Homeomorphism groups of basilica, rabbit and airplane Julia sets
[Groupes d’homéomorphismes d’ensembles de Julia : l’avion, la basilique et les lapins]
Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 255-320

The airplane, the basilica and the Douady rabbit (and, more generally, rabbits with more than two ears) are well-known Julia sets of complex quadratic polynomials. In this paper we study the groups of all homeomorphisms of such fractals and of all automorphisms of their laminations. In particular, we identify them with some kaleidoscopic groups or universal groups and thus realize them as Polish permutation groups. From these identifications, we deduce algebraic, topological and geometric properties of these groups.

L’avion, la basilique et le lapin de Douady (et, plus généralement, les lapins à plus de deux oreilles) sont des ensembles de Julia bien connus de polynômes quadratiques complexes. Dans cet article, nous étudions les groupes de tous les homéomorphismes de ces fractales et de tous les automorphismes de leurs laminations. En particulier, nous les identifions à certains groupes kaléidoscopiques ou groupes universels et les réalisons ainsi comme des groupes de permutation polonais. À partir de ces identifications, nous déduisons les propriétés algébriques, topologiques et géométriques de ces groupes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.327
Classification : 22F50, 37F10, 37B45
Keywords: Julia sets, homeomorphisms groups, topological dynamics, Polish groups
Mots-clés : Ensembles de Julia, groupes d’homéomorphismes, dynamique topologique, groupes polonais

Bruno Duchesne  1   ; Matteo Tarocchi  1

1 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2026__13__255_0,
     author = {Bruno Duchesne and Matteo Tarocchi},
     title = {Homeomorphism groups of basilica, rabbit and airplane {Julia} sets},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {255--320},
     year = {2026},
     publisher = {\'Ecole polytechnique},
     volume = {13},
     doi = {10.5802/jep.327},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.327/}
}
TY  - JOUR
AU  - Bruno Duchesne
AU  - Matteo Tarocchi
TI  - Homeomorphism groups of basilica, rabbit and airplane Julia sets
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2026
SP  - 255
EP  - 320
VL  - 13
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.327/
DO  - 10.5802/jep.327
LA  - en
ID  - JEP_2026__13__255_0
ER  - 
%0 Journal Article
%A Bruno Duchesne
%A Matteo Tarocchi
%T Homeomorphism groups of basilica, rabbit and airplane Julia sets
%J Journal de l’École polytechnique — Mathématiques
%D 2026
%P 255-320
%V 13
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.327/
%R 10.5802/jep.327
%G en
%F JEP_2026__13__255_0
Bruno Duchesne; Matteo Tarocchi. Homeomorphism groups of basilica, rabbit and airplane Julia sets. Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 255-320. doi: 10.5802/jep.327

[BdlHV08] B. Bekka, P. de la Harpe & A. Valette - Kazhdan’s property (T), New Math. Monographs, vol. 11, Cambridge University Press, Cambridge, 2008 | DOI | Zbl

[BF15] J. Belk & B. Forrest - “A Thompson group for the basilica”, Groups Geom. Dyn. 9 (2015) no. 4, p. 975-1000 | DOI | Zbl | MR

[BF19] J. Belk & B. Forrest - “Rearrangement groups of fractals”, Trans. Amer. Math. Soc. 372 (2019) no. 7, p. 4509-4552 | DOI | Zbl | MR

[BM00] M. Burger & S. Mozes - “Groups acting on trees: from local to global structure”, Publ. Math. Inst. Hautes Études Sci. 92 (2000), p. 113-150 | Numdam | DOI | Zbl | MR

[Bow99] B. H. Bowditch - Treelike structures arising from continua and convergence groups, Mem. Amer. Math. Soc., vol. 139, no. 662, American Mathematical Society, Providence, RI, 1999 | DOI | Zbl

[BT23] G. Basso & T. Tsankov - “Topological dynamics of kaleidoscopic groups”, Adv. Math. 416 (2023), article ID 108915 | MR | DOI | Zbl

[CD94] W. J. Charatonik & A. Dilks - “On self-homeomorphic spaces”, Topology Appl. 55 (1994) no. 3, p. 215-238 | DOI | Zbl | MR

[Cox93] H. S. M. Coxeter - The real projective plane, Springer-Verlag, New York, 1993 | Zbl | MR

[DH84a] A. Douady & J. H. Hubbard - Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay, vol. 84-2, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 | Zbl | MR

[DH84b] A. Douady & J. H. Hubbard - “Exploring the Mandelbrot set. The Orsay notes” (1984), https://pi.math.cornell.edu/~hubbard/OrsayEnglish.pdf | Zbl

[DH85] A. Douady & J. H. Hubbard - Étude dynamique des polynômes complexes. Partie II, Publications Mathématiques d’Orsay, vol. 85-4, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985, With the collaboration of P. Lavaurs, Tan Lei and P. Sentenac

[DM80] D. Ž. Djoković & G. L. Miller - “Regular groups of automorphisms of cubic graphs”, J. Combin. Theory Ser. B 29 (1980) no. 2, p. 195-230 | DOI | Zbl | MR

[DM19] B. Duchesne & N. Monod - “Structural properties of dendrite groups”, Trans. Amer. Math. Soc. 371 (2019) no. 3, p. 1925-1949 | DOI | Zbl | MR

[DMW19] B. Duchesne, N. Monod & P. Wesolek - “Kaleidoscopic groups: permutation groups constructed from dendrite homeomorphisms”, Fund. Math. 247 (2019) no. 3, p. 229-274 | DOI | Zbl | MR

[Dou86] A. Douady - “Algorithms for computing angles in the Mandelbrot set”, in Chaotic dynamics and fractals (Atlanta, Ga., 1985), Notes Rep. Math. Sci. Engrg., vol. 2, Academic Press, Orlando, FL, 1986, p. 155-168 | DOI | Zbl | MR

[Dou93] A. Douady - “Descriptions of compact sets in C, in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, p. 429-465 | Zbl | MR

[Duc23a] B. Duchesne - “A closed subgroup of the homeomorphism group of the circle with property (T)”, Internat. Math. Res. Notices (2023) no. 12, p. 10615-10640 | DOI | Zbl | MR

[Duc23b] B. Duchesne - “The Polish topology of the isometry group of the infinite-dimensional hyperbolic space”, Groups Geom. Dyn. 17 (2023) no. 2, p. 633-670 | DOI | Zbl | MR

[ET16] D. M. Evans & T. Tsankov - “Free actions of free groups on countable structures and property (T)”, Fund. Math. 232 (2016) no. 1, p. 49-63 | DOI | Zbl | MR

[Gao09] S. Gao - Invariant descriptive set theory, Pure and Applied Math., vol. 293, CRC Press, Boca Raton, FL, 2009 | Zbl | MR

[Gla06] E. Glasner - “On tame dynamical systems”, Colloq. Math. 105 (2006) no. 2, p. 283-295 | DOI | Zbl | MR

[GM18a] E. Glasner & M. Megrelishvili - “Circularly ordered dynamical systems”, Monatsh. Math. 185 (2018) no. 3, p. 415-441 | DOI | Zbl | MR

[GM18b] E. Glasner & M. Megrelishvili - “More on tame dynamical systems”, in Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics, Lect. Notes in Math., vol. 2213, Springer, Cham, 2018, p. 351-392 | Zbl

[GM21] E. Glasner & M. Megrelishvili - “Circular orders, ultra-homogeneous order structures, and their automorphism groups”, in Topology, geometry, and dynamics—V. A. Rokhlin-Memorial, Contemp. Math., vol. 772, American Mathematical Society, Providence, RI, 2021, p. 133-154 | DOI | Zbl

[Gro87] M. Gromov - “Hyperbolic groups”, in Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, p. 75-263 | DOI | Zbl

[Hun35] E. V. Huntington - “Inter-relations among the four principal types of order”, Trans. Amer. Math. Soc. 38 (1935) no. 1, p. 1-9 | DOI | Zbl | MR

[KB02] I. Kapovich & N. Benakli - “Boundaries of hyperbolic groups”, in Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math., vol. 296, American Mathematical Society, Providence, RI, 2002, p. 39-93 | DOI | Zbl | MR

[KS12] A. S. Kechris & M. Sokić - “Dynamical properties of the automorphism groups of the random poset and random distributive lattice”, Fund. Math. 218 (2012) no. 1, p. 69-94 | DOI | Zbl | MR

[Mac11] D. Macpherson - “A survey of homogeneous structures”, Discrete Math. 311 (2011) no. 15, p. 1599-1634 | DOI | Zbl | MR

[Mon13] N. Monod - “Groups of piecewise projective homeomorphisms”, Proc. Nat. Acad. Sci. U.S.A. 110 (2013) no. 12, p. 4524-4527 | DOI | Zbl | MR

[Nad92] S. B. Nadler - Continuum theory, Monographs and Textbooks in Pure and Applied Math., vol. 158, Marcel Dekker, Inc., New York, 1992 | Zbl | MR

[Nek05] V. Nekrashevych - Self-similar groups, Math. Surveys and Monographs, vol. 117, American Mathematical Society, Providence, RI, 2005 | DOI | Zbl | MR

[Ner24] Y. A. Neretin - “On the group of homeomorphisms of the basilica”, Topology Proc. 64 (2024), p. 121-128 | Zbl | MR

[Pes98] V. G. Pestov - “On free actions, minimal flows, and a problem by Ellis”, Trans. Amer. Math. Soc. 350 (1998) no. 10, p. 4149-4165 | DOI | Zbl | MR

[Pes99] V. G. Pestov - “Topological groups: where to from here?”, Topology Proc. 24 (1999), p. 421-502 | Zbl | MR

[PT24] D. Perego & M. Tarocchi - “A class of rearrangement groups that are not invariably generated”, Bull. London Math. Soc. 56 (2024) no. 6, p. 2115-2131 | DOI | Zbl | MR

[Ros17] C. Rosendal - “Equivariant geometry of Banach spaces and topological groups”, Forum Math. Sigma 5 (2017), article ID e22, 62 pages | MR | DOI | Zbl

[Ros22] C. Rosendal - Coarse geometry of topological groups, Cambridge Tracts in Math., vol. 223, Cambridge University Press, Cambridge, 2022 | Zbl | MR

[Rus03] B. Russell - The principles of mathematics. Vol I, Cambridge University Press, Cambridge, 1903 | Zbl

[Smi17] S. M. Smith - “A product for permutation groups and topological groups”, Duke Math. J. 166 (2017) no. 15, p. 2965-2999 | DOI | Zbl | MR

[Tar24a] M. Tarocchi - “Generation and simplicity in the airplane rearrangement group”, Groups Geom. Dyn. 18 (2024) no. 2, p. 603-634 | DOI | Zbl | MR

[Tar24b] M. Tarocchi - Rearrangement Groups of Fractals: Structure and Conjugacy, PhD thesis, Universitá degli Studi di Milano-Bicocca, Universitá degli Studi di Pavia, 2024, arXiv:2412.02339 | Zbl

[Tar25] M. Tarocchi - “On Thompson groups for Ważewski dendrites”, Math. Proc. Cambridge Philos. Soc. 179 (2025) no. 1, p. 189-231 | DOI | Zbl | MR

[Tru09] J. K. Truss - “On the automorphism group of the countable dense circular order”, Fund. Math. 204 (2009) no. 2, p. 97-111 | MR | DOI | Zbl

[Tsa12] T. Tsankov - “Unitary representations of oligomorphic groups”, Geom. Funct. Anal. 22 (2012) no. 2, p. 528-555 | DOI | Zbl | MR

[Waż23] T. Ważewski - Sur les courbes de Jordan ne renfermant aucune courbe simple fermée de Jordan, Thèses de l’entre-deux-guerres, no. 37, 1923 | Numdam

Cité par Sources :