

Corollary 4.11. — Let k ∈ Z⩾1, and consider

RHomg(Sym
k−1V,OBla

dR) −→ RHomb((k − 1, 0),OBla
dR)

as is induced by (3). Then it induces a filtered morphism

Symk−1Dsm ∼= Ê0(RHomg(Sym
k−1V,OBla

dR)) −→ Ê(k−1,0)(OB+,la
dR )

that is compatible with connections, and induces an isomorphism

Symk−1Dsm ∼= H0(Ê(k−1,0)(gr
t
0(OBdR/Fil

k))).

Proof. — Only the last isomorphism requires some explication. By (3), we have a
fiber sequence of filtered sheaves

Ê0(RHomg(Sym
k−1V,OBla

dR)) −→ Ê(k−1,0)(OBla
dR) −→ Ê(−1,k)(OBla

dR).

By Lemma 4.4, (gri(Ê(−1,k)(OBla
dR)))

∼= 0 is concentrated in cohomological degree 1 if
0 ⩽ i < k, and Ê(k−1,0)(OBla

dR)
∼= Ê(k−1,0)(OB+,la

dR ).
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On the other hand, by Corollary 4.9, Ê0(RHomg(Sym
k−1V,OBla

dR))
∼= Symk−1Dsm

is concentrated in degree 0, and gri ∼= 0 unless 0 ⩽ i < k. Thus we have an isomor-
phism Symk−1Dsm ∼= H0(Ê(k−1,0)(OB+,la

dR /Filk)). □

4.4. Computation of Faltings’s extension. — In this section, we compute the Sen
operator for Faltings’s extension in terms of Theorem 3.7.

Using Kodaira-Spencer isomorphism, we will identify Ω1,sm
log
∼= ω(1,−1),sm. By Def-

inition 4.2, for m ∈ N, grm(OB+,la
dR ) has an ascending filtration Filt∗ such that the

non-trivial graded pieces are

grti(gr
m OB+,la

dR ) ∼= (Ω1,sm
log )⊗(m+i) ⊗Ola Ô(−i) ∼= ω(m+i,−m−i),la(−i)

for −m ⩽ i ⩽ 0.

Proposition 4.12. — Let (a, b) ∈ Z⊕2 and k := |a − b + 1|. Let m ∈ Z⩾0, and
write F̃m+k := grm+k OB+,la

dR (min(b, 1+a)) equipped with the ascending filtration Filt∗.
We will use the notation of Theorem 3.7.

(1) If a+ 1 < b, then we have a short exact sequence in Perv

0 −→ E(a,b)(gr
t
−k(F̃m+k)) −→ E(a,b)(F̃m+k) −→ E(a,b)(gr

t
0(F̃m+k)) −→ 0,

and the action of Θ on E(a,b)(F̃m+k) is zero on the graded pieces, and is induced by
the composition

E(a,b)(gr
t
0(F̃m+k)) ∼= (Ω1,sm

log )⊗(m+k) ⊗N1+a
∼= i∗ω

(m−a,−m−b),sm[−1]
Cou−−−−→ j!ω

(m−a,−m−b),sm ∼= (Ω1,sm
log )⊗m ⊗Nb

∼= E(a,b)(gr
t
−k(F̃m+k)).

(2) If a+ 1 > b, then we have a short exact sequence in Perv

0 −→ E(a,b)(gr
t
−k(F̃m+k)) −→ E(a,b)(F̃m+k) −→ E(a,b)(gr

t
0(F̃m+k)) −→ 0,

and the action of Θ on E(a,b)(F̃m+k) is zero on the graded pieces, and is induced by
the composition

E(a,b)(gr
t
0(F̃m+k)) ∼= (Ω1,sm

log )⊗(m+k) ⊗Nb

−→−→ i∗ω
(m+1−b,−m−a−1),sm[−1] ∼= (Ω1,sm

log )⊗m ⊗N1+a
∼= E(a,b)(gr

t
−k(F̃m+k)).

Remark 4.13. — We are repeatedly using the following trick:

E(a,b)(ω
χ,la) ∼= E(a,b)(ω

χ,sm ⊗Osm Ola) ∼= ωχ,sm ⊗Osm E(a,b)(O
la).

Proof. — We first explain how to reduce the problem to a calculation over the flag
variety, and then the proof will be finished in Lemma 4.15.

The claim only depends on k by Remark 3.14. Therefore, in the case of (1), we con-
sider (a, b) = (k − 1, 0), and in the case of (2), we put (a, b) = (−1, k) for k ∈ Z⩾1.
In this way, we are working with the Faltings’s extension gr∗ OB+,la

dR without the Tate
twist.
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By Theorem 4.2.2 of [Pan22], gr1 OB+
dR
∼= (V ⊗Ô)⊗Osmω(0,−1),sm, and the Faltings’s

extension coincides (up to a sign) with the ω(0,−1),sm-twist of
0 −→ ω(0,1)(1) −→ V ⊗ Ô −→ ω(1,0) −→ 0.

Note that our normalization is different from [Pan22], which changes the Hodge-Tate
weight here. The sequence above is the pull-back of the following sequence on Fl:

0 −→ ω
(0,1)
Fl −→ V ⊗ OFl −→ ω

(1,0)
Fl −→ 0.

We define an ascending filtration Filt∗ on V ⊗OFl such that grt0
∼= ω

(1,0)
Fl , and grt−1

∼=
ω
(0,1)
Fl , which induces an ascending filtration on SymkV ⊗OFl such that grt−i

∼= ω
(k−i,i)
Fl .

For k ∈ Z⩾0, grk OB+,la
dR
∼= Symk

Ola gr1 OB+,la
dR , so

grk OB+,la
dR
∼= ω(0,−k),sm ⊗Osm SymkV ⊗ Ola,(16)

that is G(Qp)-equivariant and compatible with filtrations Filt∗ on both sides.
We consider the sheaf

Fm+k := (Symm+kV ⊗ C la, ∗1,3) ∈ QCohrlag (Fl)n
0

,

where ∗1,3 is as in Notation 3.1. We will denote by ∗4 the g-action on Symm+kV .
We define an ascending filtration on Fm+k

∼= (Symm+kV ⊗ OFl) ⊗̂OFl
C la as the

one induced from Symm+kV ⊗ OFl.

Lemma 4.14. — We have a filtered isomorphism
VB(Fm+k) ∼= grm+k OB+,la

dR ⊗Osm ω(0,m+k),sm,

the action of g on the RHS is induced by ∗2,4 on Fm+k, and the arithmetic Sen
operator Θ on the RHS is induced by θh(1, 0).

Proof of the lemma. — This follows from (16) and Theorem 3.2. □

By Lemma 4.14, Theorem 2.35 and Lemma 3.8, the proof of Proposition 4.12
reduces to Lemma 4.15 below. □

Lemma 4.15. — Let k ∈ Z⩾1 and m ∈ Z⩾0. In what follows, E(a,b) is taken with
respect to ∗2,4.

(1) We have a distinguished triangle

E(−1,k)(gr
t
−k(Fm+k)) −→ E(−1,k)(Fm+k) −→ E(−1,k)(gr

t
0(Fm+k))

+1−−−→,

and the action of θh(1, 0) on E(−1,k)(Fm+k) is induced by the composition

E(−1,k)(gr
t
0(Fm+k)) ∼= i∗i

†ω
(m+1,0)
Fl [−1] Cou−−−−→ j!j

∗ω
(m+1,0)
Fl

∼= E(−1,k)(gr
t
−k(Fm+k)).

(2) We have a distinguished triangle
E(k−1,0)(gr

t
−k(Fm+k)) −→ E(k−1,0)(Fm+k) −→ E(k−1,0)(gr

t
0(Fm+k))

+1−−−→,

and the action of θh(1, 0) on E(k−1,0)(Fm+k) is induced by the composition

E(k−1,0)(gr
t
0(Fm+k)) ∼=

[
ω
(m+1,0)
Fl − i∗i

†ω
(m+1,0)
Fl [−1]

]
p−−→ i∗i

†ω
(m+1,0)
Fl [−1] ∼= E(k−1,0)(gr

t
−k(Fm+k)),

where the map p is the natural projecting.
J.É.P. — M., 2026, tome 13



Theta operator equals Fontaine operator on modular curves 385

The proof will be finished at the end of this subsection. The key idea is to reduce
the problem to the case m = k = 0 treated in [Pil24].

Lemma 4.16. — For k ∈ Z⩾1,m ∈ Z⩾0, we have an isomorphism

E(−1,k)(Fm+k) ∼= E(−1,0)(C
la)⊗OFl

ω
(m,0)
Fl

∼= E(k−1,0)(Fm+k),

which is compatible with respect to the action of θh(1, 0).

Proof. — Note

Symm+kV ∼=
[
χ(m+k,0) − χ(m+k−1,0) − · · · − χ(0,m+k)

]
.

So Ext(b,∗2,4)((−1, k),Sym
m+kV ⊗ C la) is filtered by

Ext(b,∗2,4)((−1, k), χ
(i,m+k−i) ⊗ C la) ∼= Ext(b,∗2)((−1− i, i−m), C la), 0⩽ i⩽m+ k,

on which Θ := θh(1, 0) acts by i and m − i by Theorem 3.5. So when taking E0(−),
only the graded piece with i = 0 and i = m will survive. We have a b-equivariant map
Symm+kV → SymmV ⊗ χ(0,k), and we have

E(−1,k)(Sym
m+kV ⊗ C la) ∼= E(−1,k)(Sym

mV ⊗ χ(0,k) ⊗ C la)

∼= E(−1,0)(Sym
mV ⊗ C la),

that is,
E(−1,k)(Fm+k) ∼= E(−1,0)(Fm) ∼= E(−1,0)(C

la)⊗ ω
(m,0)
Fl ,

where for the last isomorphism, we use the filtration Filt∗ on SymmV ⊗ C la with
grt−i

∼= C la ⊗̂ ω
(m−i,i)
Fl , and E(−1,0)(gr

t
−i)
∼= 0 unless i = 0. The isomorphism is clearly

compatible with Θ := θh(1, 0)-action.
The same argument also works for (k − 1, 0) in place of (−1, k). □

We have the following reformulation of the results of [Pil24], describing the action
of Θ on E(−1,0)(C

la).

Lemma 4.17 ([Pil24, Prop. 6.3]). — We have an isomorphism

E(−1,0)(C
la) ∼=

[
i∗i

†ω
(1,0)
Fl [−1]− ω

(1,0)
Fl − i∗i

†ω
(1,0)
Fl [−1]

]
.

Moreover, consider Θ := θh(1, 0), Θ is given by the composition

E(−1,0)(C
la) −→−→ i∗i

†ω
(1,0)
Fl [−1] ↪−→ E(−1,0)(C

la),

where the first map is surjecting onto the top graded piece, and the second map is the
inclusion of the lowest graded piece. In particular, we have

Ker(Θ) ∼=
[
i∗i

†ω
(1,0)
Fl [−1]−ω

(1,0)
Fl

]
∼= j!j

∗ω
(1,0)
Fl , Coker(Θ) ∼=

[
ω
(1,0)
Fl − i∗i

†ω
(1,0)
Fl [−1]

]
.

Here Ker(Θ) and Coker(Θ) are taken in pB♡ defined in Lemma 3.20.
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Proof. — Theorem 2.35 gives

0 −→ j!j
∗ω

(1,0)
Fl −→ E(−1,0)(C

la) −→ i∗i
†ω

(1,0)
Fl −→ 0.

This gives the first isomorphism by noting j!j
∗ω

(1,0)
Fl

∼=
[
i∗i

†ω
(1,0)
Fl [−1]− ω

(1,0)
Fl

]
. More-

over, Θ is zero on the top graded pieces. In particular, we know Θ is induced by a
canonical map f : i∗i

†ω
(1,0)
Fl [−1]→ j!j

∗ω
(1,0)
Fl . The claim is equivalent to saying that f

coincides with the Cousin map. We apply Γ(Θ,−) to the sequence, and take pHi(−)
gives a long exact sequence
0 −→ j!j

∗ω
(1,0)
Fl

ι−−→ pH0(Θ,E(−1,0)(C
la)) −→ i∗i

†ω
(1,0)
Fl [−1]

δ−−→ j!j
∗ω

(1,0)
Fl

s−−→ pH1(Θ,E(−1,0)(C
la))

p−−→ i∗i
†ω

(1,0)
Fl [−1] −→ 0.

Simple diagram chasing tells us that f ∼= δ. Now the long exact sequence given by
natural t-structure (Remark 3.22) H∗(RΓ(Θ,−)) tells us that H0(Θ,E(−1,0)(C

la)) ∼=
j!j

∗ω
(1,0)
Fl , and H2(Θ,E(−1,0)(C

la)) ∼= i∗i
†ω

(1,0)
Fl . Moreover, [Pil24, Prop. 6.3] tells us

that H1(Θ,E(−1,0)(C
la)) ∼= ω

(1,0)
Fl . Hence

pH0(Θ,E(−1,0)(C
la)) ∼= j!j

∗ω
(1,0)
Fl , pH1(Θ,E(−1,0)(C

la)) ∼=
[
ω
(1,0)
Fl − i∗i

†ω
(1,0)
Fl [−1]

]
.

By Lemma 3.25, we then know ι is an isomorphism, and p induces an isomorphism
i∗i

†ω
(1,0)
Fl [−1] ∼= i∗i

†ω
(1,0)
Fl [−1]. Thus we are left with a triangle

i∗i
†ω

(1,0)
Fl [−1] δ−−→ j!j

∗ω
(1,0)
Fl

s−−→ ω
(1,0)
Fl

+1−−−→ i∗i
†ω

(1,0)
Fl .

Such extension is necessarily the excision extension. This implies δ coincides with the
Cousin map. □

We can now finish the proof of Lemma 4.15.

Proof of Lemma 4.15. — Consider Filt∗ on E(−1,k)(Fm+k). The graded pieces are

grti−m−k
∼= E(−1,k)(ω

(i,m+k−i)
Fl ⊗ C la)

for 0 ⩽ i ⩽ m+ k. By Theorem 3.5, we know that grti−m−k E(−1,k)(Fm+k) ∼= 0 unless
i = m+ k or m, and

(17)
E(−1,k)(ω

(m,k)
Fl ⊗ C la) ∼= j!j

∗ω
(m+1,0)
Fl ,

E(−1,k)(ω
(m+k,0)
Fl ⊗ C la) ∼= i∗i

†ω
(m+1,0)
Fl [−1].

Note that all the terms lie in C0, and in particular, we can work in pB♡ defined in
Lemma 3.20, and the triangle gives short exact sequences in pB♡:

0 −→ E(−1,k)(ω
(m,k)
Fl ⊗ C la) −→ E(−1,k)(Fm+k) −→ E(−1,k)(ω

(m+k,0)
Fl ⊗ C la) −→ 0,

such that Θ acts trivially on the graded pieces. By Lemma 4.16 and Lemma 4.17,
we have
Coker(Θ) ∼=

[
ω
(m+1,0)
Fl − i∗i

†ω
(m+1,0)
Fl [−1]

]
−→−→ E(−1,k)(ω

(m+k,0)
Fl ⊗ C la) ∼= i∗i

†ω
(m+1,0)
Fl [−1].
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Since
RHom(ω

(m+1,0)
Fl , i∗i

†ω
(m+1,0)
Fl ) ∈ D⩾0,

we know that the map factors uniquely through i∗i
†ω

(m+1,0)
Fl [−1], which then by

Lemma 3.25 gives an isomorphism. This implies that E(−1,k)(ω
(m,k)
Fl ⊗C la) ∼= Ker(Θ)

by Lemma 4.17, and the action of Θ is as described.
The proof for (k − 1, 0) is similar. Once we obtain (17), we have a surjection

p : Coker(Θ) ∼=
[
ω
(m+1,0)
Fl − i∗i

†ω
(m+1,0)
Fl [−1]

]
−→−→ E(k−1,0)(ω

(m+k,0)
Fl ⊗ C la) ∼=

[
ω
(m+1,0)
Fl − i∗i

†ω
(m+1,0)
Fl [−1]

]
.

We then first project to i∗i
†ω

(m+1,0)
Fl [−1], and by the same argument using Lemma

3.25, we know p induces an isomorphism on the top graded piece p : i∗i
†ω

(m+1,0)
Fl [−1] ∼=

i∗i
†ω

(m+1,0)
Fl [−1]. Hence p induces a surjection p : ω

(m+1,0)
Fl → ω

(m+1,0)
Fl , which again

by Lemma 3.25 is an isomorphism. Therefore, we know

Coker(Θ) ∼= E(k−1,0)(ω
(m+k,0)
Fl ⊗ C la),

and we are again done by Lemma 4.17. □

4.5. Proof of Theorem 3.12. — In this subsection, we finish the proof of Theo-
rem 3.12. By Remark 3.14 and Corollary 3.27, it suffices to consider (a, b) = (k−1, 0)

for k ∈ Z⩾1.
By Lemma 4.4, we have an exact sequence in Perv

0 −→ Ê(k−1,0)(gr
t
−k OBla

dR) −→ Ê(k−1,0)(OBla
dR) −→ Ê(k−1,0)(gr

t
0 OBla

dR) −→ 0,

and the action of Θ on grt∗ is zero, and thus its action on Ê(k−1,0)(OBla
dR) is induced

by a unique canonical map

Ñk : grt0 Ê(k−1,0)(OBla
dR) −→ grt−k Ê(k−1,0)(OBla

dR).(18)

Lemma 4.18. — The map Ñk as defined above is Osm-linear, filtered, and compati-
ble with connections, where both sides are equipped with the induced Hodge filtration
(Definition 4.2).

Proof. — By Proposition 2.42, E0(−) is lax symmetric monoidal.
Therefore, Ê(a,b)(OBdR) is an E0(O

sm)-module in D(Qp[Θ]) (equipped with con-
volution symmetric monoidal structure). We know that E0(O

sm) ∼= Osm, and Θ acts
on Osm by zero. As a result, the action of Θ on Ê(a,b)(OBdR) is Osm-linear, filtered, and
commutes with connections, and thus Ñk is also Osm-linear, filtered, and commutes
with connections. □

As a corollary, Fib(Ñk) inherits the Osm-module structure, the Hodge filtration
and the connection. By Lemma 4.4, Theorem 3.7, and Proposition 4.12, we see that

grj Fib(Ñk) ∼=

{[
ω(j−k+1,−j),sm − i∗ω

(j−k+1,−j),sm[−1]
]
, 0 ⩽ j ⩽ k − 1;

ω(j−k+1,−j),sm, j ⩾ k.
(19)
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By Corollary 4.11, we have canonical GalQp
-equivariant maps

Symk−1Dsm −→ Ê(k−1,0)(OBla
dR) −→ Ê(k−1,0)(gr

t
0 OBla

dR),

that are compatible with connections.
Since the action of Θ on Symk−1Dsm is zero, this induces a canonical map

ik : Symk−1Dsm −→ Fib(Ñk),

that is Osm-linear, filtered, and compatible with connections. Moreover, by Corol-
lary 4.11, upon projecting to Fib(Ñk)/Filk, this induces an isomorphism

ik : Symk−1Dsm ∼= H0(Fib(Ñk)/Filk).

Proposition 4.19. — For k ∈ Z⩾1, we have a filtered B(Qp) × T(Kp)-equivariant
Osm-linear isomorphism

H1(Fib(Ñk)) ∼= i∗Sym
k−1Dsm(20)

that is compatible with connections.

Proof. — For k = 1, from (19), we see that H1(Fib(Ñ1)) ∼= i∗O
sm as desired. For

the compatibility with connections, we use the following uniqueness: let ∇ : i∗O
sm →

i∗Ω
1,sm
log be any B(Qp)-equivariant connection, then ∇ − ∇GM : i∗O

sm → i∗Ω
1,sm
log is

a canonical Osm-linear map. In particular, it is B(Qp)-invariant. This corresponds to
some f ∈ M†

(1,−1) that is B(Qp)-invariant. We conclude that f = 0 by Lemma 4.22,
and thus ∇ = ∇GM as desired.

For general k ∈ Z⩾1, by Proposition 2.42, Ê(k−1,0)(OBla
dR) has a natural structure

of an Ê(0,0)(OBla
dR)-module. In particular, we have

Ê(0,0)(OBla
dR)⊗Osm Ê(k−1,0)(OBla

dR) −→ Ê(k−1,0)(OBla
dR).

This map is compatible with Θ-action, and with Hodge filtrations, and t-adic filtra-
tions. Thus this induces a map

(21) Symk−1Dsm ⊗Osm i∗O
sm ik ⊗ 1−−−−−−→ H0(Fib(Ñk))⊗Osm H1(Fib(Ñ1))

−→ H1(Fib(Ñk)),

that is compatible with connections and Hodge filtrations. So it suffices to show that
the composition in (21) is an isomorphism. Since the map is compatible with the
Hodge filtrations, so it suffices to look at the graded piece gri for 0 ⩽ i ⩽ k − 1, and
we are reduced to proving Lemma 4.20 below. □

Lemma 4.20. — By Proposition 2.42, Ê(k−1,0)(O
la) has a natural structure of an

Ê(0,0)(O
la)-module. Then the induced map

H0(E(k−1,0)(O
la))⊗Osm H1(E(0,0)(O

la)) −→ H1(E(k−1,0)(O
la))

is an isomorphism.

Using VB, this is reduced to the corresponding question on Fl:
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Lemma 4.21. — Let k ∈ Z⩾1. By Proposition 2.42, E(k−1,0) has a structure of an
E(0,0)(C

la)-module, and the following composition induces an isomorphism

ω
(1−k,0)
Fl ⊗̂OFl

E(0,0)(C
la) −→ E(k−1,0)(C

la)⊗OFl
E(0,0)(C

la) −→ E(k−1,0)(C
la).

where the first map is induced by ω
(1−k,0)
Fl → E(k−1,0)(C

la) in Theorem 3.5.

Proof. — We have the natural morphism as above. By Theorem 3.5, we know

E(0,0)(C
la) ∼=

[
OFl − i∗i

†OFl[−1]
]
, E(k−1,0)(C

la) ∼=
[
ω
(1−k,0)
Fl − i∗i

†ω
(1−k,0)
Fl [−1]

]
.

First, we see that ω(1−k,0)
Fl ⊗OFl

OFl → ω
(1−k,0)
Fl is an isomorphism. Therefore, we have

an induced morphism

ω
(1−k,0)
Fl ⊗̂OFl

i∗i
†OFl[−1] −→ i∗i

†ω
(1−k,0)
Fl [−1].

It suffices to show that it is an isomorphism. Note that both sides are concentrated
in ∞, so we can verify the isomorphism after applying i†.

Now we need to go through the proof of [Pil24, Prop. 5.7, Lem. 5.6]. We refer readers
to [Pil24] for the undefined notation. In what follows, ∗g and ∗d denote the left action
and right action respectively. We have by [Pil24, Lem. 5.5] that

i†C la ∼= (OT,1 ⊗̂Cp
OU\G,1)

(h,∗g⊗∗g)=0,

with ∗2 on the LHS corresponding to id ⊗ ∗d on the right hand side. Then for any
χ ∈ C⊕2

p

Ext(b,∗2)(χ, i
†C la) ∼= (OT,1 ⊗̂Cp Ext(b,∗d)(χ,OU\G,1))

(h,∗g⊗∗g)=0.

So now we are reduced to proving that the natural morphism

H0(E(k−1,0)(OU\G,1)) ⊗̂Cp H1(E(0,0)(OU\G,1)) −→ H1(E(k−1,0)(OU\G,1))(22)

is an isomorphism, where we are taking (b, ∗d) when applying E(k−1,0). By the proof
of [Pil24, Lem. 5.5], we know for ℓ ∈ Z⩾0, RHom(b,∗d)((ℓ, 0),OU\G,1) is represented
by a complex

lim−→
m∈Z⩾1

⊕̂
n⩾0Cp ·

1

pnm
xnaℓ−ndn

d−−→ lim−→
m∈Z⩾1

⊕̂
n⩾−1Cp ·

1

pnm
xn+1aℓ−ndn,

where x, a, d are some variables on U\G. The differential d is given by

d
(∑
n⩾0

anx
naℓ−ndn

)
=

∑
n⩾0

(ℓ− n)anx
n+1aℓ−ndn.

We see that the part n = −1 is always in the cokernel, and corresponds to
weight (ℓ + 1)-part by [Pil24, Lem. 5.5]. If we take the weight 0-part, we see H0 is
1-dimensional generated by xℓdℓ, and H1 is also 1-dimensional generated by xℓ+1dℓ

(by taking n = ℓ). In our situation, H0(E(k−1,0)(OU\G,1)) is generated by xk−1dk−1,
H1(E(k−1,0)(OU\G,1)) is generated by xkdk−1, and H1(E(0,0)(OU\G,1)) is generated
by x. By (xk−1dk−1) · x = xkdk−1, we know the map (22) is an isomorphism. □

Lemma 4.22. — If H0(∞, ω(a,b),sm)B(Qp) ̸= 0, then a = b.
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Proof. — Let f be a non-zero B(Zp)-invariant section ω(a,b),sm. Then it comes from
a section at level KpΓ0(p

n) for n sufficiently large. By conjugating by diag(p, 1) ∈
B(Qp), we can assume n = 1. Let x be a cusp on any connected component of
Xord

KpΓ0(p),∞. We can look at its q-expansion f =
∑

i∈N aiq
i at x.

We consider the action of Frobenius ϕ that is given by the action of
(
p−1 0
0 1

)
,

so ϕ(f) =
(
p−1 0
0 1

)
f = f . But in terms of the q-expansion, ϕ(f) =

∑
i∈N aiq

pi,
so ϕ(f) = f forces ai = 0 for i > 0. Then multiplying by f induces an isomorphism
i−1
x ω

(a,b)
XKpΓ0(p)

∼= i−1
x OXKpΓ0(p)

that is compatible with Up-operators, which implies that
a = b. □

Now we can finish the proof of Theorem 3.12.

Proof of Theorem 3.12. — Note that by Remark 3.14 and Corollary 3.27, we can re-
strict ourselves to the case (a, b) = (k − 1, 0) with k ∈ Z⩾1. We have the de Rham
complex ([DLLZ23b, Cor. 2.4.2])
(23) 0 −→ Bla

dR −→ OBla
dR −→ OBla

dR ⊗Osm Ω1,sm
log −→ 0,

which after taking Ê(k−1,0) gives

0 −→ Ê(k−1,0)(Bla
dR) −→ Ê(k−1,0)(OBla

dR) −→ Ê(k−1,0)(OBla
dR)⊗ Ω1,sm

log −→ 0,

which is compatible with Θ-actions, Hodge filtrations Fil∗, and t-adic filtrations Filt∗.
Then we have the following diagram

Ê(k−1,0)(O
la) grt0 Ê(k−1,0)(OBla

dR) grt0 Ê(k−1,0)(OBla
dR)⊗ Ω1,sm

log

Ê(k−1,0)(O
la(k)) grt−k Ê(k−1,0)(OBla

dR) grt−k Ê(k−1,0)(OBla
dR)⊗ Ω1,sm

log ,

ι

Nk

∇

Ñk Ñk ⊗ 1

ι ∇

where the rows are short exact sequences of perverse sheaves, and the category is in
the category of filtered sheaves over Flan, where all the objects are equipped with
Hodge filtrations, and Ω1,sm

log is endowed with the trivial filtration where only non-
trivial graded piece is gr1.

By Theorem 3.7, the objects on the second row are concentrated in degree 1 for
the natural t-structure, and those on the first row are in degree [1, 2]. Therefore,
to understand Nk, we can take H1(−), and we have the following diagram

C k i∗Sym
k−1Dsm i∗Sym

k−1Dsm ⊗ Ω1,sm
log

Ê1
(k−1,0)(O

la) grt0 Ê
1
(k−1,0)(OB

la
dR) grt0 Ê

1
(k−1,0)(OB

la
dR)⊗ Ω1,sm

log

Ê1
(k−1,0)(O

la(k)) grt−k Ê
1
(k−1,0)(OB

la
dR) grt−k Ê

1
(k−1,0)(OB

la
dR)⊗ Ω1,sm

log ,

∇GM

ι

H1(Nk)

∇

H1(Ñk) H1(Ñk)⊗ 1

ι ∇
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with Ê1
(a,b) := H1(Ê(a,b)(−)) and C k := Fib(H1(Nk)), Ê1

(k−1,0)(O
la) ∼= i∗ω

(0,k−1),sm,
and Ê1

(k−1,0)(O
la(k)) ∼= i∗ω

(k,−1),sm, which is compatible with Hodge filtrations and
all the rows and columns are fiber sequences. In particular,

gr0(C k) ∼= Ê1
(k−1,0)(O

la), grk(C k) ∼= Ê1
(k−1,0)(O

la(k))[−1].

On the other hand, the first row shows that we have a filtered isomorphism C k ∼=
i∗dR(Sym

k−1Dsm), which shows that

gr0(C k) ∼= i∗ω
(0,k−1),sm, grk(C k) ∼= i∗ω

(k,−1),sm[−1],

and the connecting morphism δ in

grk(C k) −→ C k −→ gr0(C k)
δ−−→ grk(C k)[−1]

is by definition θk. □

5. Arithmetic corollary

In this section, we prove the classicality of modular forms (Theorem 1.1) using the
result we have obtained above. In fact, both (1) and (2) of Theorem 3.12 give a proof
of Theorem 1.1. We will use Theorem 3.12(1) below.

We first recall the following result from [Pan22].

Theorem 5.1. — For k ∈ Z⩾1, we denote

ρ̃k := RHomb((k − 1, 0), RΓ(Kp,Qp)
R-la)[1].

Then we have a B(Qp)×GalQp
×T(Kp)-equivariant isomorphism

ρ̃k ⊗̂Qp
Cp
∼= N0 ⊕Nk(−k),

where Nk
∼= M†

(1,−k)[0], and N0 lies in a distinguished triangle

RΓ(Fl, ω(1−k,0),sm)[1] −→ N0 −→M†
(1−k,0)[0]

+1−−−→ .

Here (−) refers to the Tate twist, and

RΓ(Fl, ω(1−k,0),sm) ∼= lim−→
Kp

RΓ(XKpKp
, ω(1−k,0)).

In particular, ρ̃k ⊗̂ Cp is Hodge-Tate of weight 0, k (Definition 2.43), where Θ

equals 0 on N0 and −k on Nk(−k).

Proof. — Let us give a proof here. We know by Theorem 3.7,

RHomb((k − 1, 0),Ola)[1]⊗ χ(1−k,0) ∼= N0 ⊕Nk(−k),

and Nk
∼= i∗ω

(1,−k),sm, and we have a short exact sequence

0 −→ ω(1−k,0),sm −→ N0 −→ i∗ω
(1−k,0),sm[−1] −→ 0.

J.É.P. — M., 2026, tome 13



392 Y. Jiang

We then take cohomology RΓ(Fl,−) and obtain by Corollary 2.15,

RHomb

(
(k − 1, 0), RΓ(Kp,Qp)

R-la) ⊗̂ Cp ⊗ χ(1−k,0)

∼= RHomb((k − 1, 0), RΓ(Fl,Ola))⊗ χ(1−k,0)

∼= RΓ(Fl, RHomb((k − 1, 0),Ola))⊗ χ(1−k,0)

∼= RΓ(Fl,N0)⊕RΓ(Fl,Nk)(−k).

We are then done by putting N0 := RΓ(Fl,N0)[1] and Nk := RΓ(Fl,Nk). □

As in Example 2.45, we have Darith(O
la)⊗̂Qp(ζp∞ )Cp

∼= Ola. Taking RΓ(Fl,−), this
implies that RΓ(Kp,Cp)

R-la admits an arithmetic Sen operator Θ (Definition 2.43).
Thus ρ̃k ⊗̂Cp also admits an arithmetic Sen operator Θ, which is zero on N0 and −k
on Nk(−k).

Now we consider ρ̃k ⊗̂Qp
B+

dR, Since ρ̃k is of Hodge-Tate weight 0, k, As in Defini-
tion 2.47, we have a distinguished triangle in D(Cp[Θ])

(24) Nk −→ Ê0(ρ̃k ⊗̂Qp
B+

dR) −→ N0
+1−−−→,

where Ê0 is as in Definition 2.46.

Theorem 5.2. — In terms of the isomorphism in Theorem 1.4, Θ on Ê0(ρ̃k ⊗̂Qp
B+

dR)

is induced by the Fontaine operator N : N0 → Nk, given by the composition

N : N0 −→M†
(1−k,0)

θk−−−→M†
(1,−k)

∼= Nk,

where θk is the classical theta operator as in [Col96].

Proof. — We have a natural filtered morphism

RΓ(Kp,Qp) ⊗̂B+
dR/t

n ∼= RΓ(XKp,prokét,Qp) ⊗̂B+
dR/t

n −→ RΓ(Fl,B+
dR/t

n),

where the first isomorphism follows from [DLLZ23a, Th. 4.6.1], and the second map
is induced by the map Qp → BdR,log,XKpKp

|XKp . By Theorem 2.7, we know that the
map induces isomorphisms on the graded piece, so the map itself is an isomorphism.
Taking (−)R-la on both sides and taking lim←−n

, we have a filtered isomorphism

(RΓ(Kp,Qp)
R-la ⊗̂Qp

B+
dR)

∧
t
∼= RΓ(Fl,B+,la

dR ).

We then take b-cohomology, invert t and Ê0(−) to obtain a filtered isomorphism

Ê0(ρ̃k ⊗̂BdR) ∼= RΓ(Fl, Ê(k−1,0)(Bla
dR)),

that is compatible with the arithmetic Sen operator Θ. Then Theorem 5.2 follows
from Theorem 3.12 by taking RΓ(Fl,−). □

We will need to relate ρ̃k[pf ] with ρf . We study more closely the Eichler-Shimura
relation.
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Construction 5.3. — We define

T̂S := lim←−
Kp,n

Im(TS −→ End(RΓét(XKpKp,Q,Z/p
n)),

then by [DPS25, Cor. 9.11], it has only finitely many open maximal ideals m.
Replacing T̂S by T̂S⊗ZpW (F) for large enough finite extension F over Fp, we assume

that T̂S/m ∼= F for any open maximal ideal m ⊂ T̂S . Moreover, by [Sch15, Cor. 5.1.11],
there is a continuous 2-dimensional determinant D of GalQ,S valued in T̂S .

For any open maximal ideal m of T̂S , there is the determinant Dm := D|T̂S/m valued
in F. Let Rps

m denote the pseudo-deformation ring over W (F) of the determinant of Dm

as in [Che14], which is a Noetherian complete local ring. Let Rps :=
∏

m Rps
m , where

the product is taken over the finite set of open maximal ideals of T̂S . Then by the
universal property, there is a unique continuous morphism Rps → T̂S . In particular,
we have an action of Rps on RΓ(Kp,W (F)), and thus also on M†

χ by Theorem 5.1.
Let us define the analytic ring structure Rps

m,□ on Rps
m by putting for any profinite

set S,
Rps

□ [S] := lim←−
i

Rps[Si],

where the limit is taken over finite quotients Si of S.
Then by construction, Rps

□ [GalQ,S ] acts on RΓ(Kp,W (F)/pn). Moreover, for any
g ∈ GalQ,S , let Duniv be the universal determinant over Rps, and denote fg(X) :=

Duniv(X−g), which is a polynomial of degree 2. Then by the Eichler-Shimura relation,
the action of fFrobℓ

(Frobℓ) is zero on Hi
ét(XKpKp,Q,W (F)/pn) for ℓ /∈ S.

Let I denote the closed two-sided idea of Rps generated by fFrobℓ
(Frobℓ) for ℓ /∈ S.

Then by Chebotarev’s density, the action of Rps
□ [GalQ,S ] on H̃i(Kp,W (F)) factors

through Rps
□ [GalQ,S ]/I.

Proposition 5.4. — Assume that f ∈ M†
(1,−k)(K

p) is an overconvergent modular
eigenform of weight 1 + k with k ∈ Z⩾1 such that its associated Galois representa-
tion ρf is absolutely irreducible. Then the following are equivalent:

(1) There exists a modular eigenform f ′ ∈M(1,−k)(K
p) such that ρf ∼= ρf ′ ;

(2) ρf is de Rham at p.

Remark 5.5. — The implication from (1) to (2) is known by [Sai97].

Proof. — Assume that the coefficients of f lie in L, which is a finite extension of
W (F)[1/p], such that ρf is defined over L. By Construction 5.3, ρf determines a map
χf : Rps → L, and since TS is dense in T̂S , the action of Rps on f factors through χf .

We will write (−)L for −⊗Qp
L. We denote by pf the kernel of χf : Rps ⊗ L→ L.

For any Rps ⊗ L-module V concentrated in degree 0, let V [pf ] denote the subspace
where the action of pf is zero.

For k ∈ Z⩾2, H0(Fl, ω(1−k,0),sm) = 0, and when k = 1, H0(Fl, ω(1−k,0),sm) consists
of locally constant functions, which in particular do not give rise to irreducible Galois
representations ρf . Hence we know that for k ∈ Z⩾1, H0(Fl, ω(1−k,0),sm)L,pf

= 0,
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and RΓ(Fl, ω(1−k,0),sm)L,pf
is concentrated in degree 1. By Theorem 5.1, (N0)pf

and
(ρ̃k)pf

are concentrated in degree 0. Hence ρ̃k,L[pf ] is a solid GalQ×B(Qp)×T(Kp)-
module that is concentrated in degree 0.

Lemma 5.6. — There exists a solid B(Qp)× T(Kp)-modules W over L, such that we
have a B(Qp)× T(Kp)-equivariant isomorphism in RepQp,□

(GalQ)

ρ̃k,L[pf ] ∼= ρf ⊗L W.

Proof of the lemma. — We know H̃0(Kp,Qp)
la
L,pf

∼= 0 as ρf is irreducible, and thus
ρ̃k,L,pf

∼= Homb((k − 1, 0), H̃1(Kp,Qp)
la
pf
). In particular, by Construction 5.3, the

action of GalQ on ρ̃k,L[pf ] factors through H0(Rps
□ [GalQ,S ]/I ⊗̂Rps,χf

L). Note that
H0(Rps

□ [GalQ,S ] ⊗̂Rps,χf
L) ∼= L□[GalQ,S ], and the image of I in L□[GalQ,S ] is the

closed 2-sided ideal I generated by g2 − Tr(ρf (g)) · g + det(ρf (g)). By the proof in
[BLR91], we know that L□[GalQ,S ]/I ∼= EndL(ρf ) ∼= M2×2(L).

In this way, ρ̃k,L[pf ] is a solid EndL(ρf )×B(Qp)×T(Kp)-module. Hence if we put

W := HomEndL(ρf )(ρf , ρ̃k,L[pf ]),(25)

by Morita equivalence, we have ρ̃k,L[pf ] ∼= ρf ⊗L W . □

Now by Theorem 5.1, we have

(ρf ⊗Qp
Cp)⊗L⊗Cp

(W ⊗̂Qp
Cp) ∼= ρ̃k,L[pf ] ⊗̂ Cp

∼= N0,L[pf ]⊕Nk,L[pf ](−k).(26)

Considering the arithmetic Sen operator Θ, we know that

(ρf ⊗Qp
Cp)

Θ=0 ⊗ (W ⊗̂ Cp) ∼= N0,L[pf ],(27)

(ρf ⊗Qp
Cp)

Θ=−k(k)⊗ (W ⊗̂ Cp) ∼= Nk,L[pf ].(28)

Theorem 5.1 tells us that Nk,L[pf ] = M†
(1,−k),L[pf ] ̸= 0. So W is non-zero. By (26),

we know the Hodge-Tate weights of ρf lie in {0, k}. On the other hand, by Lemma 5.7
below, we know det ρf is of Hodge-Tate weight k, so we know that ρf has precisely
two distinct weights, 0 and k.

So we can consider its Fontaine operator, which is compatible with the Fontaine
operator of Ê0(ρ̃k ⊗̂Qp B+

dR) as in Definition 2.47. By Theorem 5.2, we know it is
induced by

N [pf ] : N0,L[pf ]
p[pf ]−−−−−→M†

(1−k,0),L[pf ]
θk−−−→M†

(1,−k),L[pf ]
∼= Nk,L[pf ].

Note that the kernel of p[pf ] is H1(Fl, ω(1−k,0),sm)L[pf ]. By Lemma 5.8 below,
M†

(1−k,0),L[pf ]
θk

−→M†
(1,−k),L[pf ] is injective, so

Ker(N [pf ]) ∼= Ker(p[pf ]) ∼= H1(Fl, ω(1−k,0),sm)L[pf ].
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By Serre duality, we know

H1(Fl, ω(1−k,0),sm) ∼= lim−→
Kp

H1(XKpKp
, ω(1−k,0))

∼= lim−→
Kp

H0(XKpKp
, ω(k,−1)(−C))∨ ∼= lim−→

Kp

S(k,−1)(K
pKp)

∨.

Therefore, by Proposition 2.48, ρf is de Rham, if and only if N [pf ] = 0, if and only
if Ker(N [pf ]) ̸= 0, if and only if H1(Fl, ω(1−k,0),sm)L[pf ] ̸= 0, if and only if pf is
associated to a classical eigenform. This finishes the proof. □

Lemma 5.7. — For any overconvergent eigenform f ∈ M†
(1,−k) with k ∈ Z⩾1, det ρf

is Hodge-Tate of weight k.

Proof. — First, we prove that det ρf is of Hodge-Tate weight k. We know for ℓ ∤ p
such that Kp =

∏
ℓ∤p Kℓ is hyperspecial at ℓ, det ρf (Frobℓ) = ℓSℓ by the Eichler-

Shimura relation, where Sℓ =
[
G(Zℓ)

(
ℓ−1 0
0 ℓ−1

)
G(Zℓ)

]
. Here we put an inverse so

that our Hecke operator acts on the left. We claim that there exist N ∈ Z>0 and
χ : (Z/N)× → Q×

p , such that for any ℓ ∤ N such that Kℓ is hyperspecial, Sℓ =

ℓk−1χ(ℓ). If f is N(Zp)-invariant, then for large enough n, f is Γ1(p
n)-invariant,

where Γ1(p
n) :=

{(
a b
c d

)
: a− 1, b ∈ pnZp

}
⊂ GL2(p

n) is the congruence subgroup.
Then we know that Sℓ = ℓk−1⟨ℓ⟩, where ⟨−⟩ is the diamond operator, which is a
character of finite order. In general, since the action of GL2(Qp) on f is smooth,
we know f is invariant for some N(pmZp) =

(
1 pnZp

0 1

)
for m large enough. Thus we

know
(
p−n 0
0 1

)
f is N(Zp)-invariant, and it is also an eigenform with the same Hecke

eigenvalue as f . So we conclude by applying the above argument to
(
p−n 0
0 1

)
f .

Given the claim, we know det ρf (Frobℓ) = ℓkχ(ℓ), and χ is of finite order. In par-
ticular, when restricting to an open subgroup, we know that det ρf coincides with
χk
cycl, and thus is of Hodge-Tate weight k. □

Lemma 5.8. — For k ∈ Z⩾1 and f ∈ M†
(1,−k)[pf ], if ρf : GalQ → GL2(Qp) is irre-

ducible, then θk : M†
(1−k,0)[pf ]→M†

(1,−k)[pf ] is injective.

Proof. — Note that M†
(1−k,0)

θk

−→ M†
(1,−k) is injective when k > 1, and the kernel is

precisely the locally constant function when k = 1. To see this, we recall that in terms
of q-expansion, θk is given by (q d/dq)k. For any f ′ ∈ Ker(θk), there exists n ∈ N such
that f ′ is fixed by

(
1 pnZp

0 1

)
⊂ B(Qp), and we can write the q-expansion of f ′, say

f ′ =
∑

i∈(1/pn)N anq
n. Then θk(f ′) = 0 implies that an = 0 if n ̸= 0, and thus f ′ is

locally constant. For such f ′, ρf ′ will be reducible. Thus we have Ker(θk)[pf ] = 0 and
we are done. □

So far we have proved that the global Galois representation ρf is modular if it is
de Rham at p. Now we go on to prove the slightly stronger result that the form f

itself is a modular form.

J.É.P. — M., 2026, tome 13



396 Y. Jiang

Corollary 5.9. — Assume that f ∈ M†
(1,−k)(K

p) is an overconvergent modular
TS-eigenform of weight 1+k with k ∈ Z⩾1 such that its associated Galois representa-
tion ρf is absolutely irreducible. Then f is a classical modular form if and only if ρf
is de Rham at p.

Remark 5.10. — Note that we only assume that f is an eigenform for the spheri-
cal Hecke algebra TS rather than T(Kp). In particular, the result does not follow
immediately from considering the q-expansion.

Proof. — We consider the first map in (11)

Homg(Sym
k−1V, H̃1,la(Kp, L))[pf ] ↪−→ Homb((k− 1, 0), H̃1,la(Kp, L))[pf ] = ρ̃k,L[pf ].

We claim that this is actually an equality. If we denote

ρ̃′k,L := Homg(Sym
k−1V, H̃1,la(Kp, L)),

then ρ̃′k,L[pf ] is a GalQ×B(Qp)× T(Kp)-subrepresentation of ρ̃k,L[pf ].
Recall that by Lemma 5.6, we have an isomorphism

ρ̃k,L[pf ] ∼= ρf ⊗L W.

If fixing an GalQp
-equivariant isomorphism (ρf ⊗ Cp)

Θ=0 ∼= L⊗ Cp, (27) gives us an
isomorphism W ⊗̂ Cp

∼= lim−→KpKp
S(k,−1)(K

pKp)
∨
L[pf ]. Moreover, both sides have a

canonical model over L, and the isomorphism is equivariant for the semi-linear action
of GalQp

, so it descends to W ∼= lim−→KpKp
(S(k,−1)(K

pKp)
∨
L)

GalQp [pf ]. In particular,
we see that W is an injective limit of finite dimensional spaces, and in particular,
W ⊗̂ Cp

∼= W ⊗ Cp and thus ρ̃k,L[pf ]⊗ Cp
∼= ρ̃k,L[pf ] ⊗̂ Cp.

From (27), we know that

(29)
(ρ̃k,L[pf ]⊗Cp)

Θ=0 ∼= lim−→
Kp

S(k,−1)(K
pKp)

∨
L[pf ],

(ρ̃k,L[pf ]⊗Cp)
Θ=−k(k) ∼= M†

(1,−k),L[pf ].

On the other hand, by taking RΓ(Fl,−) of Proposition 3.26, we know

ρ̃′k,L ⊗ Cp
∼= lim−→

Kp

S(k,−1)(K
pKp)

∨
L ⊕M(1,−k),L(−k),

where by Serre duality, we have identified

H1(XKpKp,Cp
, ω

(1−k,0)
XKpKp

) ∼= H0(XKpKp
, ω

(k,−1)
XKpKp

(−C))∨ ∼= S(k,−1)(K
pKp)

∨.

Therefore, we see that

(30)
(ρ̃′k,L[pf ]⊗Cp)

Θ=0 ∼= lim−→
Kp

S(k,−1)(K
pKp)

∨
L[pf ],

(ρ̃′k,L[pf ]⊗Cp)
Θ=−k(k) ∼= M(1,−k),L[pf ].

Moreover, by Proposition 3.26, the map

(ρ̃′k,L[pf ]⊗Cp)
Θ=−k(k) −→ (ρ̃k,L[pf ]⊗Cp)

Θ=−k(k)

coincides with the natural inclusion M(1,−k),L ↪→M†
(1,−k),L.
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Now consider V := ρ̃k,L[pf ]/ρ̃
′
k,L[pf ]. Then again by [BLR91], we know V ∼= ρ⊕I

f ,
and by comparing (29) and (30),

(V ⊗ Cp)
Θ=0 ∼= 0, (V ⊗ Cp)

Θ=−k(k) ∼= M†
(1,−k),L[pf ]/M(1,−k),L[pf ].

In particular, we know that I = ∅ and M(1,−k),L[pf ] = M†
(1,−k),L[pf ]. □
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