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HOMEOMORPHISM GROUPS OF BASILICA, RABBIT AND

AIRPLANE JULIA SETS

by Bruno Duchesne & Matteo Tarocchi

Abstract. — The airplane, the basilica and the Douady rabbit (and, more generally, rabbits
with more than two ears) are well-known Julia sets of complex quadratic polynomials. In this
paper we study the groups of all homeomorphisms of such fractals and of all automorphisms of
their laminations. In particular, we identify them with some kaleidoscopic groups or universal
groups and thus realize them as Polish permutation groups. From these identifications, we de-
duce algebraic, topological and geometric properties of these groups.

Résumé (Groupes d’homéomorphismes d’ensembles de Julia : l’avion, la basilique et les lapins)
L’avion, la basilique et le lapin de Douady (et, plus généralement, les lapins à plus de deux

oreilles) sont des ensembles de Julia bien connus de polynômes quadratiques complexes. Dans
cet article, nous étudions les groupes de tous les homéomorphismes de ces fractales et de tous
les automorphismes de leurs laminations. En particulier, nous les identifions à certains groupes
kaléidoscopiques ou groupes universels et les réalisons ainsi comme des groupes de permutation
polonais. À partir de ces identifications, nous déduisons les propriétés algébriques, topologiques
et géométriques de ces groupes.
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Introduction

Abstract definitions of classical fractals and identification of the homeomorphism groups

Since its introduction on the stage of mathematics, fractal geometry has had plenty
of fruitful interactions with group theory. Geometric group theory often fabricates
fractal spaces associated to groups, such as boundaries of hyperbolic spaces (intro-
duced in [Gro87, §1.8], see also the survey [KB02]) and limit spaces of contracting
self-similar groups [Nek05, Ch. 3]. In the converse direction, Julia sets (fractals aris-
ing from complex dynamics) have been used as a main ingredient for defining certain
groups known as iterated monodromy groups [Nek05, Ch. 5]. Recent interest in groups
acting on fractals, such as rearrangement groups [BF19] (which are discrete count-
able examples) or dendrite and kaleidoscopic groups [DMW19] (uncountable Polish
groups), is also noteworthy.

Julia sets of quadratic polynomials are compact sets that exhibit numerous abstract
homeomorphisms, independent of their embedding in the complex plane. However, the
study of their homeomorphism groups appears to have been largely overlooked, with
the notable exception of [Ner24]. In this paper, we study certain well-known fractal
spaces: the airplane A (Figure 1) and the rabbits Rn, which include the basilica B

(Figure 2), the Douady rabbit R3 (Figure 3) and others (Figure 4). All of these are
Julia sets of complex quadratic polynomials.

Figure 1. The airplane Julia set.

Figure 2. The basilica fractal.
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Homeomorphism groups of basilica, rabbit and airplane Julia sets 257

Figure 3. The Douady rabbit fractal.

Our focus is on analyzing their full homeomorphism groups and certain natural
positive subgroups that preserve the associated laminations. We begin by providing
topological characterizations of these fractals. These characterizations apply to the
basilica, rabbit, and airplane Julia sets, as well as to the limit spaces of specific edge
replacement systems, as detailed in Appendices B and C, respectively.

Recall that a Peano continuum is a compact, metrizable, connected, and locally
connected space. Peano continua are path-connected, for example because of [Nad92,
Th. 8.23]. By an arc of such a continuum, we mean a subset that is homeomorphic to
the topological interval [0, 1] and by a circle we mean a subset that is homeomorphic
to the topological circle S1. Finally, recall that the order of a point is the number of
connected components of its complement, and a point is a cut point if its order is at
least 2. With this in mind, we present our abstract definition of rabbits.

Definition A. — A rabbit is a Peano continuum that enjoys the following properties.

(1) The set of points that belong to multiple circles is dense.
(2) If two points belong to distinct circles, they are separated by a cut point.
(3) For any two points each of which belongs to some circle, every arc between

them is included in a union of finitely many circles.

A rabbit is n-regular (n ⩾ 2) if its cut points all have the same order n ∈ N⩾2∪{∞}.
A basilica is a 2-regular rabbit and a Douady rabbit is a 3-regular rabbit.
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258 B. Duchesne & M. Tarocchi

Figure 4. A 5-regular rabbit.

We also define abstract airplanes with a very similar definition. The main difference
with rabbits is the relative position of circles: no point belongs to more than one circle
and there is a third circle between every two of them.

Definition B. — An airplane is a Peano continuum that enjoys the following prop-
erties.

(1) The set of all cut points that belong to circles is dense.
(2) If two points belong to distinct circles, they are separated by a third circle.
(3) Any two distinct circles are disjoint.
(4) Every cut point has order 2.

We prove that rabbits and the airplane are unique in the following sense.

Theorem A (Theorems 1.25 and 2.12). — Up to homeomorphism, there is a unique
airplane and, for each n ⩾ 2, there is a unique regular n-rabbit.

Thanks to this uniqueness, we denote by A the airplane and Rn the n-regular
rabbit. The key tool to prove Theorem A is to associate another topological space that
encodes the arrangements of circles: the dendrite or tree of circles. For the airplane,
this dendrite is the universal Ważewski dendrite D∞. Let us recall that a dendrite
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Homeomorphism groups of basilica, rabbit and airplane Julia sets 259

is a Peano continuum where any two points are joined by a unique arc and can be
thought as a compact metric tree. The universal Ważewski dendrite is the unique
dendrite such that branch points have infinite order and are dense (it is universal in
the sense that it includes homeomorphically any other dendrite, see [Waż23]). For the
regular n-rabbit, the tree of circles is the (n,∞)-biregular tree Tn,∞, i.e., any edge
joins a vertex of degree n and one of infinite degree.

Every homeomorphism of the fractal spaces that we consider induces a homeo-
morphism of the associated dendrite of circles in the case of the airplane or an auto-
morphism of the tree of circles in the case of rabbits. Moreover, the homeomorphism
group of the fractal space acts faithfully on this dendrite or tree of circles. However,
since the topology of each circle in the fractal space is preserved under homeomor-
phisms, not every homeomorphism of the dendrite or tree of circles corresponds to a
homeomorphism of the fractal space.

The preservation of each circle’s structure is captured by the separation relation:
two pairs of distinct points, (x, y) and (a, b), in a circle C are said to be separated if a
and b lie in different connected components of C∖{x, y}. For a dense countable subset
of a circle, we define Aut(S) as the group of all bijections of this set that preserve the
separation relation. In fact, all such bijections induce homeomorphisms of the circle
and either preserve or reverse its cyclic order. For more details on separation relations,
cyclic orders, and their automorphism groups, see Appendix A.

In [BM00], Burger and Mozes introduced the concept of a universal group U(Γ)

for automorphisms of the n-regular tree Tn, given a permutation group Γ ⩽ Sym([n])

(where [n] = {1, . . . , n} if n is finite and [∞] = N). The universal group U(Γ) is
characterized by the property that the local action, i.e., the action induced on the
neighborhood of each vertex, lies in Γ. This construction was later generalized by
Smith in [Smi17] for biregular trees Tm,n, where m,n are countable and possibly
infinite. In this case, two permutation groups Γm ⩽ Sym([m]) and Γn ⩽ Sym([n]) are
used to construct the universal group U(Γm,Γn).

For Ważewski dendrites, these universal groups inspired the construction of kalei-
doscopic groups, introduced by the first author, Monod, and Wesolek in [DMW19].

We prove the following identifications of the groups of homeomorphisms of rabbits
and the airplane.

Theorem B (Theorems 1.29 and 2.16). — The homeomorphism group of the Airplane
is the kaleidoscopic group K(Aut(S)) and the homeomorphism group of the regular
n-rabbit is the universal group U(Sym([n]),Aut(S)).

Remark A (Remark 1.23). — In the case of the regular 2-rabbit, which is the basil-
ica, since U(Sym([2]),Aut(S)) and U(Aut(S)) are isomorphic groups, this result was
already obtained by Neretin in [Ner24]. Moreover, he gave some hint about how his
result should be modified for the airplane.

We emphasize that in Theorem B, the identification is not only as abstract groups
but also as Polish groups. Recall that a Polish group is a separable, completely metriz-
able topological group. For example, the compact-open topology is a Polish topology
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260 B. Duchesne & M. Tarocchi

on the homeomorphism group of a compact metrizable space, while the permutation
topology (also known as the topology of pointwise convergence) equips the group of
all bijections of a countable set (such as the branch points of the Ważewski den-
drite or the vertices of a biregular tree) with a Polish topology. In particular, the
homeomorphism groups of the airplane or an n-regular rabbit are non-Archimedean
groups.

Although, in general, we do not consider fractal spaces as embedded in the plane,
it is natural — when realizing them as Julia sets of quadratic polynomials — to endow
them with an orientation arising from this embedding. More precisely, we can equip
each circle and each set of components in the complement of a branch point with a
cyclic order and study the subgroups that preserve this orientation. For a rigorous
definition, see Section 3, where we define the kaleidoscopic group K(Aut(O)) and
universal groups U(Cyc(n),Aut(O)) for finite n. Here, Aut(O) denotes the automor-
phism group of the dense countable cyclic order, and Cyc(n) is the cyclic group of
finite size n within Sym([n]). We denote these groups by Homeo+(A) in the case of
the airplane and Homeo+(Rn) in the case of an n-regular rabbit. Throughout this
paper, this last notation will be used only in the case where n is finite, contrarily to
Homeo(Rn) that implicitly includes the case n =∞.

Following Thurston, it has become standard to associate a lamination of the unit
disk with any Julia set (see Figure 5 for examples). When realizing A or Rn (for n
finite) as the Julia set of a quadratic polynomial, we naturally obtain an associated
lamination.

Figure 5. The 4-rabbit lamination and the airplane lamination.

Theorem C (Theorem 3.4 and Corollary 3.6). — The group Homeo+(A) and the
groups Homeo+(Rn) are the subgroups of Homeo+(S1) that preserve the associated
laminations, which are closed in Homeo+(S1).

Moreover, we prove in Appendix B.3 that the groups Homeo+(A) and Homeo+(Rn)

correspond to the groups of homeomorphisms of the Julia sets that can be extended
to homeomorphisms of the entire complex plane.
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Consequences of the identification of the groups. — Thanks to our identification, we can
deduce algebraic, topological, dynamical and geometric properties of the groups. Let
us start with simplicity results.

Theorem D (Corollaries 1.30 and 2.17 and Theorem 3.9). — The groups Homeo(A),
Homeo+(A) and Homeo(Rn) for n ⩾ 3 are simple. The groups Homeo(Rn) for n = 2

and Homeo+(Rn) for n ⩾ 2 have index-n simple commutator subgroup.

Given a family of groups, it is natural to investigate whether one group can be em-
bedded into another and whether they are isomorphic. The following theorem gathers
results addressing these questions, beginning with a general statement about univer-
sal groups and kaleidoscopic groups associated with the same permutation group. For
instance, an immediate consequence is that the homeomorphism group of the basilica
can be embedded into the homeomorphism group of the airplane.

Theorem E (Section 4)

(1) For any permutation group Γ, the universal group U(Γ) embeds topologically in
the kaleidoscopic group K(Γ).

(2) For every 2 ⩽ n < m, there are topological group embeddings

Homeo(Rn) ↪−→ Homeo(Rm).

(3) The group Homeo(Rm) does not embed into Homeo(Rn) for 4 ⩽ n < m.
(4) The abstract groups Homeo+(Rn) and Homeo+(Rm) are isomorphic if and only

if n = m.
(5) As soon as n|m, there are topological group embeddings

Homeo+(Rn) ↪−→ Homeo+(Rm) ↪−→ Homeo+(B).

In particular, the first point implies that

Homeo(B) ↪−→ Homeo(A) and Homeo+(B)←−↩ Homeo+(A).

Up to this point, the results have been largely similar for the airplane and the
regular rabbits. The following results highlight the differences arising from the distinct
nature of Ważewski dendrites and biregular trees.

Recently, Rosendal extended geometric group theory beyond discrete (and more
generally, locally compact) groups to more general contexts, specifically Polish groups
[Ros22]. By introducing the left coarse structure for topological groups, Rosendal
replaces relatively compact subsets with coarsely bounded subsets — those with
bounded orbits under any continuous isometric action. For a Polish group generated
by a coarsely bounded subset, the group acquires a canonical quasi-metric structure,
allowing meaningful discussion of the group’s quasi-isometry type (see [Ros22, §§2.8
& 2.9]).

Every topological group G is equipped with two uniform structures: the left and
the right uniformities. The Roelcke uniformity is the meet of these two structures.
A subset of G is termed Roelcke precompact if its completion under the Roelcke
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262 B. Duchesne & M. Tarocchi

uniform structure is compact. By definition, any Roelcke precompact subset is also
coarsely bounded [Ros22, §3.1].

Theorem F (Proposition 5.2 and Corollary 5.1). — The topological groups Homeo(Rn)

and Homeo+(Rn) are locally Roelcke precompact, in particular locally bounded, and
quasi-isometric to the infinite-order tree T∞. On the other hand, the topological groups
Homeo(A) and Homeo+(A) are Roelcke precompact and thus coarsely bounded.

Another difference between the airplane and the regular rabbits comes from their
unitary representation theory. Recall that the Haagerup property and property (T)
are opposite properties (see Section 5.2 for definitions).

Corollary A (Theorem 5.5). — The Polish groups Homeo(Rn) and Homeo+(Rn)

have the Haagerup property. On the other hand, Homeo(A) and Homeo+(A) have
property (T).

For a topological group G, a G-flow is a compact Hausdorff space equipped with
a continuous action of G. Among minimal G-flows (those without proper non-empty
invariant subspaces), there exists a universal one: any other minimal G-flow is an
equivariant factor of this universal minimal flow. Understanding this flow provides
significant insight into the topological dynamics of the group. However, this space is
often very large; for instance, for locally compact non-compact groups, the universal
minimal flow is always non-metrizable. Actually, one can find a copy of the Stone-Cech
compactification βX of an infinite discrete X in such minimal flow by the discussion
following [Pes99, Th. 3.1.1].

In the case of Homeo(A), this group can be identified with a kaleidoscopic group
where the local action is oligomorphic. As a result, the identification of the universal
minimal flow of Homeo(A) follows directly from [BT23, Th. 1.1]. For Homeo+(A),
however, the universal minimal flow has a particularly explicit description. Following
[GM18a], for a subset A ⊆ S1, let Split(S1, A) denote the compact space obtained
from S1 (with its continuous cyclic order) by replacing each point a ∈ A with a pair
of points a−, a+, where a+ is the cyclic successor of a−. Let P be the countable set
that corresponds to the preimage of the set of cut points of A under the Carathéodory
loop.

Theorem G (Proposition 6.7 and Theorem 6.3). — The universal minimal flow of
Homeo(A) is metrizable and the universal minimal flow of Homeo+(A) is Split(S1, P ).

We observe in particular that Split(S1, P ) has a Homeo+(A)-invariant cyclic order,
but the following sequence of equivariant factors

Split(S1, P ) −→ S1 −→ A −→ D∞

gives an example where the universal minimal flow is cyclically ordered while some
other minimal flows are not, since A and D∞ have no invariant cyclic order under
Homeo+(S1) (Proposition 6.6). This answers a question of Glasner and Megrelishvili,
[GM18a, Quest. 4.9].
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Figure attributions. — The pictures of Julia sets displayed in this article were pro-
duced using Python code developed by the first author, which is available at the follow-
ing link: https://gitlab.imo.universite-paris-saclay.fr/bruno.duchesne/
julia-sets-in-python

The pictures of laminations (Figure 5) were instead made with software developed
by Caleb Falcione, which is available at the following link: https://csfalcione.
github.io/lamination-builder/.
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1. The rabbits and the basilica

In this section we consider the family of fractals that we call rabbits, which general-
ize the notorious basilica and the Douady rabbit fractals (Figures 2 and 3). We discuss
their topological characterization, which we gave in Definition A (it is shown in Ap-
pendix B that certain Julia sets satisfy this topological characterization). We expand
on the ideas of [Ner24] and we prove that the homeomorphism groups of rabbits are
topologically isomorphic to certain locally determined universal groups of automor-
phisms of biregular trees, which were introduced and studied in [Smi17].

1.1. Topological characterization of rabbits. — Throughout this work, given
points a, b ∈ X (or subsets A,B ⊆ X), we say that a point p or a subset S ⊂ X

separates a and b if they lie in distinct connected components of X ∖ {p} or X ∖ S

(or separates A and B if they are included in distinct connected components of
X ∖ {p} or X ∖ S).

Let us now focus on the family of rabbits, which we defined in Definition A.

Remark 1.1. — Without condition (3), Definition A would include Julia sets such as
that for the map z 7→ z2 + c where c ≈ −1.311, which is depicted in Figure 6.

Definition 1.2. — A point of a rabbit is said to be:
– an end point if it does not belong to any circle,
– a cut point if its complement is not connected,
– a regular point if it belongs to a circle and is not a cut point (equivalently thanks

to Lemma 1.3 right below, if it belongs to a unique circle).

The reason behind the name of end points will be clarified with Remark 1.15, after
the introduction of the tree of circles.
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Figure 6. A space that satisfies conditions 1 and 2 but not 3 of Definition A.

The next two lemmas show why all conditions of Definition A are essential.

Lemma 1.3. — The intersection between two distinct circles of a rabbit is either empty
or consists of a sole cut point.

Proof. — Consider two distinct circles C1 and C2 of a rabbit. It is impossible that one
includes the other, so there exist points p ∈ C1∖C2 and q ∈ C2∖C1. By condition (2)
of Definition A, p and q are separated by a cut point. Because of this, C1 and C2 cannot
meet at more than one point, as otherwise p and q could not be separated by a cut
point. Then C1 ∩ C2 is either empty or consists of a sole cut point. □

Lemma 1.4. — The order of a cut point is equal to the number of circles that include it.

Proof. — We need to show that the removal of a cut point p from a rabbit R produces
a distinct connected component for each circle C that contains p.

By condition (2) of Definition A there is a distinct connected component for each
circle that meets at p. Indeed, if two circles C1 and C2 at p are such that C1∖{p} and
C2∖{p} lie in the same connected component of R∖{p}, then it would be impossible
to separate C1 and C2 with a single cut point in R, which contradicts condition (2).

For the converse, if A is a connected component of R∖ {p}, we need to show that
A∪{p} meets p in a circle. Fix another connected component B at p, which is going to
be useful to apply condition (3) of Definition A. Since R is locally connected (by the
definition of Peano continua), A and B are open, so there exist points a ∈ A and b ∈ B
that belong to multiple circles by condition (1) of Definition A. Fix any arc [a, b] and
note that it must contain p, since p separates A ∋ a and B ∋ b. By condition (3) of
Definition A, since both a and b belong to some circle, the arc [a, b] is included in
a union of finitely many circles. In particular, its subset [a, p) is included in a union
of finitely many circles. Then there is some q ∈ [a, p) such that [q, p) is included in
some circle C. Since C is closed, we have that p ∈ C. Finally, observe that if a circle
intersects A non-trivially then it must be entirely included in A ∪ {p}. Thus, C ⊆ A

and we are done. □
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Corollary 1.5. — A point of a rabbit is a cut point if and only if it belongs to multiple
circles.

Remark 1.6. — Note that the order of a cut point of a rabbit is at most countably
infinite. Indeed, since rabbits are Peano continua they are locally connected second
countable spaces, so the complement of a point is a union of disjoint open connected
subsets and, by second countability, there are at most countably many such subsets.

In a similar fashion, the removal of a circle must produce at most countably many
connected components, so each circle contains at most countably many cut points.
Because of condition (1) of Definition A, it must contain at least countably many,
so each circle has precisely countably many cut points.

Lemma 1.7. — Any point of an arc minus its end points is contained in some circle.

Proof. — Let I = [a, b] be an arc in a rabbit R and let p ∈ (a, b) := [a, b]∖ {a, b}. If p
is a cut point, then it belongs to multiple circles by Corollary 1.5, so there is nothing
to prove. If p is not a cut point, then R∖ {p} is connected and thus path-connected
because R is a Peano continuum. It follows that there exists an arc I∗ that joins a
and b while avoiding p. Then I ∪ I∗ must include some circle that contains p. □

Lemma 1.8. — The set of cut points of a rabbit is arcwise dense, i.e., it has non-trivial
intersection with any arc.

Proof. — Let us show that any arc I = [a, b] contains cut points. Fix a point p ∈ (a, b)

and assume that it is not a cut point. Then, up to taking a subinterval, we can
assume that (a, b) is entirely included in some circle C. Let U be a path-connected
neighborhood of p that does not contain a and b (which can be found because R is
locally path-connected). By condition (1) of Definition A, U contains some point p′
that belongs to some circle. Let I ′ be an arc in U that joins p and p′. The first point q
in which I ′ meets C (coming from p′) must also belong to I, because U does not
contain a and b. The point q must be a cut point, so we are done. □

Proposition 1.9. — Let X be a Hausdorff compact space and consider a point x ∈ X.
Assume that Ox is a collection of open subsets of X containing x and with the property
that, for every y ∈ X, there exists Uy ∈ Ox such that y /∈ Uy. Then Ox is a subbasis
of neighborhoods at x.

Moreover, given such collections Ox for every x ∈ X, their union O =
⋃

x∈X Ox is
a subbasis for the topology of X.

Proof. — Let V be an open subset of X and x ∈ V . We want to show that there
exist finitely many elements of the collection Ox whose intersection contains x and is
included in V . Observe that⋂{

Uy | y ∈ X ∖ V
}
∩ (X ∖ V ) = ∅,

otherwise there would exist y ∈ X ∖ V contained in Uy, which is a contradiction.
Since X is compact and the infinite intersection in the previous equation is empty,

J.É.P. — M., 2026, tome 13



266 B. Duchesne & M. Tarocchi

there exist y1, . . . , yn ∈ X ∖ V such that

Uy1 ∩ · · · ∩ Uyn ∩ (X ∖ V ) = ∅,

meaning that Uy1
∩ · · · ∩ Uyn

⊆ V , as needed. □

Using this proposition, it is easy to show the following useful fact.

Corollary 1.10. — Given a rabbit R, the collection of all connected components of R
minus finitely many of its circles is a subbasis for the topology of R.

1.2. The tree of circles of a rabbit. — In this subsection we will see how the circles
of a rabbit are arranged in a tree-like manner, which is going to be essential when
studying their homeomorphism groups.

Definition 1.11. — Given an arc I in a rabbit R and a subset S ⊆ R, we say that I
traverses S if the intersection I ∩ S includes a non-degenerate arc (i.e., an arc that is
not a singleton).

We will often be using the previous definition in the case in which S is a circle.
In that case, because of condition (2) of Definition A, we can equivalently say that
an arc I traverses a circle C if I ∩ C contains at least two points.

Definition 1.12. — Given a rabbit R, its tree of circles TR is the (undirected) graph
defined as follows.

– The set of vertices consists of the circles and the cut points of R.
– There is an edge between a circle C and a cut point p when p ∈ C.

The fact that the graph TR is really a tree is proved in Lemma 1.14.

Remark 1.13. — Because of Lemma 1.3 and by condition (3) of Definition A, there
is a natural surjective map from the set of arcs of a rabbit R joining cut points or
regular points onto the set of paths of the graph TR. An arc I = [p, q] is mapped to
the sequence of circles traversed by I (Definition 1.11), interposed by the cut points
between them. If p is a cut point, then the first vertex of the path is p itself; if p is a
regular point that belongs to a unique circle C, then the first vertex is C. The same
goes for q. The preimages of this map are only distinguished by the choice of one of
the two orientations of each traversed circle and possibly by a choice of regular point
of C when the initial (terminal) vertex of the path is a circle C.

Lemma 1.14. — Given a rabbit R, the graph TR is a tree. Moreover, if a vertex is a
circle then its degree is countably infinite and if it is instead a cut point then its degree
is the order of the cut point.

Proof. — Since rabbits are path-connected (because they are Peano continua), by the
previous Remark 1.13 the graph TR is connected. Now, a cycle in TR would need to
contain at least two distinct cut points and two distinct circles as vertices. This would
correspond to two distinct circles being joined by two arcs that travel through distinct
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cut points. Then the two circles would not be separated by a cut point, which would
violate condition (2) of Definition A. Hence, TR is a tree.

By Lemma 1.4, each cut point p belongs to one circle for each of the connected
components of R ∖ {p}. Thus, the degree of p in TR is the order of the cut point.
As noted in Remark 1.6, each circle contains countably many cut points, so its degree
in TR is infinite. □

Remark 1.15. — The set of end points of rabbits (Definition 1.2) corresponds to the
set ∂T of ends of the tree of circles (i.e., the set of semi-infinite paths from an arbitrary
fixed vertex).

Indeed, if e is an end point and C0 is an arbitrary circle, consider an arc I from
C0 to e. By Lemma 1.7, I ∖ {e} is included in a union of circles. The arc I thus
traverses (Definition 1.11) an infinite sequence of distinct circles (C1, C2, . . . ) which
corresponds, by Remark 1.13, to a semi-infinite path in TR from the vertex C0. Con-
versely, a semi-infinite path in TR from C0 corresponds to an infinite sequence of
distinct circles (C1, C2, . . . ). If Bk is the unique connected component of R∖Ck that
meets Ck+1, then the intersection of all the Bk’s is non-empty (because each finite
intersection B0∩· · ·∩Bk is non-empty and R is compact). Points in the intersection of
all the Bk’s are end points, as they cannot belong to a circle by condition (3) of Def-
inition A, so the correspondence between end points and semi-infinite paths from C0

is surjective. Finally, given two distinct end points e1 and e2, since R is a metrizable
space the arcs I1 and I2 from C0 to e1 and e2, respectively, must eventually diverge.
Then the sequences of circles that they meet cannot be the same, so neither can the
semi-infinite paths in TR.

This argument also shows that, given an end point e that corresponds to a sequence
(C0, C1, . . . ) of circles, the set {Bk}k∈N (each Bk as described above) is a basis of
neighborhoods at e.

1.3. Legal coloring of the tree of circles. — In this and the following sections,
we focus our attention on the regular rabbits, which include the basilica and the
Douady rabbit.

Definition 1.16. — Any tree T has a unique natural bipartition {A,B} of vertices
in which any two vertices lie in the same part of the partition if and only if their
distance is even. A tree T is (n,m)-biregular if every vertex of A has degree n and
every vertex of B has degree m, where n,m ∈ N ∪ {∞}.

Remark 1.17. — For every rabbit R, its tree of circles TR is bipartitioned into the
sets of circles and of cut points of R. By Lemma 1.14, TR is an (n,∞)-biregular tree
if and only if R is an n-regular rabbit.

For each circle C of a rabbit, we want to encode the cyclic structure of the cut
points belonging to C in the tree TR. We will do this by using certain colorings
of TR. We cannot employ the renowned construction of [BM00] because the trees of
circles are not regular trees of finite degree. We instead use the technology developed
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in [Smi17], which generalizes the construction of Burger and Mozes to the case of
biregular trees and allows infinite degree. Let us first describe how this works.

Definition 1.18. — Given a graph T (undirected and without loops nor parallel
edges), a half-edge of T is an ordered pair of adjacent vertices. If T is a graph,
we denote by H(T ) the set of half-edges of T . Given a vertex v of a graph, we denote
by out(v) the set of half-edges that originate from v and by in(v) the set of half-edges
that terminate at v.

In [Smi17] half-edges are instead called arcs, but we avoid this term because we
are already using it for the arcs of topological spaces. The term half-edge is inspired
by the fact that each edge between v and w corresponds precisely to two half-edges,
namely (v, w) and (w, v).

Remark 1.19. — Let TR be the tree of circles of a rabbit. If v = C is a circle, then we
can naturally identify out(C) with the set of cut points that belong to C. If instead
v = p is a cut point, then we identify out(p) with the set of circles that p belongs to,
or equivalently with the set of connected components of R∖ {p}.

Each circle C has two natural cyclic orders, each inducing the same separation
relation (see Appendix A). Thanks to condition (1) of Definition A, restricting these
relations to the set of cut points belonging to C yields a countable dense cyclic order.
With the identification of out(C) with the set of cut points that belong to C, we thus
have two natural dense cyclic orders inducing a unique separation relation on out(C),
for each circle C of the rabbit R

In order to equip TR with the dense cyclic order on out(C), we rely on the tool
defined right below.

Definition 1.20 ([Smi17]). — Let T be an (n,m)-biregular tree (n,m ∈ N ∪ {∞})
with bipartition {A,B}. A legal coloring of T with colors Kn and Km is a coloring k
of its half-edges, i.e., a map

k : H(T ) −→ Kn ∪Km,

that enjoys the following properties:
(1) for all v ∈ A, k maps out(v) bijectively to Kn;
(2) for all v ∈ B, k maps out(v) bijectively to Km;
(3) for all v ∈ V (T ), k is constant on in(v).

For example, Figure 7 portrays the legal coloring of a finite portion of a (3, 4)-
biregular tree, where each half-edge (v, w) is represented by the half of the edge
{v, w} that originates from v and whose arrow points towards w.

Note that, by [Smi17, Prop. 11], legal colorings form an orbit under the action
of Aut(T ), i.e., every two legal colorings with the same set of colors differ from an
automorphism of T and the image of a legal coloring is another legal coloring. The
third condition of Definition 1.20 is key to this.
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Figure 7. A legal coloring of a finite portion of a (3, 4)-regular tree.

Lemma 1.21. — Let R be an n-regular rabbit. Let Ω be a countable set together with
a dense cyclic order OΩ and, if n is finite, let [n] = {1, . . . , n} be equipped with its
standard cyclic order. For each circle C of R, equip out(C) with a countable dense
cyclic order on the cut points of C as described in Remark 1.19 and, if n is finite,
for each cut point p of R, equip out(p) with a cyclic order. Then there is a legal
coloring with colors ([n],Ω) whose restriction to out(v) is an isomorphism of cyclic
orders for each vertex v (only for those that correspond to circles, if n is infinite).
In particular, by Lemma A.5 it is an isomorphism of the induced separation relations
(Definition A.2).

Proof. — We are going to repeatedly use the fact that the set of cut points of each
circle C is naturally endowed with two countable dense cyclic orders that induce the
same separation relation. On each circle, we fix any of the two. This induces a unique
separation relation on each out(C), as described in Remark 1.19.

Fix a starting circle C0 of R. The correspondence between the set out(C0) of half-
edges of TR originating at C0 and the set of cut points of C0 induces the desired
bijection out(C)→ Ω that preserves the cyclic orders.

Proceeding by induction, suppose that T is a subtree of TR whose leaves are circles
of R and that we have already built the map k on the half-edges originating from T

(i.e., on the half-edges (v, w) ∈ out(v) for each v ∈ V (T ), even if w does not belong
to T ) in such a way that
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(1) for each circle C of T , k maps out(C) bijectively to Ω and preserves the cyclic
orders;

(2) for each cut point p of T , k maps out(p) bijectively to [n] and, if n is finite,
preserves the cyclic orders;

(3) for each vertex v of T , k is constant on in(v).
Suppose that p is a cut point that does not belong to T and is adjacent in TR to some
circle C of T . We need to show that we can add p to T along with all circles that
are adjacent to it and extend the coloring in such a way that the above conditions
are satisfied. This will eventually color every vertex of TR. Given p and C as above,
define k(p, C) as k(q, C) for any other cut point q in T that belongs to C (in the first
step, when V (T ) = {C}, this choice is instead arbitrary). Then complete k(p,−) to a
bijection such that k(p, C ′) satisfies condition (2). Next, for each circle C ′ ̸= C that is
adjacent to p define k(C ′, p) = k(C, p), so that condition (3) holds at the vertex p. For
each C ′, color out(C ′) in such a way that condition (1) holds. The map k extended
in this way satisfies all conditions, so we are done. □

In the remainder of this section, which of the two cyclic orders we fix on each
circle will not matter, as they induce the same separation relation. The cyclic order
on out(p) (for p a cut point) too is not going to matter here. These are only going to
come into play in Section 3.

1.4. Universal groups of biregular trees. — A graph automorphism g permutes
the half-edges around each vertex. In particular, for any vertex v we consider the
bijection g|out(v) : out(v)→ out(g(v)).

Definition 1.22. — Let T be an (n,m)-biregular tree with bipartition {A,B} and
fix a legal coloring k of T . Given N ⩽ Sym(Kn) and M ⩽ Sym(Km), the associated
universal group with prescribed local actions Uk(N,M) (or simply U(N,M) if k is
understood) is the group of those automorphisms g of T that preserve the bipartition
and such that, for all v ∈ V (T ),

(1.1) k|out(g(v)) ◦ g|out(v) ◦ k|−1
out(v) ∈

{
N if v ∈ A,
M if v ∈ B,

i.e., the permutation of colors induced by g at the vertex v belongs to N or M ,
depending on whether v belongs to A or B. We endow Uk(N,M) with the pointwise
convergence topology.

We will denote the color permutation induced by g around v by
σg(v) := k|out(g(v)) ◦ g|out(v) ◦ k|−1

out(v).

This is called the local action of g at v.
The paper [Smi17] studies the topological and transitive properties that U(N,M)

inherits from N and M . It also shows that U(N,M) is topologically isomorphic to
its permutation group of the vertices of one of the two parts of the bipartition, which
Smith calls the box product and denotes by N ⊠M .
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Remark 1.23. — As noted in the third paragraph of Remark 4 of [Smi17], when
n = 2 there is natural identification between the universal group U(Sym([2]),M)

and the Burger-Mozes group U(M) that acts on an m-regular tree. More precisely,
U(Sym([2]),M) and U(M) are permutation isomorphic if we consider the action of
the first on the set of vertices of degree m. This identification is found simply by
taking the barycentric subdivision of the m-regular tree.

In particular, it is not hard to see that the group U(Sym([2]),Aut(S)) that we will
describe in the next subsection for the basilica (which is the 2-regular rabbit) is the
same as the Burger-Mozes group found in [Ner24].

1.5. Uniqueness of the regular rabbits. — Existence of n-regular rabbits is proved
in Appendices B and C, when n is finite. On the other hand, an ∞-rabbit cannot be
a Julia set nor a limit space (indeed, points of Julia sets and limit spaces have finite
order). However, ∞-rabbits exist as topological spaces. Let us sketch a construction
of R∞. Consider the biregular tree T = T∞,∞ and fix an embedding of T in the plane
such that each edge is realized as a segment and for each vertex the set of directions
of segments attached to it is dense in the projective line. Let A and B be the sets of
the bipartition. For a finite subset F of B, let XF be the topological space obtained
by blowing up in the plane all vertices in F . This gives an inverse system. Let X∞ be
the inverse limit. Consider the equivalence relation that identifies all points lying on
the same edge. The quotient space is an ∞-regular rabbit.

The following proposition shows that there is a unique n-regular rabbit for each n
(up to homeomorphisms). Given a rabbit R and its tree of circles T , below we denote
by π : R → T the map that sends each end point to the corresponding point of ∂T ,
each cut point to itself (as a vertex of T ) and each regular point to the unique circle
to which it belongs (as a vertex of T ).

Proposition 1.24. — Let R1 and R2 be two n-regular rabbits and let T be their tree of
circles (which is the same up to isomorphisms by Lemma 1.14). Let k1 and k2 be two
legal colorings of T as in Lemma 1.21. Then, for every automorphism φ of T whose
local action on out(v) at each vertex v is an isomorphism between the two separation
relations, there is a homeomorphism ψ : R1 → R2 that makes the following diagram
commute.

R1 R2

T T

ψ

π1 π2
φ

Proof. — Let R1 and R2 be two n-regular rabbits and let T1 and T2 be their trees
of circles. Fix two legal colorings satisfying Lemma 1.21 and let φ : T1 → T2 be a
color-preserving automorphism (the local action at any vertex is the identity). Note
that the maps π1 and π2 are injective on the sets of cut points of R1 and R2. This
defines a bijection ψ = π−1

2 ◦φ ◦π1 between the cut points of R1 and R2. Since φ is a
tree isomorphism and the edge adjacency in T1 and T2 is given by the inclusion of cut

J.É.P. — M., 2026, tome 13



272 B. Duchesne & M. Tarocchi

points to circles, the map ψ restricts to bijections between the cut points of each circle.
Moreover, since φ is color-preserving, the circular order of cut points on each circle is
preserved, and since the sets of cut points are dense in R1 and R2 (by condition (1)
of Definition A together with Lemma 1.21), ψ extends uniquely to a continuous map
between a circle of R1 and its image. Doing this for all circles of R1 extends ψ to a
bijection between R1 and R2 such that φ◦π1 = π2 ◦ψ. It now remains to show that ψ
is a homeomorphism.

Note that the connected components of Ri minus finitely many circles correspond
precisely to the connected components of Ti minus finitely many circles together with
their cut points (seen as vertices of the tree). Then, if U is such a subset of R2, its
preimage ψ−1(U) is a connected component of R1 minus finitely many circles, so in
particular it is open. By Corollary 1.10, the collection of such subsets is a subbasis for
the topology of a rabbit, so this shows that ψ is continuous. Ultimately, this shows
that ψ is a continuous bijection from a compact space to a Hausdorff space, so it is a
homeomorphism. □

By Lemma 1.21, we can always find legal colorings of any two n-regular rabbits
satisfying the hypotheses of Proposition 1.24. Hence we obtain the desired result.

Theorem 1.25. — Any two n-regular rabbits are homeomorphic.

Thanks to this theorem, we can now refer to any n-regular rabbit as the n-regular
rabbit. For example, the basilica and the Douady rabbit.

1.6. Homeomorphism groups of regular rabbits. — Here we show that the group
of homeomorphisms of a regular rabbit is the universal group U(Sym([n]),Aut(S)),
where S is the separation relation of the countable dense cyclic order.

Proposition 1.26. — Given an n-regular rabbit R, the group Homeo(R) acts faithfully
by graph automorphisms on TR in such a way that defines an embedding

Π: Homeo(R) ↪−→ Uk(Sym([n]),Aut(S)),

where k is the legal coloring of TR provided by Lemma 1.21

Proof. — A homeomorphism φ of R induces a permutation of the circles and of the
cut points, which are the vertices of the tree of circles TR. Recall that {p, C} is an
edge of TR if and only if p ∈ C, so clearly the permutation induced by φ preserves the
edge adjacency of TR. Thus, Homeo(R) acts by graph automorphisms on TR. The set
of cut points is dense in R by condition (1) of Definition A and Corollary 1.5, so the
action is faithful.

Now, consider the legal coloring k of TR provided by Lemma 1.21. The bipartition
of TR distinguishes between cut points and circles, so clearly the action of Homeo(R)

preserves it. For each circle C of R, every homeomorphism φ of R maps bijectively
between the sets of cut points belonging to C and those belonging to φ(C) in a
separation-preserving fashion. This means that the permutation of colors induced
by φ around the vertex C of TR belongs to Aut(S), as needed. □
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The surjectivity of this embedding follows immediately from Proposition 1.24, so we
have the following fact.

Proposition 1.27. — The embedding Π of Proposition 1.26 is surjective.

We are now only missing the bicontinuity of Π. We endow Homeo(R) with the
uniform convergence topology.

Proposition 1.28. — The embedding Π of Proposition 1.26 is a homeomorphism.

Proof. — Since both are Polish groups, it suffices to prove that the abstract group iso-
morphism Π: Homeo(R) → U(Sym([n]),Aut(S)) is continuous (for example because
of [Gao09, Cor. 2.3.4]). Suppose that gm is a sequence in Homeo(R) that converges
to the identity and consider an arbitrary circle C0 of the rabbit R. We will show
that, for large enough m ∈ N, the homeomorphism gm fixes C0. Let C1, C2 and C3

be circles of R that lie in three distinct connected components U1, U2 and U3 of
R∖C0. Then, for m large enough, say m ⩾ N , the circle gm(Ci) is included in Ui for
each i = 1, 2, 3. In the tree of circles, consider the unique paths between C1 and C2,
between C1 and C3 and between C2 and C3: by Remark 1.13, they intersect precisely
at C0, so the vertex C0 is fixed by Π(gm) for all m ⩾ N . This argument shows that
each vertex is fixed by Π(gm) for large enough m, so the sequence Π(gm) converges
to the identity of U(Sym([n]),Aut(S)) and thus Π is continuous. □

Together, the previous propositions immediately imply the desired result.

Theorem 1.29. — The group Homeo(Rn) of homeomorphisms of an n-regular rab-
bit Rn is topologically isomorphic to U(Sym([n]),Aut(S)).

1.7. Consequences of the identification with universal groups. — Theorem 1.29
has the following consequence.

Corollary 1.30. — Let Rn be the n-regular rabbit.
– If n = 2, the group Homeo(R2) = Homeo(B) has a simple index-2 commutator

subgroup Homeo(B)′.
– If n ⩾ 3, the group Homeo(Rn) is simple.

Proof. — Theorem 23 of [Smi17] states that U(N,M) is simple if and only if N or M
is transitive, when assuming that at least one of N and M is non-trivial and that they
are both generated by their point stabilizers. In our case, M = Aut(S) is transitive,
non-trivial and generated by its point stabilizers (Corollary A.10) and, as soon as
n ⩾ 3, Sym([n]) is generated by its point stabilizers too. This shows that Homeo(Rn)

is simple as soon as n ⩾ 3.
Consider now the case n = 2, which concerns the basilica R2 = B. Neretin noted

that Homeo(B) is the universal Burger-Mozes group U(Aut(S)) on a regular tree
[Ner24], which has an index-2 simple subgroup generated by the edge stabilizers by
[BM00, Prop. 3.2.1]. The regular tree in question is a simplified tree of circles whose
vertices are the circles of the basilica and whose edges connect adjacent circles. Hence,
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the group generated by the pointwise stabilizers of edges corresponds to the group
that preserves the alternating 2-coloring of the circles depicted in Figure 8. This
is the kernel of the group homomorphism f : Homeo(B) → Sym([2]) = {0, 1} that
has value 0 or 1 depending on whether the element preserves the coloring or not,
which implies that Homeo(B)′ ⩽ Ker(f). Moreover, note that Ker(f) = U(1,Aut(S)),
so Ker(f) is simple by the aforementioned Theorem 23 of [Smi17]. Clearly Homeo(B)′

is not trivial and it is a normal subgroup of Ker(f), so we can finally conclude that
the index-2 simple subgroup Ker(f) of Homeo(B) is none other than Homeo(B)′. □

Figure 8. The alternating 2-coloring of the circles of B.

What makes Homeo(B) different from the other Homeo(Rn) regarding their sim-
plicity is that Sym([n]) is cyclic if and only if n = 2. The upcoming Theorem 3.9 relies
precisely on this fact and shows how the cyclicity of the group of local actions comes
into play.

The following is an additional easy consequence of Theorem 1.29.

Corollary 1.31. — For every n ⩾ 2, the group Homeo(Rn) embeds into Aut(Tn,∞)

as a closed subgroup.

Proof. — [Smi17, Th. 6(v)] states that U(N,M) is closed in Aut(T ) if N and M are
closed in Sym([n]) and Sym([m]), respectively. Since Aut(S) is a closed subgroup of
the infinite symmetric group (Remark A.7), we are done. □

Further properties of the groups Homeo(Rn) are explored later in Sections 4, 5
and 6.

2. The airplane

In this section we discuss the topological characterization of the airplane fractal,
which we gave in Definition B (it is shown in Appendix B that a Julia set satisfies
this topological characterization). Then we show that its homeomorphism group is iso-
morphic to a kaleidoscopic group. Introduced and studied in [DMW19], kaleidoscopic
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groups are groups of homeomorphisms of a dendrite with prescribed local actions at
each branch point.

2.1. Topological characterization of the airplane. — Recall the abstract defini-
tion of airplane that we gave Definition B.

The following Lemma essentially states that, unlike rabbits, traversing (Defini-
tion 1.11) and meeting (i.e., having non-empty intersection) are the same for arcs in
an airplane, possibly except for the end points of the arcs.

Lemma 2.1. — In an airplane A, whenever the interior Å of an arc A meets a circle C,
it traverses it (in the sense of Definition 1.11, i.e., Å ∩ C includes a non-degenerate
arc).

Proof. — By contradiction, assume that the intersection Å ∩ C between the interior
of an arc A and a circle C does not include non-degenerate arcs. Then there is a
subarc A0 such that Å0 only meets C in a single point, so we can simply assume that
Å ∩ C = {p} up to passing to subarcs.

Let us denote by x and y the two end points of A. By condition (4) of Definition B,
the order of p is either 1 or 2. In both cases, since A ∖ {p} features at most two
connected components, either the two subarcs [x, p) and (p, y] of A lie in the same
connected component of A ∖ {p}, or one of them lies in the connected component
that includes C ∖ {p}.

In the first case, a connected component X of A∖ {p} includes both subarcs [x, p)

and (p, y] of A. In particular it contains x and y and is path-connected (because it
is a connected and open in A), so X includes an arc A∗ between x and y. Thus, the
subset A∗ ∪ [x, p) ∪ [y, p) ∪ {p} of X ∪ {p} includes a circle that meets C in p, which
contradicts condition (3) of Definition B.

In the second case, a connected component X of A ∖ {p} includes both C ∖ {p}
and a subarc [x, p) or (p, y] of A. If we suppose for example that [x, p) ⊆ X, then X

includes an arc [x, z] between x and some z ∈ C∖{p}. Let [z, p] be any arc between z
and p that is included in the circle C. The subset [x, z]∪ [z, p]∪ (p, x] includes a circle
in X ∪ {p} that meets C in p and is distinct from C, which contradicts condition (3)
of Definition B. □

The following fact will allow us to build paths of circles inside an airplane.

Lemma 2.2. — Given two points of an airplane, any two arcs between them meet the
same circles.

Proof. — Suppose that A is an airplane and let x ̸= y be points of A. We will show
that, given an arc A between x and y, the set of circles that it meets is

C(x, y) = {C circle | x ∈ C or y ∈ C} ∪ {C circle | C separates x and y}.

Since this set does not depend on the arc A itself, this claim immediately implies the
statement.
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If C is a circle that contains either x or y then clearly A meets C. If C is a circle
that separates x and y, then every arc A between x and y must meet C. Hence, each
circle that belongs to C(x, y) is met by every arc between x and y.

Conversely, let C be a circle that is met by an arc A between x and y. Assume that C
does not contain x nor y, otherwise C ∈ C(x, y) by definition and there is nothing
to prove. In particular, A is not entirely included in C. Suppose by contradiction
that C /∈ C(x, y). Then C does not separate x and y, so A ∖ C includes an arc A∗

between x and y. Thus, the subset A∗ ∪A of A includes a circle that meets C but is
not C, which contradicts condition (3) of Definition B. □

In an airplane, a wing is a connected component of the complement of a circle.
While wings alone do not form a subbasis for the topology of A, a larger collection of
similar sets do. This is expressed in the following statement, which is an immediate
corollary of Proposition 1.9.

Corollary 2.3. — Given an airplane A, the collection of all connected components
of A minus finitely many of its circles and cut point that lie on circles is a subbasis
for the topology of A.

2.2. The dendrite of circles of an airplane. — Recall that a dendrite is a Peano
continuum such that every two distinct points are joined by a unique arc. A branch
point of a dendrite is a point of order at least 3. We write Br(D) for the set of all
branch points of a dendrite D. A branch around b ∈ Br(D) is a connected component
of D ∖ {b}.

The set of branch points of a dendrite comes equipped with a betweenness relation:
p is between x and y when p belongs to the unique arc joining x and y. Every
homeomorphism of D induces a bijection of Br(D) that preserves the betweenness
relation. The converse is also true by [DMW19, Prop. 2.4], as long as every arc of D
contains branch points (which holds for all dendrites discussed in this paper), in which
case Homeo(D) can be identified with the group of betweenness-preserving bijections
of Br(D).

Given a subset S ⊆ N⩾3∪{∞}, the Ważewski dendrite associated to S is a dendrite
such the order of any branch point belongs to S and that, for each s ∈ S, any arc
of the dendrite contains points of order s. Such dendrite is usually denoted by DS or
simply by Dn when S = {n} ⊆ N⩾3 ∪ {∞}. By [CD94, Th. 6.2], for each distinct S
there is a unique Ważewski dendrite DS up to homeomorphism, so we can refer to DS

as the Ważewski dendrite of order S. Mimicking the construction of the tree of circles
for rabbits, we now associate a copy of D∞ to the airplane (this construction was
previously outlined in [Tar25, §7.3]).

Definition 2.4. — Let A be an airplane. The circular equivalence relation on A is
defined by saying that two points are equivalent when they lie on a common circle.
The quotient topological space Q of an airplane under the circular equivalence relation
is called the dendrite of circles.
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The fact that Q is really a dendrite is proved right below.

Proposition 2.5. — If A is an airplane, the quotient Q of A under the circular equiv-
alence relation is homeomorphic to the universal Ważewski dendrite D∞. Moreover,
the quotient map induces a bijection between the set of wings of A and that of branches
of Q.

Proof. — We need to show that the quotient space Q is a compact, metrizable, con-
nected, and locally connected topological space where every two distinct points are
joined by a unique arc and such that its branch points have infinite order and meet
every arc.

Let us first show that Q is Hausdorff. Consider distinct p1 and p2 in Q. Each of their
preimages is either a circle or a single point of A. Whatever the case, by conditions (1)
and (2) of Definition B there exists a circle C in A that separates them. Then the two
branches B1 and B2 of Q at C that contain p1 and p2, respectively, are open (indeed,
their preimages are wings, which are open) and each only contains one of the two
points, as needed.

Recall that a compact Hausdorff space is metrizable if and only if it is second
countable. Since Q is a continuous image of a compact space, it is compact. Second
countability of Q descends from the one of A: wings are open and saturated for the
relation (i.e., they are preimages of subsets of Q), and using Proposition 1.9 it is easy
to show that their images form a countable subbase for the topology of Q. Thus, Q is
metrizable.

Being a continuous image of a path-connected and locally path-connected space,
Q itself is path-connected and locally path-connected. We claim that there is a unique
arc between any two points of Q. Let us say that a point c ∈ Q is a circle point
if its preimage is a circle (i.e., if it corresponds to a non-trivial equivalence class).
By condition (2) of Definition B, any two distinct points of Q are separated by a
circle point. More precisely, a circle point c separates x, y if and only its preimage C
separates the preimages of x and y for the quotient map in A. Note that an arc I
between any two distinct points x, y ∈ Q is the closure in Q of the set of circle points
between x and y by Lemma 2.2. This implies that there is a unique arc between any
two points of Q, so Q is a dendrite.

For each cut point x on a circle C of A, the complement C∖{x} is included in one
connected component of A ∖ {x}. Hence, if x and y are two cut points on the same
circle and Ux and Uy are the connected components of A∖ {x} and A∖ {y} that do
not contain x and y, then Ux ∩ Uy = ∅. Since there is an arc between x and y on C,
there would be another arc going from x to some z ∈ Ux ∩ Uy concatenated with a
path from z to y and this would meet other circles than only C, which contradicts
condition (3) of Definition B. This implies that for each point of the dense set of cut
points in C, we have connected saturated open subsets that are distinct and thus
any circle point is a branch point of the dendrite Q. Moreover, by condition (2) of
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Definition B the set of circle points meets every arc of Q and the order of a circle
point is infinite by condition (1).

In order to conclude that Q is homeomorphic to D∞, it remains to show there is
no branch point in Q that is not a circle point. Assume that x ∈ A does not belong
to a circle, meaning that x is the unique preimage of its image. Then the one or two
connected components of A∖ {x} (they cannot be more than two by condition (4) of
Definition B) are open and saturated. Thus the image of x has order 1 or 2, so it is
not a branch point, concluding our proof. □

From the construction of the quotient map π, we can distinguish between four
types of points in an airplane.

Definition 2.6. — A point x in an airplane is said to be:
– an end point if π(x) is an end point of Q (equivalently, x has order 1 and does

not lie on a circle),
– a regular cut point if π(x) is a regular point of Q (equivalently, x does not lie on

a circle and has order 2),
– a circular cut point if x is a cut point that lies on a circle.
– a circular non-cut point if x lies on a circle but is not a cut point.

Remark 2.7. — One can see that, for airplanes, our circular equivalence relation
coincides with the equivalence relation defined by Bowditch for general separable
continuum. In [Bow99, Th. 5.23] Bowditch showed that, if M is a separable continuum,
then M/ ∼ is a dendrite, where ∼ is defined by setting x ̸∼ y if and only if there is a
set of cut points of M separating x and y which is order-isomorphic to the rational
numbers in the natural linear order. However, our circular equivalence relation is
arguably more intuitively formulated in the context of the airplane.

Note that, on the other hand, Bowditch’s quotient of a rabbit is just a singleton,
so unfortunately the tree of circles of a rabbit and the dendrite of circles of a rabbit
cannot both be formalized by this equivalence relation. Finding a unique construction
that realizes both the trees of circles for rabbits (Definition 1.12) and the dendrite of
circles for the airplane (Definition 2.4) might allow to generalize this construction to
Julia sets such as the one depicted in Figure 6.

2.3. Kaleidoscopic coloring of the dendrite of circles. — By condition (1) of
Definition B, the set of cut points on a fixed circle is dense in the circle, so the
set of cut points on C is equipped naturally with a countable dense cyclic order.
By condition (4), each cut point x on a circle C corresponds to a unique wing of
A ∖ C. Together these two facts imply that, for every circle C, there is a countable
dense cyclic order on the set of wings at C.

The bijection between wings of A and branches of Q from Proposition 2.5 thus
induces a countable dense cyclic order on the set of branches around each branch point
of Q. We claim that this corresponds to a coloring of Q, using the notions defined
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in [DMW19]. Before showing this in Lemma 2.9, we briefly recall what kaleidoscopic
colorings are and we introduce some useful notations.

Given a dendrite D and a branch point b, we denote by b̂ the set of branches
around b (i.e., the set of connected components of D ∖ {b}). For two distinct branch
points b and b′ of a dendrite, we denote by cb(b

′) the unique branch around b that
contains b′.

Definition 2.8 ([DMW19, Defs. 3.1 & 3.2]). — Given a set Ω, a kaleidoscopic coloring
of a Ważewski dendrite Dn (n ∈ N⩾3 ∪ {∞}) is a map

k :
⊔

b∈Br(Dn )̂

b −→ Ω

such that
(1) for every branch point b, the restriction kb : b̂→ Ω of k to the branches around

b is a bijection;
(2) for all distinct branch points b1, b2 and colors i, j ∈ Ω, there exists a branch

point b separating b1 and b2 in distinct branches B1 = cb(b1), B2 = cb(b2) ∈ b̂ such
that kb(B1) = i and kb(B2) = j.

[DMW19, Prop. 3.3] shows that kaleidoscopic colorings exist (and are, in fact, com-
mon). However, we will need specific kaleidoscopic colorings that represent the cyclic
orders on circles.

Lemma 2.9. — Let (Ω, OΩ) be a countable dense cyclic order. Consider a collection
(Ob)b∈Br(D∞) of countable dense cyclic orders Ob on b̂ for each b ∈ Br(D∞). There
exists a kaleidoscopic coloring

k :
⊔

b∈Br(D∞ )̂

b −→ Ω

such that, for any b ∈ Br(D∞) and x, y, z ∈ b̂,

(2.1) Ob(x, y, z) ⇐⇒ OΩ(k(x), k(y), k(z)).

Proof. — The set of colorings satisfying Equation (2.1) is closed in the space of all
colorings and thus is a Baire space. Let X be the space of colorings satisfying Equa-
tion (2.1). For any two distinct branch points b, b′, the kaleidoscopic condition is
open and dense, as in [DMW19, Prop. 3.3]. So the collection of kaleidoscopic color-
ings satisfying Equation (2.1) is a dense Gδ set in X and thus non-empty by the Baire
property. □

2.4. Kaleidoscopic groups. — Consider the Ważewski dendrite Dn with a kaleido-
scopic coloring k with set of colors [n], where n ∈ N⩾3 ∪ {∞}. The local action of a
homeomorphism g of Dn at a branch point b is the element σg of Sym([n]) defined as

σg(b) := kg(b) ◦ g ◦ k−1
b .

The set of elements with prescribed actions around each branch point forms a group,
whose definition we recall right below.
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Definition 2.10 ([DMW19, Def. 3.8]). — Given a permutation group Γ ⩽ Sym([n]),
the kaleidoscopic group with local action Γ is

Kk(Γ) = {g ∈ Homeo(Dn) | ∀b ∈ Br(Dn), σg(b) ∈ Γ},

which we simply denote by K(Γ) if the kaleidoscopic coloring k is understood.
We endow Kk(Γ) with the permutation topology under its action on the set of branch
points of Dn.

For more details on the topic of kaleidoscopic groups, we refer to the paper
[DMW19] that defines them, which also investigates their algebraic, homological and
topological properties.

2.5. Uniqueness of the airplane. — The following proposition shows that there is a
unique airplane (up to homeomorphisms) and is going to be useful later for Proposi-
tion 2.14.

Proposition 2.11. — Let A1 and A2 be two airplanes with quotient maps π1 and π2
to the Ważewski dendrite D∞. Let c1 and c2 be two kaleidoscopic colorings of D∞
satisfying Equation (2.1) relatively to the dense cyclic orders induced by π1 and π2,
respectively. Then, for every homeomorphism φ of D∞ whose local action at each
branch point is an isomorphism between the two separation relations, there is a home-
omorphism ψ that makes the following diagram commute.

A1 A2

D∞ D∞

ψ

π1 π2
φ

This proof follows the general outline of that of Proposition 1.24.

Proof. — Let A1 and A2 be two airplanes and let Q1 and Q2 be their quotients
with respect to the circular equivalence relation, which are homeomorphic to D∞ by
Proposition 2.5. Fix two kaleidoscopic colorings satisfying Equation (2.1), which exist
by Lemma 2.9.

Let φ : Q1 → Q2 be a color-preserving homeomorphism (the local action at any
branch point is the identity). The quotient maps πi : Ai → Qi are injective on points
that are not on a circle, so this defines a bijection ψ = π−1

2 ◦ φ ◦ π1 between points
that are not on a circle in A1 and points that are not on a circle in A2. We wish
to extend ψ to a homeomorphism A1 → A2. To do this, we rely on the fact that
each πi induces a bijection between the set of wings of A and that of branches of Q
(Proposition 2.5).

For each circle C of an airplane, each cut point x ∈ C corresponds to a unique
wing Ux not including C. For C ⊆ A1, the image π1(Ux) is a branch of Q1 around
the image b1 = π1(C). The homeomorphism φ maps such a branch of Q1 to a branch
of Q2 around b2 = φ(b1) which is the image of a unique wing Uy associated to a
circular cut point on the circle π−1

2 (φ ◦ π1(C)), so we can extend ψ to the set of all
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cut points that lie on circles. Since φ induces a bijection that preserves the separation
relation between branches around a branch point b to branches around the branch
point φ(b), the map ψ restricted to cut points on a given circle C also preserves the
separation relation and thus extends uniquely to a continuous map between C and the
circle that contains the images of cut points in C. Doing that for all circles C ⊂ A1

extends ψ to a bijection between A1 and A2 such that φ◦π1 = π2 ◦ψ. It now remains
to show that ψ is a homeomorphism.

Let x ∈ A1 be a point that does not lie on a circle. Then ψ(x) does not lie on a
circle. By conditions 1 and 2 of Definition B, the collection of wings that contain ψ(x)
satisfies the hypothesis of Proposition 1.9 and is thus a subbasis of neighborhoods
at ψ(x). For any wing W that contains ψ(x), its preimage ψ−1(W ) is a wing that
contains x, which is open. Thus, ψ is continuous at points x that do not lie on circles.

Assume that x instead lies on some circle C and suppose xn → x. It suffices to con-
sider two cases: xn ∈ C for all n or xn /∈ C for all n. In the first case, ψ(xn)→ ψ(x)

because ψ is continuous in the restriction to each circle. In the second case, since
φ(π1(xn)) → φ(π1(x)) we know that eventually ψ(xn) lies in any wing that con-
tains ψ(x), so no subsequence of ψ(xn) converges to a point that is not on ψ(C). For
any open interval I ⊂ ψ(C) that contains ψ(x), the preimage UI of all wings attached
to ψ(C) at a point in I is an open subset that contains x, so xn eventually belongs
to it. In particular, any subsequence of ψ(xn) converges to a point in I, which implies
that ψ(xn) converges to ψ(x). Ultimately, this shows that ψ is a continuous bijection
from a compact space to a Hausdorff space, so it is a homeomorphism. □

Since by Lemma 2.9 the hypotheses of Proposition 2.11 are met by any two air-
planes, we obtain the desired result.

Theorem 2.12. — Any two airplanes are homeomorphic.

Thanks to this theorem, we can now refer to any airplane as the airplane.

2.6. Homeomorphism group of the airplane. — We now show that the group of
homeomorphisms of an airplane is topologically isomorphic to the kaleidoscopic group
K(Aut(S)), where S is the separation relation of the countable dense cyclic order.

Proposition 2.13. — Given an airplane A, the group Homeo(A) acts faithfully by
homeomorphisms on Q in such a way that defines an embedding

Π: Homeo(A) ↪−→ Kk(Aut(S)),

where k is the kaleidoscopic coloring of Q provided by Lemma 2.9

Proof. — Every homeomorphism φ of A induces a permutation of the circles of A,
which are the branch points of Q. This permutation clearly preserves the between-
ness relation, so it induces a unique homeomorphism of Q (see [DMW19, Prop. 2.4]).
Moreover, since φ preserves the separation relation of each circle, the homeomor-
phism of Q that it induces has actions that are locally in Aut(S), meaning that the
homeomorphism belongs to K(Aut(S)).
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Finally, this action of Homeo(A) on Q is faithful because each φ ∈ Homeo(A) is
completely determined by its action on the circular cut points of A (Definition 2.6),
as they densely populate A by conditions (1) and (2) of Definition B. □

The surjectivity of this embedding follows immediately from Proposition 2.11, so we
have the following fact.

Proposition 2.14. — The embedding Π of Proposition 2.13 is surjective.

We are now only missing the bicontinuity of Π. We endow Homeo(A) with the
uniform convergence topology.

Proposition 2.15. — The embedding Π of Proposition 2.13 is a homeomorphism.

Proof. — Both groups are Polish, so it suffices to prove that Π: Homeo(A) →
K(Aut(S)) is continuous (for example because of [Gao09, Cor. 2.3.4]). If gm is a
sequence in Homeo(A) converging to the identity, fix an arbitrary circle C0 of the
airplane. We will show that, for large enough m ∈ N, the homeomorphism gm
fixes C0. Let C1, C2 and C3 be circles of A that lie in three distinct wings at C0,
say W1, W2 and W3, respectively. Then, for m large enough, say m ⩾ N , the circle
gm(Ci) is included in Wi for each i = 1, 2, 3. Now, the circles C0, C1, C2 and C3

correspond to branch points in the dendrite of circles Q. Consider the unique arcs
in Q between C1 and C2, between C1 and C3 and between C3: they intersect precisely
at C0, so the branch point C0 of Q is fixed by Π(gm) for all m ̸= N . This argument
shows that each branch point of Q is fixed by Π(gm) for large enough m, so the
sequence Π(gm) converges to the identity of K(Aut(S)) and thus Π is continuous. □

Together, the previous propositions immediately imply the desired result.

Theorem 2.16. — The group Homeo(A) of homeomorphisms of the airplane is topo-
logically isomorphic to K(Aut(S)).

2.7. Consequences of the identification with a kaleidoscopic group. — Theo-
rem 2.16 has the following consequences.

Corollary 2.17. — The group Homeo(A) is simple.

Proof. — Thanks to the fact that Homeo(A) = K(Aut(S)), the statement follows
immediately from [DMW19, Th. 1.1]. □

Corollary 2.18. — Homeo(A) embeds as an oligomorphic closed subgroup of the
group Sym(Br(Q)) of permutations of the circles of A.

Proof. — Aut(S) is oligomorphic by Lemma A.8, so Homeo(A) = K(Aut(S)) is oligo-
morphic too by [DMW19, Th. 1.4].

[DMW19, Th. 1.9] states that K(N) is closed in Sym(Br(Q)) if and only if N is
closed in Sym([n]). Since Aut(S) is a closed subgroup of Sym([∞]) (Remark A.7),
we are done. □

Further properties of the group Homeo(A) are explored later in Sections 4, 5 and 6.
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3. Automorphism groups of the Julia set laminations

In this section we study the subgroups of Homeo(Rn) and of Homeo(A) that pre-
serve an orientation of the fractals induced by their laminations. Throughout this
section, n will always be finite.

3.1. Laminations of quadratic Julia sets. — In Appendix B, we prove that n-rabbits
and the airplane are homeomorphic to the Julia set of some quadratic polynomial
fc(z) = z2 + c, where c ∈ C depends on the space considered. Identifying our spaces
with a Julia set Jc, we obtain a continuous surjective map φ : S1 → Jc called the
Carathéodory loop of Jc (see for example [DH84a, Exp. II]). Let us fix one of the two
cyclic orders on S1.

The Carathéodory loop defines a laminational equivalence relation on S1:
x ∼ y ⇐⇒ φ(x) = φ(y), which enjoys the following properties:

(1) each class is finite;
(2) the graph of ∼ is closed;
(3) convex hulls in the unit open disk D of distinct classes are disjoint.
This induces a lamination LJc on the unit disk, that is a collection of chords in the

open disk D called leaves such that the intersection of two distinct leaves is empty
and their union is closed in D. More precisely, the leaves of the lamination LJc are the
sides of the convex hulls of classes not reduced to a point, that are polygons (possibly
reduced to a single leaf). Figure 5 portrays two laminations as examples.

Remark 3.1. — For distinct values of c ∈ C, the Julia sets of the polynomial maps
z 7→ z2 + c may be homeomorphic but the laminations can be different. For example,
the Douady rabbit and its image under complex conjugation (often called the corab-
bit) have different laminations. Nonetheless, if c and c′ belong to the same hyperbolic
component of the Mandelbrot set (or are the root of this component), then the equiv-
alence relations and thus the laminations are the same [DH85, Exp. XVIII, Prop. 1].

We denote by Aut(LJc) the group of automorphisms of the lamination LJc, that is
the subgroup of Homeo+(S1) that preserves the laminational equivalence relation ∼
(i.e., g(x) ∼ g(y) ⇐⇒ x ∼ y for all x, y ∈ S1).

Let us recall that a point c ∈ C belongs to the Mandelbrot set if the Julia set of fc is
connected, which is equivalent to the fact that the orbit of the origin is bounded. The
polynomial fc is (sub)hyperbolic if it is (sub)expanding on its Julia set Jc. The filled-
in Julia set Kc is the set of points z ∈ C with bounded orbits. The boundary ∂Kc

is Jc and the connected components of
◦
Kc are topological disks which are in bijection

with the circles of Jc (their boundaries). When fc is hyperbolic, both Kc and Jc are
connected and locally connected. See [DH84a, Exp. III] for more details.

3.1.1. Orientations and projections on circles and cut points. — Let c ∈M such that fc
is hyperbolic. Note that, by Remark 3.1, this does not limit our choice of Julia sets.
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For each cut point p of Jc, we define an orientation on the set of connected com-
ponents of the complement Jc ∖ {p} induced by a fixed orientation OS1 of S1: for
components X, Y and Z, we set Op

φ(X,Y, Z) := + if the preimages φ−1(X), φ−1(Y )

and φ−1(Z), which are pairwise disjoint open arcs, are positively oriented in S1; else
we set Op

φ(X,Y, Z) := −.
The following fact descends immediately from the definition of Op

φ, where Pp(q)

denotes the connected component of Jc ∖ {p} that contains q ̸= p.

Lemma 3.2. — For a fixed cut point p and for all x, y, z ∈ S1 with Pp(φ(x)), Pp(φ(y))

and Pp(φ(z)) distinct, the following holds:

Op
φ(Pp(φ(x)), Pp(φ(y)), Pp(φ(z))) = OS1(x, y, z).

Similarly, for each circle C of Jc, the orientation OS1 of S1 induces a cyclic order OC
φ

on C: if φ(x), φ(y) and φ(z) belong to C, we set OC
φ (φ(x), φ(y), φ(z)) as + or −

depending on the orientation of the points x, y and z on S1. Note that each cyclic
order OC

φ on a circle C of Jc corresponds to one of the two cyclic orders that define
the separation relation S on C which we used in Sections 1.6 and 2.6 to determine the
local actions Aut(S) of the homeomorphism groups of the rabbits and the airplane.

For each circle C of Jc and each point p of Jc there is a unique point that is the
projection of p onto C [DH84a, Exp. II, Prop. 4]. We denote it by PC(p). In the next
lemma we use the classical notions of external rays and legal arcs; see [DH84b] for
definitions (page 10 for external rays and page 19 for legal arcs, which are called
allowable arcs in the reference).

Lemma 3.3. — For a fixed circle C and for all x, y, z ∈ S1 with PC(φ(x)), PC(φ(y))

and PC(φ(z)) distinct, the following holds:

OC
φ (PC(φ(x)), PC(φ(y)), PC(φ(z))) = OS1(x, y, z).

Proof. — Let Ex, Ey and Ez be the external rays of Kc with arguments x, y and z, re-
spectively. Consider legal arcs [φ(x), PC(φ(x))], [φ(y), PC(φ(y))] and [φ(z), PC(φ(z))]

in Kc. Since PC(φ(x)), PC(φ(y)) and PC(φ(z)) are distinct points of C, these arcs lie
in distinct components of KC ∖D, where D is the disk in Kc such that C = ∂D ⊆ Jc.
So Ex ∪ [φ(x), PC(φ(x))], Ey ∪ [φ(y), PC(φ(y))] and Ez ∪ [φ(z), PC(φ(z))] are pair-
wise disjoint and the statement about the cyclic order follows from the definition
of OC

φ . □

Note that the projections PC map to points of Jc whereas the projections Pp map
to subsets of Jc. This choice is justified by the fact that we canonically identify each
out(C) with a set of points of Jc and, for rabbits, each out(p) with a set of subsets
of Jc.

3.1.2. Laminations of the rabbit Julia sets. — Let Tn,∞ be the tree of circles associated
to the n-regular rabbit Rn (see Section 1.2). Recall that this tree is biregular: vertices
of degree n correspond to cut points and vertices of infinite degree correspond to circles

J.É.P. — M., 2026, tome 13



Homeomorphism groups of basilica, rabbit and airplane Julia sets 285

in Rn. Every cut point p belongs to n circles, each corresponding to one connected
component of Rn.

Let us equip the set of colors [n] with its natural cyclic order, which we denote by
On : [n]

3 → {+,−}. We denote by Cyc(n) the group of isomorphisms of this cyclic
order, which is a cyclic group of order n. Lemma 1.21 allows us to find a legal coloring k
of Tn with the following properties:

Op
φ(X,Y, Z) = On(k(X), k(Y ), k(Z)), ∀X,Y, Z components at a cut point p,

OC
φ (p, q, r) = OΩ(k(p), k(q), k(r)), ∀p, q, r cut points on a circle C,

where, in the first equation, we are using the natural identification of the half-edges
at vertices corresponding to cut points with the connected components of the com-
plements of the cut points (described in Remark 1.19) and, in the second equation,
the identification between half-edges at a vertex corresponding to a circle C in Rn

and cut points in C.
Using this coloring k, we define the subgroup

Homeo+(Rn) := Π−1(U(Cyc(n),Aut(O))) ⩽ Homeo(Rn),

where Π is the topological group isomorphism from Section 1.6.

3.1.3. Lamination of the airplane Julia set. — Recall that the arrangement of the cir-
cles of the airplane A is described by the dendrite of circles Q, which is homeomorphic
to the universal Ważewski dendrite D∞ (see Section 2.2). Each branch point of Q cor-
responds bijectively to a circle of A and each branch of Q corresponds to a wing of A
(Proposition 2.5).

Let us fix the quotient map π : A → Q. Consider the isomorphism of topological
groups Π: Homeo(A)→ K(Aut(S)) defined in Section 2.6 and consider the subgroup
Aut(O) of Aut(S). We define the subgroup

Homeo+(A) := Π−1(K(Aut(O))) ⩽ Homeo(A).

3.2. Identification of the lamination automorphism groups. — Given x, y and z

distinct vertices of a tree or points of a dendrite, their center is the unique point in
the intersection [x, y] ∩ [y, z] ∩ [z, x], where [p, q] denotes the unique path in the tree
or arc in the dendrite that joins p and q.

Theorem 3.4. — Let J be an n-rabbit or the airplane. Endowed with the compact-open
topologies, Homeo+(J) and Aut(LJ) are isomorphic as Polish groups.

Proof. — Let R denote the preimage via φ of the set of those points of J each of which
belongs to a unique circle (for rabbits, this is all regular points; for the airplane, it is
the circular non-cut points). This is a dense subset of S1. Consider the action of
Homeo+(J) on R defined by the equation

φ(g · x) = g(φ(x)),

for all g ∈ Homeo+(J) and all x ∈ R. We claim that this action preserves the cyclic
order induced from S1 on its subset R.
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To show this, let x, y and z be distinct elements of R. Denote by Cx, Cy and Cz the
unique circles to which φ(x), φ(y) and φ(z) belong, respectively. Note that these are
vertices of the tree of circles in the case of rabbits and branch points of the dendrite
of circles in the case of the airplane. Let v be the center of Cx, Cy and Cz in the tree
or dendrite of circles.

Assume first that v = C is a circle of J (which is always the case when J = A).
Then the projections PC(φ(x)), PC(φ(y)) and PC(φ(z)) are distinct and we can apply
Lemma 3.3 to obtain the following equalities:

OS1(x, y, z) = OC
φ (PC ◦ φ(x), PC ◦ φ(y), PC ◦ φ(z))

= Og(C)
φ (g(PC ◦ φ(x)), g(PC ◦ φ(y)), g(PC ◦ φ(z)))

= Og(C)
φ (Pg(C)(g(φ(x))), Pg(C)(g(φ(y))), Pg(C)(g(φ(z))))

= Og(C)
φ (Pg(C) ◦ φ(g · x), Pg(C) ◦ φ(g · y), Pg(C) ◦ φ(g · z))

= OS1(g · x, g · y, g · z),

where the second equality holds because the local action at C is Aut(O).
In the case of rabbits, v can also be a cut point, say v = p. Then the projections

Pp(φ(x)), Pp(φ(y)) and Pp(φ(z)) must be distinct and we can apply Lemma 3.2 to
obtain analogous equalities:

OS1(x, y, z) = Op
φ(Pp ◦ φ(x), Pp ◦ φ(y), Pp ◦ φ(z))

= Og(p)
φ (g(Pp ◦ φ(x)), g(Pp ◦ φ(y)), g(Pp ◦ φ(z)))

= Og(p)
φ (Pg(p)(g ◦ φ(x)), Pg(p)(g ◦ φ(y)), Pg(p)(g ◦ φ(z)))

= Og(p)
φ (Pg(p) ◦ φ(g · x), Pg(p) ◦ φ(g · y), Pg(p) ◦ φ(g · z))

= OS1(g · x, g · y, g · z),

where the second equality holds because the local action at v is Cyc(n).
Ultimately, the action of Homeo+(J) preserves the cyclic order on the dense sub-

set R of S1. By [Duc23a, Lem. 3.5], it thus extends to a unique element of Homeo+(S1).
By construction, it preserves the laminational equivalence relation LJ , so we have an
embedding of Homeo+(J) into Aut(LJ). Conversely, any element of Homeo+(S1) that
preserves LJ induces a homeomorphism of the quotient space S1/LJ = J . By con-
struction of the cyclic orders Op

φ and OC
φ , such homeomorphism has local actions in

Cyc(n) or Aut(O). The fact that this correspondence is an isomorphism of topological
groups follows from the fact that the Polish topologies coincide with the pointwise
convergence topologies on R and φ(R). Indeed, the compact-open topology is always
stronger. For the converse, it suffices to show it on all of S1. Here, since R is dense
in S1, one can one can cover S1 with arbitrarily small intervals whose end points lie
in R. □

Remark 3.5. — By Lemma A.8 the group Aut(O) is an index-2 normal subgroup of
Aut(S). This contrasts with the fact that Homeo+(Rn) (respectively Homeo+(A)) has
infinite index: note that, for any infinite path (arc) of the tree (dendrite) of circles,
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for each circle lying on it, one can find an element of Homeo(Rn) (Homeo(A)) that
reverses the orientation of that circle but not of the other circles of the path (arc); all
such elements belong to distinct cosets. And Homeo+(Rn) (respectively Homeo+(A))
is not normal in Homeo(Rn) (respectively Homeo(A), the orientation depends on the
embedding of the Julia set in C.

Corollary 3.6. — Homeo+(Rn) and Homeo+(A) embed into Homeo+(S1) as closed
subgroups.

Proof. — Let J be a rabbit or airplane Julia set and ρ : Homeo+(J) ↪→ Homeo+(S1)

be the topological group embedding provided by Theorem 3.4. Note that the image
of ρ is the stabilizer of LJ for the diagonal action of Homeo+(S1) on S1 × S1. Since
LJ is closed in S1 × S1, its stabilizer is closed in Homeo(S1 × S1), so the image of ρ
is closed in Homeo(S1 × S1) and thus in Homeo+(S1). □

Since Aut(O) is a closed subgroup of Sym([∞]) (Remark A.7) the proof of Corol-
lary 1.31 applies as is to Homeo+(Rn), so we have the following.

Corollary 3.7. — For all n ⩾ 3, the group Homeo+(Rn) embeds into Aut(Tn,∞) as
a closed subgroup.

Moreover, since Aut(O) is also oligomorphic (Lemma A.8) the proof of Corol-
lary 2.18 applies to Homeo+(A), so we have the following.

Corollary 3.8. — Homeo+(A) embeds as an oligomorphic closed subgroup of the
group Sym(Br(Q)) of permutations of the circles of A.

3.3. Simplicity of commutator subgroups. — The following statement shows that,
unlike Homeo(Rn) (Corollary 1.30), the group Homeo+(Rn) is never simple itself,
although it is virtually simple.

Theorem 3.9. — For each n ⩾ 2, the commutator subgroup Homeo+(Rn)
′ is an index-

n simple subgroup of Homeo+(Rn) and it consists of those elements that preserve the
n-coloring of Rn (depicted for example in Figure 9 for n = 3). On the other hand,
Homeo+(A) is simple.

Proof. — First note that Homeo+(A) is simple because every kaleidoscopic group is
such, by [DMW19, Th. 1.1].

For the rabbits, consider the map f : Homeo+(Rn) → Cyc(n) defined as f(g) :=

σg(v) for any vertex v of degree n. Of course we need to show that this map is well
defined, i.e., that σg(v) = σg(w) for each pair of vertices v and w of degree n and
for all g ∈ Homeo+(Rn). It suffices to show that σg(v) = σg(w) when v and w have
distance 2, i.e., when there is a vertex x of infinite degree that is adjacent to both v

and w. In this situation, consider the half-edges (v, x) and (w, x) and let c denote
its color, which must be the same by definition of legal colorings (Definition 1.20).
If σg(v) maps c to c′, then x is mapped to a vertex such that k|in(g(x)) is constantly c′.
In particular, since w is mapped to a vertex that is adjacent to g(x), we have that
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Figure 9. The 3-coloring of the circles of R3.

k(g(w), g(x)) = c′, meaning that σg(w) maps c to c′. Since σg(v) and σg(w) belong
to the cyclic permutation group Cyc(n), whose action on [n] is simply transitive, this
is enough to conclude that σg(v) = σg(w), so the map f is well defined.

The map f is also a group homomorphism, since

f(g ◦ h) = σg◦h(v) = σg(h(v)) ◦ σh(v) = f(g) ◦ f(h),

and it is clearly surjective. Let us consider the kernel Ker(f), which is an index-n
subgroup of Homeo+(Rn). Note that Ker(f) coincides with U(1,Aut(O)) by its very
definition. Then it is a simple group by [Smi17, Th. 23], as both the trivial group
and Aut(O) are generated by their point stabilizers (Corollary A.10) and Aut(O) is
transitive (Lemma A.8).

Since the codomain of f is abelian, we have that Homeo+(Rn)
′ ⩽ Ker(f),

so Homeo+(Rn)
′ is a normal subgroup of Ker(f). Now, Homeo+(Rn) is clearly not

abelian, so Homeo+(Rn)
′ is not trivial. Thus Homeo+(Rn)

′ = Ker(f) because Ker(f)

is simple. Ultimately, Homeo+(Rn)
′ = Ker(f) is the index-n simple subgroup of

Homeo+(Rn) that preserves the n-coloring of Rn, as needed. □

Remark 3.10. — The basilica and airplane rearrangement groups TB and TA from
[BF15, BF19, Tar24a] are countable dense subgroups of the groups Homeo+(B) and
Homeo+(A), respectively. For the basilica this was shown in [Ner24] and for the
airplane a proof is sketched in [Tar25, §7.3].
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Note that the behavior of Homeo+(B) described in Theorem 3.9 is shared by TB ,
since its commutator subgroup [TB , TB ] is a simple index-2 normal subgroup consist-
ing of those elements of TB that preserve the 2-coloring depicted in Figure 8 [BF15,
§8]. Instead, unlike Homeo+(A), the airplane rearrangement group TA has infinite-
index simple commutator subgroup [Tar24a, Cor. 7.4 & Th. 7.8].

Question 3.11. — In light of Remark 3.10, Theorem 3.9, and Corollary 1.30, it is
worth asking the following questions.

(1) A rearrangement group of the basilica that does not preserve the orientation
of the circles can be built by switching orientation of the edge attached to the initial
vertex of the replacement graph of the basilica replacement system. The same argu-
ments employed in [Ner24, Tar25] show that it is dense in Homeo(B). Does it have a
simple index-2 commutator subgroup?

(2) Rearrangement groups of regular rabbits can be built as in [BF19, Ex. 2.3]
(they do not embed into Homeo+(Rn)) and, as explained above for the basilica, non-
orientation-preserving variants groups can be defined too. Is any of these groups
simple? Are they dense in Homeo(Rn)?

(3) A non-orientation-preserving variant of TA can be built too, using the same
modifications. Is it simple? Is it dense in Homeo(A)?

4. Embedding and non-embedding results

In this section we show a general embedding result about universal groups of reg-
ular trees Tn and kaleidoscopic groups of Ważewski dendrites Dn, which applies to
Homeo(B) and Homeo(A). Then we prove further embedding and non-embedding
results about the homeomorphism and lamination automorphism groups of rabbits
and the airplane.

4.1. Patchwork. — Patching together partially defined homomorphisms is useful for
both universal and kaleidoscopic groups. Such tools were developed in [DMW19, §4]
for dendrites and partially in [Smi17, Lem. 17] for biregular trees. Here we develop the
relevant results for biregular trees and we recall them from [DMW19] for dendrites.

Since most of the statements are essentially the same in both settings, we will let T
be a biregular tree and D be a Ważewski dendrite. Given p and q vertices of a tree
or points of a dendrite, we will denote by [p, q] either the unique path in the tree
(as a set of vertices) or the unique arc in the dendrite (as a subset of the dendrite)
between p and q. Recall that, given x, y and z distinct vertices of T or points of D,
their center is the unique point in the intersection [x, y] ∩ [y, z] ∩ [z, x].

Definition 4.1. — A subset F of X is center-closed if it contains the center of any
of three distinct points in it.

If F is a non-empty subset of V (T ), we denote by [F ] the minimal subtree of T
whose set of vertices includes F .
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We define two notions of partial homomorphism.

Definition 4.2
– Given subsets F and F ′ of V (T ), a partial tree homomorphism F → F ′ is a

bijection that is a restriction of a tree isomorphism [F ]→ [F ′].
– Given center-closed subsets F and F ′ of D, a partial dendrite homomorphism

F → F ′ is a bijection that preserves the betweenness relation and maps branch
points to branch points, end points to end points and regular points to regular points.

It is easy to see that any partial tree homomorphism F → F ′ is the restriction of
a unique tree isomorphism [F ]→ [F ′].

If F is a subset of V (T ) or D, we denote by ΩF the set of connected components
of T ∖ F or D ∖ F . Note that of each element of ΩF is either a subtree of T or its
closure is a subdendrite of D.

Remark 4.3. — If F is a center-closed subset of a dendrite D, then each element of ΩF

has at most two points of F on its topological boundary. Indeed, if ∂A ⊇ {x, y, z} for
some A ∈ ΩF , then the center of x, y and z would belong to F and so A could not
be a connected component of D ∖ F .

In the case of a tree T , if A ∈ ΩF then we denote by ∂A the set of vertices of T that
are at distance 1 from A. By the same argument as for dendrites, if F is center-closed
then each ∂A consists either of one or two vertices of F .

The following lemma is our main tool for constructing elements of U(N,M) and
K(N) from partially defined homomorphisms. It combines [DMW19, Lem. 4.3] (which
concerns dendrites) with a useful yet simple tool for trees.

Lemma 4.4. — Suppose that F and F ′ are subsets of V (T ) or D and let f : F → F ′

be a partial homomorphism. In the case of a dendrite, suppose also that F and F ′ are
closed, center-closed and that, for each two cut points x and y of D, [x, y] ∩ F and
[x, y] ∩ F ′ are finite. Assume the following:

(1) for each A ∈ ΩF there is a tree isomorphism or a homeomorphism

hA : A ∪ ∂A −→ B ∪ ∂B

such that B ∈ ΩF ′ and hA|∂A = f |∂A;
(2) every B ∈ ΩF ′ is hA(A) for some unique A ∈ ΩF .

Define a map h : V (T ) → V (T ) or D → D by setting h(x) = hA(x) when x ∈ A for
some A ∈ ΩF and h(x) = f(x) for all x ∈ F . Then h is an automorphism of T or a
homeomorphism of D that agrees with f on F .

Note that the additional hypotheses required on F and F ′ in the case of a dendrite
always hold when such sets are finite and center-closed.

Proof. — For dendrites, this is Lemma 4.3 from [DMW19] when F and F ′ are finite.
When they are infinite, we will show that h is continuous by proving that it maps
connected components of the complement of a point to connected components of the
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complement of a point, thus preserving a subbasis for the topology of the dendrite.
This is equivalent to showing that h maps arcs to arcs. Observe that each A ∈ ΩF

or B ∈ ΩF ′ has non-empty topological boundary. Indeed, A is open because D is
locally connected and F is closed, so if ∂A were empty then A would be clopen,
which contradicts the fact that D is connected (and the same for any B in ΩF ′).
Then ∂A (respectively ∂B) consists exactly of one or two points of F (respectively F ′)
by Remark 4.3. Now, each arc [x, y] of D with x and y cut points splits into finitely
many closed subarcs with end points in F ∪{x, y}, so h maps it to an arc, because it is
a homeomorphism hA on the interior of each subarc and because two adjacent subarcs
meet in a point of F on which h has the same value as f . If x is not a cut point but y is
(the case when neither are cut points is similar), then (x, y] is an increasing union of
arcs [xi, yi] whose end points are cut points, so the previous argument applies to each
[xi, yi], thus on (x, y], and ultimately to [x, y] because if x ∈ F then h(x) = f(x) and
if x /∈ F then h(x) = hA(x) for some A ∈ ΩF .

Let us now consider the case of a tree. In this case, first note that h is a well-defined
bijection because ΩF ∪{F} is a partition of V (T ). Then we only need to check that the
bijection h of the vertices of T is truly a tree automorphism, i.e., that {v, w} ∈ E(T )

if and only if {h(v), h(w)} ∈ E(T ). When both v and w belong to F , this follows from
the fact that h|F = f |F and that f descends from an isomorphism [F ]→ [F ′]. On the
other hand, when either or both vertices belong to the complement of F , since they
are at distance 1 they must belong to a unique common A ∪ ∂A, so the conclusion
follows from the fact that each hA is a tree automorphism defined on A ∪ F . □

Remark 4.5. — The map h produced by Lemma 4.4 belongs to U(N,M) or K(N)

as soon as the local actions at the elements of F induced by f together with the
correspondence ΩF → ΩF ′ belong to N ⊔M or N and if the maps hA have local
actions in N ⊔M or N .

For dendrites, the maps hA needed in Lemma 4.4 can be often built using [DMW19,
Cor. 4.5], which we recall right below. Recall that cx(y) denotes the unique connected
component at x that contains y. Given two points x and y, we denote by Cx,y the
intersection between cx(y) and cy(x).

Proposition 4.6 ([DMW19, Cor. 4.5]). — Consider two distinct pairs of points a0, a1
and b0, b1 of D. Then there is a homeomorphism

g : Ca0,a1
∪ {a0, a1} −→ Cb0,b1 ∪ {b0, b1}

such that g(ai)=bi for i=1, 2 and that, for all p∈Ca0,a1
∩Br and q∈Ca0,a1

∪{a0, a1}
distinct, kp(q) = kg(p)(g(q)) (i.e., the local action of g at p is trivial).

4.2. Embedding trees into dendrites. — As done in [Smi17], given a half-edge a =

(v, w), we denote by a the opposite half-edge (w, v). Moreover, denote by HT (Tn) the
set of half-trees of Tn, which are the connected components obtained by the removal
of an edge. Every edge e = {v, w} identifies a half-tree for each of each two half-edges:
if a = (v, w), we denote by Ta the half-tree that contains the origin v of a among the
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two half-trees obtained by removing the edge {v, w} (thus, Ta is the half-tree that
contains w instead). Let τ denote the bijection H(Tn)→ HT (Tn), a 7→ Ta.

We denote by Tn the union of the geometric realization of Tn and the boundary ∂Tn
(which is the set of semi-infinite paths from an arbitrary fixed vertex). We equip Tn
with the observer’s topology, which is the topology generated by the subbasis con-
sisting of all half-trees. Note that Tn is a dendrite (though not a Ważewski dendrite).
When n is finite, Tn coincides with the end compactification of Tn.

A topological embedding Φ: Tn → Dn induces an injective map Φ̂ : V (Tn) →
Br(Dn). Let N ⩽ Sym([n]) and assume that Tn and Dn are equipped with a legal
coloring kT and a kaleidoscopic coloring kD, respectively, both with [n] as the set
of colors. If S ⊆ Dn is fully included in some connected component at b ∈ Br(Dn),
we denote that connected component by cb(S).

Definition 4.7. — A topological embedding Φ: Tn → Dn is color-preserving if, for
all v ∈ V (Tn) and all a ∈ out(v),

kT (a) = kD ◦ cΦ(v) ◦ Φ ◦ τ(a),

i.e., it maps each half-tree of Tn inside a branch of Dn of the same color.

Lemma 4.8. — For every n ⩾ 3, there exist color-preserving topological embeddings
Φ: Tn → Dn such that the closure of

⋃
{v,w}∈E(Tn)

CΦ(v),Φ(w) is Dn.

Proof. — Throughout this proof, let ∂Dn denote the set of end points of Dn. Denote
by Bv0(m) the radius-m ball of Tn centered in an arbitrary vertex v0. We start by
letting Φ0 be any map Bv0(0) = {v0} → Br(Dn). Now suppose that we are given an
injective map Φm : Bv0(m)→ Br(Dn) such that

(1) u ∈ [v, w] in Tn if and only if Φm(u) ∈ [Φm(v),Φm(w)] in Dn;
(2) for all adjacent v, w ∈ Bv0(m), one has kT (v, w) = kD

(
cΦm(v) (Φm (w))

)
.

The map Φ0 trivially satisfies these conditions. Now let us show that we can extend Φm

to some Φm+1 : Bv0
(m+ 1)→ Br(Dn) with these properties.

For all v ∈ Bv0(m + 1) ∖ Bv0(m), let w be the unique vertex in Bv0(m) that
is adjacent to it. Consider the branches at Φm(w) and denote by B the only one
whose color is kT (w, v). We will choose Φm+1(v) to be a branch point included in B:
with these choices we already know that Φm+1 satisfies condition (1) and that con-
dition (2) holds for half-edges originating from vertices in Bv0(m). By definition
of kaleidoscopic coloring (Definition 2.8), there exist branch points in B such that
kD (cb(Φm(w))) = kT (v, w). Let Φm+1(v) be any such point. Then condition (2) is
satisfied for half-edges originating from vertices in Bv0(m + 1) too. Doing this for
all v ∈ Bv0(m+ 1)∖Bv0(m) produces a map Φm+1 : Bv0(m + 1) → Br(Dn) that
extends Φm and satisfies conditions (1) and (2).

Let Φ∗ : V (Tn) → Br(Dn) be defined as Φm(v) for m such that v ∈ Bv0(m).
For each edge {v, w} of Tn, extend Φ∗ on the corresponding arc [v, w] of Tn to be
any homeomorphism from [v, w] to the unique arc [Φ∗(v),Φ∗(w)] of Dn. Thanks to
condition (1) on each Φm, this defines an embedding Tn ∖ ∂(Tn)→ Dn ∖ ∂Dn, which
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thus extends to an embedding Φ: Tn → Dn. Thanks to condition (2) on the maps
Φm, the embedding Φ is color-preserving in the sense of Definition 4.7.

Finally, consider the set ΩΦ(V (Tn)) of connected components of Dn∖Φ(V (Tn)). For
each edge {v, w} of Tn, let us denote by Cv,w the unique element of ΩΦ(V (Tn)) whose
boundary contains Φ(v) and Φ(w) (which is CΦ(v),Φ(w) = cΦ(v)(Φ(w)) ∩ cΦ(w)(Φ(v))

by the notation established right before Proposition 4.6). Observe that the subspace

D′
n :=

⋃
{v,w}∈E(Tn)

(Cv,w ∪ {Φ(v),Φ(w)}) ∪ Φ(∂Tn) ⊆ Dn

is a subdendrite of Dn that is homeomorphic to Dn itself. This follows from [DM19,
Lem. 2.14], together with the fact that this set is the closure of the open connected
subset

⋃
{v,w}∈E(Tn)

(Cv,w ∪ {Φ(v),Φ(w)}). Let us equip it with the coloring induced
from that of Dn, which is readily seen to be a kaleidoscopic coloring of D′

n. Note
that D′

n includes the image of Φ and that Φ maps the end points of Tn to end points
of D′

n. Then, if we replace the codomain Dn of Φ with D′
n, we have that Φ is color-

preserving and satisfies the property in the statement, as needed. □

4.3. Embedding universal groups into kaleidoscopic groups. — We now prove a
general fact that relates universal groups to kaleidoscopic groups.

Theorem 4.9. — A color-preserving topological embedding Φ: Tn ↪→ Dn such that
the closure of

⋃
{v,w}∈E(Tn)

CΦ(v),Φ(w) is Dn induces a topological group embedding
φ : U(N)→ K(N) such that Φ ◦ g|V (Tn) = φ(g) ◦ Φ|V (Tn) for all g ∈ U(N).

Proof. — Given g ∈ U(N), we want to build φ(g) ∈ K(N). We start by considering
f := Φ◦g ◦Φ−1 on Φ (V (Tn) ∪ ∂Tn). Note that f is a partial dendrite homomorphism
(Definition 4.2). We will now extend f “canonically” everywhere else using Lemma 4.4
with F = F ′ = Φ(V (Tn) ∪ ∂Tn), as explained below.

By hypothesis, the closure of
⋃

{v,w}∈E(Tn)
CΦ(v),Φ(w) is the entirety of Dn, so Φ

must map end points of Tn to end points of Dn. Thus the set of accumulation points of
Φ (V (Tn) ∪ ∂Tn) is precisely Φ(∂Tn) and so [x, y]∩Φ (V (Tn) ∪ ∂Tn) is finite for all cut
points x and y of Dn. Moreover, a connected component of Dn∖Φ (V (Tn) ∪ ∂Tn) coin-
cides with a connected component of Dn∖Φ (V (Tn)). Finally, the set Φ (V (Tn) ∪ ∂Tn)
is closed and center-closed, so it satisfies all the hypotheses of Lemma 4.4.

Consider the set ΩΦ(V (Tn)) of connected components of Dn ∖Φ(V (Tn)), which we
will denote by Ω for the sake of brevity. Recall that the boundary of each element
of Ω in Dn consists of at most two elements of Φ(V (Tn)) by Remark 4.3. Actually,
since Φ is such that the closure of

⋃
{v,w}∈E(Tn)

CΦ(v),Φ(w) is Dn, the boundary of
each element A of Ω must have two points which belong to Φ(V (Tn)), otherwise A
would be left out of such set. For the sake of brevity, given an edge {v, w} of Tn, let us
write Cv,w for CΦ(v),Φ(w), which is the element of Ω whose boundary is {Φ(v),Φ(w)}.
Let Dv,w denote the closure of Cv,w, which is Cv,w ∪ {Φ(v),Φ(w)}. Since Dv,w is
homeomorphic to Dn, for all {v, w} ∈ E(Tn) we can apply Proposition 4.6 to find
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color-preserving homeomorphisms ψ(v,w) : Dv,w → Dn such that
ψ(v1,w1)(Φ(v1)) = ψ(v2,w2)(Φ(v2)) and ψ(v1,w1)(Φ(w1)) = ψ(v2,w2)(Φ(w2))

for every pair of edges {v1, w1} and {v2, w2} of Tn. We do this for both half-edges of
{v, w} ∈ E(Tn) in order to find both ψ(v,w) and ψ(w,v).

For all A ∈ Ω, say A = Cv,w for some {v, w} ∈ E(Tn), we let
hA := ψ−1

(g(v),g(w)) ◦ ψ(v,w) : Dv,w −→ Dg(v),g(w).

With these maps hA, we can apply Lemma 4.4, which produces an element h ∈
Homeo(Dn). Let us now show that each h actually belongs to K(N).

First note that, by construction, the local action at each branch point outside
Φ(V (Tn)) belongs to N . Then, thanks to Remark 4.5, we only need to show that the
local action of h at Φ(v) belongs to N for each v ∈ V (Tn). To do so we will prove that
σh (Φ(v)) = σg(v). Let b0 := Φ(v) and b1 := Φ(g(v)) = h(b0), which are branch points
of Dn. For A ∈ Ω, say A = Cv,w, the corresponding color kD (cb0(A)) is mapped to

kD ◦ cb1 ◦ hA ◦ c−1
b0
◦ (kD|b̂0)

−1 (kD (cb0(A))) = kD ◦ cb1 ◦ hCv,w
(Cv,w)

= kD
(
cb1(Cg(v),g(w))

)
.

Since Φ is color-preserving (Definition 4.7) and the restriction cb0 |Φ(HT (Tn)) is a bijec-
tion Φ(HT (Tn))→ b̂0, we have

kT = kD ◦ cb1 ◦ Φ ◦ τ,(
kT |out(v)

)−1
= τ−1 ◦ Φ−1 ◦

(
cb0 |Φ(HT (Tn)))

)−1 ◦ (kD|b̂0)
−1.

Using these two equations, we find that
σg(v) (kD (cb0(A))) = kT ◦ g ◦

(
kT |out(v)

)−1
(kD (cb0(A)))

= kD ◦ cb1 ◦ Φ ◦ τ ◦ g ◦ τ−1 ◦ Φ−1 ◦
(
cb0 |Φ(HT (Tn)))

)−1 ◦ (kD|b̂0)
−1 (kD (cb0(A)))

= kD ◦ cb1 ◦ Φ ◦ τ ◦ g ◦ τ−1 ◦ Φ−1 ◦
(
cb0 |Φ(HT (Tn)))

)−1 ◦ cb0(Cv,w)

= kD ◦ cb1 ◦ Φ ◦ τ ◦ g ◦ τ−1 ◦ Φ−1(Φ(T
(v,w)

)) = kD ◦ cb1 ◦ Φ ◦ τ ◦ g(v, w)

= kD ◦ cb1 ◦ Φ(T(g(v),g(w))
) = kD

(
cb1(Cg(v),g(w))

)
.

Thus, ultimately all of the local actions of h belong to N , so h∈K(N). We let φ(g)=h
for h found in this manner, which defines a map φ : U(N) → K(N). It remains to
show that it is a topological group embedding.

Consider two elements g1, g2 ∈ U(N). For any v ∈ V (Tn), it is clear that
φ(g1) ◦ φ(g2)(Φ(v)) = φ(g1 ◦ g2)(Φ(v)).

The set Ω is a partition of Dn ∖ Φ(V (Tn)), so it suffices to see that φ(g1) ◦ φ(g2) =
φ(g1 ◦ g2) on every Cv,w ∈ Ω. This is an immediate computation using the fact that
φ(g)|Dv,w

= ψ−1
g(v),g(w) ◦ ψv,w, so φ is a group homomorphism.

Now, φ is clearly injective, as φ(g) being trivial implies that it fixes each element
of Φ(V (Tn)), so any g ∈ Ker(φ) must fix every vertex of Tn.

Continuity is readily proved as follows. If (gm)m∈N is a convergent sequence of
U(N) then for all v ∈ V (Tn) there is a K(v) ∈ N such that gi(v) = gj(v) for all
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i, j ⩾ K(v). We want to show that the same holds for (φ(gm))m∈N for all branch
points. If b ∈ Br(Dn) ∖ Φ(V (Tn)), then b ∈ Dv,w for a unique edge {v, w} ∈ E(Tn).
For all i, j ⩾ max(K(v),K(w)), the elements gi and gj agree on {v, w}, so φ(gi)|Dv,w =

φ(gj)|Dv,w
by construction. The fact that φ(g)|Φ(V (Tn)) = g ◦ Φ immediately shows

that the same holds for every b ∈ Φ(V (Tn)). □

Remark 4.10. — It is likely that statements analogous to Lemma 4.8, Theorem 4.9,
and Corollary 4.11 also hold for universal groups U(N,M) on biregular trees Tn,m and
generalized kaleidoscopic groups K(N,M) on Ważewski dendrites Dn,m. However, the
groups K(N,M) have not been formally defined in the literature. They can be built
by using two disjoint sets of colors [n] and [m] and fixing two local groups N and M

acting on [n] and [m], respectively, as noted in [DMW19, Rem. 3.10].

Our main application of Lemma 4.8 and Theorem 4.9 is the following fact, which
we will apply to Homeo(B) and Homeo(A) in the next subsection.

Corollary 4.11. — For every n ⩾ 3 at most countably infinite and for all N ⩽
Sym([n]), there are topological group embeddings

U(N) ↪−→ K(N).

It is worth mentioning that, when we consider the case N = Sym([n]), Corol-
lary 4.11 yields the following fact.

Corollary 4.12. — For every n ⩾ 3 at most countably infinite, there are topological
group embeddings

Aut(Tn) ↪−→ Homeo(Dn).

Remark 4.13. — For any tree T whose degrees are at most countable, if n is the
supremum of its degrees, then T embeds into Tn. Arguments similar to those that we
will soon use to prove Lemma 4.14 show that this induces an embedding Aut(T ) ↪→
Aut(Tn), so ultimately the previous corollary also shows that Aut(T ) embeds into
Homeo(Dn).

4.4. Embeddings and non-embeddings among the homeomorphism groups. — Recall
that universal and kaleidoscopic groups (Definitions 1.22 and 2.10) are defined by
permutation groups N (and M). Before considering the homeomorphism groups of
the rabbits and the airplane, let us show that embeddings of permutation groups
induce embeddings of universal and kaleidoscopic groups.

Lemma 4.14. — Consider two permutation groups N1 and N2 of K(1)
N and K

(2)
N , re-

spectively. Assume that there exist an injective map χ : K
(1)
N ↪→ K

(2)
N and a group

embedding ι : N1 ↪→ N2 such that
ι(g) · x = g · χ(x)

for all x ∈ K(1)
N and g ∈ N1. Then U(N1) embeds into U(N2) and K(N1) embeds into

K(N2), both as topological groups.
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Moreover, if we have the same situation for two additional permutation groups M1

and M2 of K(1)
M and K

(2)
M , respectively, then U(N1,M1) embeds into U(N2,M2) as a

topological group.

Proof. — We will prove this for regular trees first and then for Ważewski dendrites,
since the case of biregular trees is essentially identical to that of regular trees, only
notationally heavier.

Let n1 = |K(1)
N | and n2 = |K(2)

N | and denote by Tn1
and Tn2

the n1-regular tree and
the n2-regular tree, respectively. Assuming the hypotheses of the statement, χ induces
embeddings X : Tn1

↪→ Tn2
that is color-preserving, i.e., k2(v, w) = k1(X(v),X(w)) for

all v, w ∈ V (Tn1), where ki’s are the colorings of Tn1 and Tn2 , respectively. Each such
embedding is completely determined by the image of a sole vertex. Let us fix one
such embedding X. The group U(N1) acts faithfully on Tn2

as follows. On X(Tn1
), the

action is g ·X(x) := X(g ·x) (where the second action is that of U(N1) on Tn1
). If A is

a connected component of Tn2 ∖X(Tn1) that is adjacent to v ∈ X(Tn1), then g maps it
to the unique component adjacent to g ·v with color σι(g)(v)

(
k2(τ

−1
2 (A))

)
, where τ2 is

the bijection H(Tn2
)→ HT (Tn2

). The action of g on A is the unique color-preserving
action. This truly defines an element of U(N2) by Lemma 4.4 and Remark 4.5, so it
determines an embedding U(N1) ↪→ U(N2).

In the case of dendrites and kaleidoscopic groups, let us see that again χ in-
duces color-preserving embeddings X : Dn1

↪→ Dn2
. We will first produce an injective

map τ : Br(Dn1
) → Br(Dn2

) that preserves the betweenness relation and maps any
branch B of Dn1

to a branch of Dn2
whose color is the image via χ of the color of B.

Let Fn be an increasing exhausting sequence of finite subsets of Br(Dn1) such that F0

contains just a point b0 and Fn+1 ∖ Fn is a point in [Fn] or a point whose projection
is in [Fn]. The map τ is defined inductively as follows. Let τ(b0) be any branch point
of Dn2

. Assume that τ has been defined on Fn, is a partial dendrite homomorphism
(Definition 4.2) and, for any b ̸= b′ in Fn, is such that k2(cτ(b)(τ(b′))) = χ(k1(cb(b

′))).
Now let b ∈ Fn+1 ∖ Fn and let p be its projection on [Fn]. If p ∈ Fn then we
choose a point b2 in the branch B of Dn2

at τ(p) such that k2(B) = χ(k1(cp(b))) and
k2(cb2(τ(p))) = χ(k1(cb(p)) and we define τ(b) = b2. If p /∈ Fn then p = b ∈ [Fn]

and there are b1, b′1 ∈ Fn such that b ∈ [b1, b
′
1] and the interior of [b1, b

′
1] contains

no points of Fn. By the kaleidoscopic property, there is b2 ∈ [τ(b1), τ(b
′
1)] such that

k2(cb2(τ(b1))) = χ(k1(cb(b1))) and k2(cb2(τ(b
′
1))) = χ(k1(cb(b

′
1))). We set τ(b) = b2.

This defines τ on Br(Dn1
) with the required properties, which thus extends continu-

ously to an embedding X : Dn1
→ Dn2

by [DMW19, Prop. 2.4].
Now, the action of K(N1) on Dn2

is defined as before on X(Dn1
) (i.e., g · X(x) :=

X(g · x)) and, if B is a connected component of Dn2 ∖ X(Dn1) at the branch point
b ∈ X(Dn1

), then g maps it color-preservingly to the unique component B′ adjacent
to g · b with color σι(g)(b) (k2(B)). However, unlike in the case of trees, for Ważewski
dendrites there are infinitely many color-preserving homeomorphisms B → B′. As we
did in the proof of Theorem 4.9, we can make a canonical choice using Proposition 4.6:
for each connected component B of Dn2 ∖X(Dn1) with {b} as its boundary, we fix a
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color-preserving homeomorphism ψB : B → Dn2
(whereB = B∪{b} is the closure ofB

inDn2) in such a way that these homeomorphisms all map ψB(b) to the same end point
of Dn2 , then we define g|B as ψ−1

B′ ◦ψB (where, as before, B′ is the unique component
adjacent to g · b with color σι(g)(b) (k2(B))) and we use Lemma 4.4 and Remark 4.5
to find conclude as before.

In both cases, the fact that the continuity of the group embeddings follows from
the fact that the preimage of the stabilizer of a finite set of vertices (branch points)
is the stabilizer of a finite set of vertices (branch points). □

Corollary 1.30 allows us to distinguish between the basilica and the other rabbit
homeomorphism groups. The upcoming Proposition 4.15 shows that we can distin-
guish almost every two other homeomorphism groups of rabbits, as it implies that
the homeomorphism groups of two distinct rabbits Rn and Rm are not isomorphic as
soon as n,m ⩾ 4.

Proposition 4.15. — For every 2 ⩽ n < m, there are topological group embeddings

Homeo(Rn) ↪−→ Homeo(Rm).

Conversely, Homeo(Rm) does not embed into Homeo(Rn) for all 4 ⩽ n < m.

Proof. — As soon as n ⩽ m, the group Sym([n]) embeds into Sym([m]) as the point-
wise stabilizer of [m]∖ [n] points. With this embedding, the conditions of Lemma 4.14
are satisfied, so the first part of the statement is proved.

For the second part, let m > n ⩾ 4. Since Homeo(Rm) includes copies of the
alternating group Alt(m), it suffices to show that Alt(m) does not embed into
U(Sym([n]),Aut(S)). We do this by contradiction, so let us assume that Alt(m) acts
faithfully on Tn,∞ with local actions in Aut(S) at the vertices of infinite degree.

Note that m ⩾ 5, so Alt(m) is simple. Then it is not hard to see that every faithful
action of Alt(m) on a tree must have a fixed vertex v on whose adjacent edges the
action is the natural action of Alt(m) (see [Tar25, Claim 6.3] for details). Since n < m,
the vertex v of Tn,∞ must be of infinite degree, so the local action around v must
induce an embedding of Alt(m) into Aut(S). This is impossible: if such an embedding
existed, Alt(m) would either embed into Aut(O) or have an index-2 subgroup that
embeds into Aut(O), both of which cannot happen because finite subgroups of Aut(O)

must be cyclic. Thus, Alt(m) does not embed into U(Sym([n]),Aut(S)) ≃ Homeo(Rn),
as needed. □

Corollary 1.30 and Proposition 4.15 imply that, assuming that {n,m} ̸= {3, 4},
Homeo(Rn) ≃ Homeo(Rm) if and only if n = m. For the case n = 3,m = 4, the
strategy of Proposition 4.15 does not apply because Alt(4) is not simple. Indeed,
[DM80] describes a faithful action of Sym([4]) on a 3-regular tree, so we cannot rule
out that Aut(4) embeds into Homeo(R3). Hence, the following questions remain open.

Question 4.16. — Are Homeo(R4) and Homeo(R3) isomorphic topological groups?
If they are not, does Homeo(R4) embed into Homeo(R3)?
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Note that Proposition 4.15 does not state that there do not exist embeddings of
Homeo(R3) into Homeo(B). And indeed there are such embeddings:

Corollary 4.17. — There are topological group embeddings
Homeo(R3) ↪−→ Homeo(B) ↪−→ Homeo(A).

Proof. — For the first embedding, recall that Sym([3]) is the dihedral group with
six elements and thus acts continuously on the circle. This defines an embedding of
Sym([3]) into Aut(S). (Note that this fails for Sym([m]) as soon as m ⩾ 4.) This
embedding satisfies the conditions of Lemma 4.14, so we have that Homeo(R3) ≃
U(Sym([3]),Aut(S)) ⩽ U(Aut(S),Aut(S)), which in turn embeds into U(Aut(S)) ≃
Homeo(B), so we are done.

Since Homeo(A) ≃ K(Aut(S)) and Homeo(B) ≃ U(Aut(S)), the second embedding
is given by direct application of Corollary 4.11. □

Embeddings between groups acting on the basilica and the airplane is not new
behavior: as shown in [Tar24a, §10], the basilica rearrangement group TB embeds into
the airplane rearrangement group TA and the overall idea is ultimately not dissimilar
to that of Corollary 4.17.

4.5. Embeddings and non-embeddings among the lamination automorphism groups

Let us consider the groups Homeo+(Rn) and Homeo+(A) from Section 3. As a
consequence of Theorem 3.9 we immediately have distinction.

Theorem 4.18. — The groups Homeo+(Rn) and Homeo+(Rm) are abstractly isomor-
phic if and only if n = m.

It is also easy to see that Homeo+(Rn) embeds into Homeo+(Rm) as soon as
n|m. Indeed, if n|m then [n] embeds in [m] via ι : x 7→ mx/n and Cyc(n) em-
beds as the setwise stabilizer of the image of ι in Cyc([m]), which satisfy the con-
ditions of Lemma 4.14 and so, thanks to Theorem 3.4, one has that Homeo+(Rn) ≃
U(Cyc(n),Aut(O)) embeds into U(Cyc(m),Aut(O)) ≃ Homeo+(Rm).

Moreover (and perhaps more surprisingly), these groups embed into Homeo+(B).
Recalling again that Homeo+(Rn) ≃ U(Cyc(n),Aut(O)) by Theorem 3.4, this can be
seen as follows:
U(Cyc(n),Aut(O)) ↪−→ U(Aut(O),Aut(O)) ↪−→ U(Aut(O)) = U(Cyc(2),Aut(O)),

where the first embedding is induced by any faithful action of Cyc(n) that preserves
the cyclic order on the countable dense cyclic order O (this defines an embedding that
satisfies the conditions of Lemma 4.14), the second by observing that the biregular
tree on which U(Aut(O),Aut(O)) acts is actually the regular tree with infinite degree
and the last identity by taking the barycentric subdivision of such a tree.

As for the embedding between Homeo+(Rn) and Homeo+(A), we simply need to
gather previously obtained results. As we have just seen in the previous paragraph,
Homeo(Rn)

+ embeds into U(Aut(O)). By Corollary 4.11 we have that
U(Aut(O)) ⩽ K(Aut(O))
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and by Theorem 3.4 we have that K(Aut(O)) ≃ Homeo(A)+. Hence, ultimately each
Homeo+(Rn) embeds into Homeo+(A).

Here is a collection of what we have discussed in the previous paragraphs.

Corollary 4.19. — As soon as n|m, there are topological group embeddings

Homeo+(Rn) ↪−→ Homeo+(Rm) ↪−→ Homeo+(B) ↪−→ Homeo+(A).

5. Some geometric and analytic properties of the groups

For topological groups that are not necessarily locally compact, one can general-
ize compact subsets in different directions. As introduced by Rosendal in [Ros22], a
subset A of a topological group G is coarsely bounded if it has finite diameter with
respect to every continuous left invariant écart (also known as pseudo-metric) on G.
A group is locally bounded if it has a coarsely bounded identity neighborhood. For σ-
compact locally compact groups, coarsely bounded subsets coincides with relatively
compact subsets. In another direction, one can define Roelcke precompact subsets,
which are precompact subsets for the Roelcke uniformity (the meet of the left and
right uniformities). Such subsets A in a topological group are characterized by the
following property: for any identity neighborhood V , there is a finite subset F such
that A ⊆ V FV . Roelcke precompact subsets are always coarsely bounded. For further
details, see [Ros17, §3].

5.1. Quasi-isometry types of the groups. — Rosendal extended geometric group
theory to non-locally compact groups in [Ros22]. In particular, he found under what
assumptions a Polish group has a well-defined quasi-isometry type, which we deter-
mine for the groups under study in this paper. Let us start with homeomorphism and
lamination automorphism groups of the airplane.

Corollary 5.1. — The groups Homeo(A) and Homeo+(A) are are Roelcke precom-
pact and thus coarsely bounded.

Proof. — Thanks to Corollaries 2.18 and 3.8, both Homeo(A) and Homeo+(A) are
oligomorphic. In particular they are Roelcke precompact. See [Ros22, §3.1] for details.

□

For regular rabbits, we rely on §6 of [Ros22] about automorphism groups of count-
able structures. Our countable structure is the regular tree of infinite degree T∞ or
the bi-regular tree Tn,∞ with degrees (n,∞), where n ⩾ 3.

Proposition 5.2. — The groups Homeo(Rn) and Homeo+(Rn) are locally Roelcke
precompact, in particular locally bounded, and quasi-isometric to T∞.

Proof. — Let T be the tree of circles associated to a regular rabbit. We prove that the
stabilizer of a vertex is Roelcke precompact (even if it is not oligomorphic because
it has an orbit for each fixed distance from the fixed vertex) and thus yields the
desired result about local Roelcke precompactness. Let v be a vertex and let G be
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its stabilizer (in either Homeo(Rn) or Homeo+(Rn)). Let Vn be the subtree given by
the ball of radius n around v in T . Let Gn be the group of automorphisms of Vn
fixing v and with local action in Aut(S) (or Aut(O)) for all vertices with infinite
degree of Vn. We consider the pointwise convergence topology on Gn for its action
on vertices of Vn. Let Πn : G → Gn be the restriction map to Vn and similarly, for
m ⩾ n ∈ N, let Πm,n : Gm → Gn be the restriction map to Vn. These maps are
continuous group homomorphisms. Since any element of Gn can be extended to an
element of G, we see that G is topologically isomorphic to the inverse limit lim←−Gn and
Roelcke precompactness follows from [Tsa12, Prop. 2.2(iii)] as soon as we know that
all Gn are Roelcke precompact. Let us prove that each Gn is actually oligomorphic.

Let F be some finite set of vertices of Vn. Up to enlarging F , we may assume
that it is center-closed (Definition 4.1) and contains v. Let us say that two such
finite center-closed sets F and F ′ have the same configuration if there is a partial tree
homomorphism (Definition 4.2) between F and F ′ fixing v that induces isomorphisms
for the separation relation (for the cyclic orders in the case of Homeo+(Rn)) on
neighbors of each vertex of infinite degree of F and that induces isomorphism of
cyclic orders on neighbors of finite degree of F in the case of Homeo+(Rn). For each
finite cardinal, there are only finitely many configurations and Gn acts transitively
on finite sets with the same configuration, since any isomorphism testifying that two
sets F and F ′ have the same configuration can be extended to an element of Gn by
Lemma 4.4 and Remark 4.5. So Gn is an oligomorphic group.

Now let us prove that Homeo(Rn) and Homeo+(Rn) are quasi-isometric to T∞.
Since these groups act transitively on the set of (unoriented) edges of T , we can rely
on the argument given in [Ros22, Ex. 6.34]. The fact that T is quasi-isometric to T∞
follows from the following lemma. □

Lemma 5.3. — For all k ⩾ 2, the biregular tree Tk,∞ is quasi-isometric to T∞.

Proof. — Let us fix infinite-degree vertices u0 in Tk,∞ and v0 in T∞ and Un, Vn the
respective n-neighborhood of these points. We define by induction surjective (1, 2)-
quasi-isometric maps fn : Vn → Un such that fn+1 restricted to Vn is fn. The desired
quasi-isometry f will be defined to coincide with fn on Vn.

For n = 0, we set f0(v0) = u0. We extend f0 to f1 by choosing any bijection
between the infinite countable sets V1∖{v0} and U1∖{u0}. Assume that fn has been
defined for some n ⩾ 1. We define fn+1 to be fn on Vn. If n is odd, for each vertex v
in Vn ∖ Vn−1, we choose a surjective map between neighbors of v not in Vn and the
k− 1 neighbors of f(vn) not in Un. This defines fn+1 on the 1-neighborhood of v and
we do the same for all other vertices in Vn ∖ Vn−1.

Assume now that n is even. Let us fix v ∈ Vn ∖ Vn−1. Let Nv be the collection
of all neighbors of vertices in f−1

n (fn(v)) except for the one in Vn−1 and Nf(v) the
collection of all neighbors of f(v) except the one in Un−1. Since Nv and Nf(v) are
both infinite countable, we can choose fn+1 so that its restriction on Nv coincides
with some bijection Nv → Nf(v). We do the same for all distinct sets of the form Nv

to define fn+1.
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We have thus defined a surjective map f : T∞ → Tk,∞ mapping adjacent vertices to
adjacent vertices. In particular, it is 1-Lipschitz and, for any vertex v, d(f(v), f(v0)) =
d(v, v0). Moreover, by construction f is injective on the subset of vertices in T∞ at
odd distance from v0. Let x, y be vertices in T∞ and v1 = x, v2, . . . , vn+1 = y the
shortest path between them. Let vl be the unique point at shortest distance from v0
on this path. If vl is at even distance from v0 then f(vl−1) and f(vl+1) are distinct
and f is then injective on this path. Otherwise, if vl is at odd distance from v0 and
f(vl−1) = f(vl+1), then f(vl−2) and f(vl+2) are distinct, as are the other points on
the path. So d(x, y) − 2 ⩽ d(f(x), f(y)) ⩽ d(x, y), which means that f is a quasi-
isometry. □

5.2. Property (T) and the Haagerup property. — Recall that a topological group G
has strong Property (T) if G has a Kazhdan pair (F, ε) with F finite (see [BdlHV08]
for details about Property (T)). In the opposite direction, the Haagerup property
has been extended from locally compact groups to general topological group G in
[Ros17]. A topological group G has the Haagerup property if G has a continuous
action by isometries on a Hilbert space H such that there is an orbit map that is a
coarse embedding from G to H (i.e., the preimages of bounded subsets are coarsely
bounded). These properties are opposite in the sense that a topological group with
both property (T) and the Haagerup property is coarsely bounded.

Remark 5.4. — Thanks to the GNS construction, the Haagerup property is equivalent
to the existence of a continuous coarsely proper function conditionally of negative
type. See [BdlHV08, §2.10] for explanations.

Theorem 5.5. — The groups Homeo(Rn) and Homeo+(Rn) have the Haagerup prop-
erty for all n ⩾ 2, whereas Homeo(A) and Homeo+(A) both have strong Property (T).

Proof. — For the airplane, thanks to the identification of Homeo(A) and Homeo+(A)

with oligomorphic kaleidoscopic groups (Corollaries 2.18 and 3.8), strong Property (T)
follows immediately from [ET16, Th. 1.1].

Now consider the rabbits. Let d be the distance function on T∞ or Tn,∞ and v some
fixed vertex in this tree, the map f : g 7→ d(g(v), v) is a continuous, metrically proper
and conditionally of negative type function [BdlHV08, C.2.2(iii)] and thus gives rise
to a continuous proper affine isometric on some Hilbert space (that is the Hilbert
space of square-integrable functions on the countable set of oriented edges). □

By Theorem 5.5, the group Homeo+(A) is a new example of an uncountable group
with property (T) acting non-elementarily on the circle, such as that studied in
[Duc23a].

6. Universal minimal flows in the case of the airplane

Recall that a topological group G∗ is extremely amenable if all of its continuous
actions on compact spaces have a fixed point, or equivalently its universal minimal
flow M(G∗) is a singleton. Moreover, a subgroup G∗ of a group topological G is
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coprecompact if the completion of its quotient G/G∗ is compact, or equivalently if
there is a finite subset F ⊆ G such that G = V FH. In particular, a permutation
group G∗ ⩽ Sym(Ω) is coprecompact if and only if it is oligomorphic.

We denote by X̂ the completion of a uniform space X. In particular, if H is a
closed subgroup of a topological group G, then G/H is endowed with the uniformity
coming from the right uniformity on G and we denote its completion by Ĝ/H.

Assume G∗ is a closed extremely amenable coprecompact subgroup of G. Then any
minimal subflow of the completion Ĝ/G∗ of the quotient G/G∗ is M(G). In particular,
if Ĝ/G∗ itself is minimal then it is M(G).

Universal minimal flows of kaleidoscopic groups have been studied in [BT23]. Using
and expanding from ideas from that paper, we can obtain a more precise description
of the universal minimal flow of Homeo(A) and Homeo+(A).

Consider the dendrite D∞, identified with the dendrite of circles of A (Section 2.2).
Fix an end point ξ of D∞.

Proposition 6.1. — The stabilizer subgroup K(Aut(O))ξ is an extremely amenable
oligomorphic group.

Proof. — The stabilizer subgroup in Aut(O) of a point is isomorphic to Aut(Q, <) by
Lemma A.8 and thus is extremely amenable (see [Pes98]). Since Aut(O) is transitive,
extreme amenability of K(Aut(O))ξ follows from [BT23, Cor. 8.3(i)]. The fact that this
group is oligomorphic follows from Proposition 4.6 and Corollary 5.10 in [BT23]. □

Theorem 6.2. — The universal minimal flow of K(Aut(O)) is
̂K(Aut(O))/K(Aut(O))ξ.

Proof. — Since K(Aut(O))ξ is oligomorphic for the action on the branch points
of D∞, it is coprecompact in K(Aut(O)), so the completion of the quotient space
coincides with the Samuel compactification. Thus, the desired result follows from
the fact that K(Aut(O))ξ is extremely amenable and from applying Theorem 1.4 in
[BT23] with Γ = Aut(O), ∆ = Γc ≃ Aut(Q, <), K∗(∆) = K(Aut(O))ξ. □

We can find a more concrete description of the universal minimal flow of the group
Homeo+(A) ≃ K(Aut(O)) and thus, as will be shown soon in Corollary 6.5, give
an example of a Polish group that is intrinsically c-ordered (as asked in [GM18a,
Quest. 4.9]). The universal minimal flow has a continuous invariant cyclic order, but
admits a minimal action on a compact space without invariant cyclic order, as we will
see in Proposition 6.6

Let us recall a few definitions from [GM18a, GM21]. Let Ω be some cyclically
ordered set and A ⊂ Ω. Then there exists a cyclically ordered set Split(X,A) with
an order-preserving map ν : Split(X,A) → X such that any point x ∈ X ∖ A has
a unique preimage and any point a ∈ A has two preimages a−, a+ (see [GM18a,
Lem. 2.11]). The cyclic order on Split(X,A) is such that [a−, a+, x] for any x ̸= a−, a+

and [x, y, z] ⇐⇒ [ν(x), ν(y), ν(z)] if x, y, z ∈ Split(X,A) have distinct images in X.
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If X is compact (for the topology induced by the cyclic order, see [GM18a, §2]),
then so is Split(X,A). If some topological group G acts continuously on X preserving
the cyclic order and A ⊂ X is G-invariant, then G acts continuously and order-
preservingly on Split(X,A) as well.

For Homeo+(A) and its action on S1 constructed in Section 3, we consider the
set P of preimages of cut points of A that belong to circles. This is a countable set
and the Carathéodory loop φ is 2-to-1 on this subset.

Theorem 6.3. — The universal minimal flow of Homeo+(A) is Split(S1, P ).

Proof. — As before, let us fix an end point ξ of the airplane. Throughout this proof,
we denote Homeo+(A) by G and Homeo+(A)ξ by H. Let E be the set of points
y ∈ Split(S1, P ) such that φ(ν(y)) is an end point of the airplane. Since φ is bijective
when restricted to the set E, there exists a unique x ∈ E such that φ(ν(x)) = ξ.
Thanks to Theorem 6.2 and the fact that G is K(Aut(O)), it suffices to prove that
the orbit map

G/H −→ Split(S1, P )

gH 7−→ gx

is a bi-uniformly continuous injection with dense image.
It is injective with image E (which is dense in Split(S1, P )) because the action of G

on the set of end points is transitive (this is the case for every kaleidoscopic group
on D∞, including K(1), see [DMW19, Prop. 5.5]).

For a cycle (b1, . . . , bm) in P (i.e., the map i 7→ bi is a cyclic order-preserving map
from [n] to P ), we define Vb1,...,bm = {(y1, y2) ∈ E2 | ∃i, y1, y2 ∈ (b+i , b

−
i+1)}. The

collection of all Vb1,...,bm is a basis for the uniform structure on E. The map gH 7→ gx

is uniformly continuous because the action of G on Split(S1, P ) is continuous. For
any y ∈ E, we choose gy ∈ G such that gyx = y. We want to show that y → gyH is
uniformly continuous.

By definition of the Polish topology on K(Aut(O)), a base for the uniform structure
on G/H is

VF = {(gH, hH), g ∈ UFhH}
where UF is the pointwise stabilizer in G of a finite set F of branch points of D∞.
Let F0 be some finite center-closed set of branch points in D∞ containing at least two
points. Let F1 be the (finite) subset of A consisting of all projections of a circle C1 to a
circle C2 where C1, C2 are distinct preimages of elements of F under the quotient map
A→ D∞. Finally, let F ⊂ Split(S1, P ) be the subset of all preimages of F1 under φ◦ν.
Let us order cyclically the points of F : (b1, . . . , bm). For any pair (y1, y2) ∈ Vb1,...,bm ,
there is u ∈ UF such that gy1 = y2 (by the same construction as in the proof of
[Duc23b, Th. 1.14]). Thus, if (y1, y2) ∈ Vb1,...,bm then (gy1H, gy2H) ∈ VF . This proves
that the inverse of the orbit map is uniformly continuous. Since E is dense in the
compact space Split(S1, P ), we have that G and Split(S1, P ) are homeomorphic as
G-spaces. □
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For a topological group G, a flow X is strongly proximal if any probability mea-
sure contains a Dirac mass in the closure of its orbit (for the induced action of G
on Prob(X)). Among strongly proximal minimal G-flows, there is a universal one
(called the universal minimal strongly proximal G-flow or the Furstenberg boundary
of G). The following corollary shows that the Furstenberg boundary of Homeo+(A)

is Split(S1, P ).

Corollary 6.4. — Any minimal Homeo+(A)-flow is strongly proximal.

Proof. — It suffices to prove that the action of on Split(S1, P ) is strongly proximal.
The argument is the same as in [Duc23a, Cor. 5.1.] □

Let us recall that a topological group G is intrinsically c-ordered if its universal
minimal flow has an invariant cyclic order that induces the topology. This property
implies in particular that any minimal flow of G is tame, i.e., the enveloping semigroup
is separable and Fréchet, so it does not contain a topological copy of the Stone-Cech
compactification of the integers βN (see [GM18a] for this fact and [Gla06, GM18b]
for the relevance of tameness). An immediate consequence of Theorem 6.3 is the
following.

Corollary 6.5. — The Polish group Homeo+(A) is intrinsically c-ordered.

We have the following sequence of Homeo+(A)-factors:

Split(S1, A) −→ S1 −→ A −→ D∞.

The first two ones are cyclically ordered.

Proposition 6.6. — Both the dendrite D∞ and the airplane A have no cyclic order
that is invariant under Homeo+(A).

Proof. — Let X be either D∞ or A. If X = D∞, let p1, p2 and p3 be branch points
such that p2 is between the other two. If X = A, let p1, p2 and p3 be regular cut points
(Definition 2.6) such that p2 is between the other two. In both cases, an application
of Lemma 4.4 and Remark 4.5 shows that there exists a g ∈ Homeo+(A) that fixes p2
and switches p1 and p3, so both D∞ and A admit no cyclic order that is invariant
under Homeo+(A). □

Proposition 6.7. — The universal minimal flow of Homeo(A) is metrizable.

Proof. — Let us use the identification Homeo(A) ≃ K(Aut(S)) from Theorem 2.16.
Since Aut(S) acts transitively and oligomorphically on (Ω, S) by Lemma A.8 and
since M(Aut(S)) is metrizable by Proposition A.11, the result follows immediately
from [BT23, Th. 1.1]. □

Remark 6.8. — It is natural to ask what happens for the basilica and regular rabbits
with at least two ears. For the airplane, we relied on the work [BT23] on the uni-
versal minimal flow of kaleidoscopic groups; however, to the best of our knowledge,
no such work exists for universal groups. Let us explain what could be a strategy
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for homeomorphism groups of rabbits. Let ξ ∈ Rn be some end point, it corre-
sponds to an end (which we also denote by ξ) in the tree Tn,∞ of circles of Rn.
Its stabilizer Homeo+(Rn)ξ has a continuous surjective homomorphism to Z com-
ing from the Busemann cocycle associated to ξ. In particular, Homeo+(Rn)ξ is not
extremely amenable and the universal minimal flow of Homeo+(Rn) is not the com-
pletion of Homeo+(Rn)/Homeo+(Rn)ξ for the left uniform structure. Instead, the
universal minimal flows of Homeo+(Rn) and Homeo(Rn) can likely be obtained using
by some suspension process as in [Duc23b, §7].

Appendix A. The countable dense cyclic order and its separation relation

In this section we gather some useful facts about the dense cyclic order O and its
separation relation S that we use throughout the paper.

A.1. Cyclic orders and their separation relations

Definition A.1 (Cyclic order). — Let Ω be a set. A cyclic order on Ω is a ternary
relation [ , , ] on X that enjoys the following properties:

(1) Cyclicity: If [a, b, c] then [b, c, a],
(2) Asymmetry: If [a, b, c] then not [c, b, a],
(3) Transitivity: If [a, b, c] and [a, c, d] then [a, b, d]

(4) Connectedness: If a, b, c are distinct, then either [a, b, c] or [c, b, a].

Given a cyclic order, one can define the inverse cyclic order [x, y, z]−1 ⇐⇒ [z, y, x].
It is readily seen that this is a well-defined cyclic order.

Let us denote by Ω(3) the set of all triples (x, y, z) ∈ Ω3 such that x, y, z are distinct.
Every cyclic order defines an orientation map

O : Ω(3) −→ {+,−},

that is O(x, y, z) = + ⇐⇒ [x, y, z]. Since a cyclic order is entirely determined by its
orientation map, we take the liberty of using the symbol O to also refer to the cyclic
order.

Following Vailati [Rus03, §204, p. 215], we introduce the following quaternary rela-
tion (see Coxeter [Cox93, Ch. 3], for a more recent reference).

Definition A.2 (Separation relation). — Let Ω be a set equipped with a cyclic
order [ , , ]. The separation relation associated to it is the relation S such that
S(a, b, c, d) ⇐⇒ [a, b, c] ∧ [c, d, a] or [a, d, c] ∧ [c, b, a].

It is easy to verify that a cyclic order and its inverse induce the same separation
relation.

Example A.3. — Let Ω = S1 be the unit circle in C with the following cyclic order.
For z0, z1, z2 ∈ S1, choose two preimages x1, x2 ∈ R of z1, z2 via the exponential map
x 7→ exp(ix) that lies in the same connected component of R∖ exp−1(z0) and write
[z0, z1, z2] ⇐⇒ x1 < x2 for the usual order on R.
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Example A.4. — The separation relation associated to the cyclic order on S1 can be
described in a topological way: S(a, b, c, d) holds if and only if b and d lie in different
connected components of S1 ∖ {a, c}. That is, {b, d} is separated by {a, c} and vice
versa.

Linear orders, cyclic orders, betweenness and separations relations are closely
related, as explained in [Hun35]. In particular, given a cyclic order on a set Ω and
x ∈ Ω, we can set y <x z if (x, y, z) is cyclically ordered. The binary relation <x is a
linear order on Ω. Thus, given a subset F of a cyclically ordered set Ω, we call cyclic
successor of x ∈ F the minimum of the linear order <x on F ∖ {x} (if it exists).
Conversely if < is a linear order on some set Ω, we can define a cyclic order via
[x, y, z] ⇐⇒ x < y < z ∨ y < z < x ∨ z < x < y. In particular, we call standard the
cyclic order on [n] = {1, . . . , n} induced by the natural linear order <.

Let Ω be a set with a cyclic order [ , , ]. We say that a bijection g of Ω preserves
the cyclic order if [x, y, z] ⇐⇒ [g(x), g(y), g(z)] and that it reverses the order if
[x, y, z] ⇐⇒ [g(x), g(y), g(z)]−1. If S is a separation relation, we say that a bijection g
of Ω preserves S if S(x, y, z, w) ⇐⇒ S(g(x), g(y), g(z), g(w)).

Lemma A.5. — Let Ω be a set with a cyclic order and let S be the associated separation
relation. A bijection g of Ω preserves S if and only if it preserves or reverses the cyclic
order.

Proof. — Since the cyclic order and its inverse cyclic order induce the same separation
relation, it is clear that a bijection that preserves or reserves the cyclic order preserves
the separation relation.

Conversely, assume that (u, v, w) satisfies [u, v, w]. Then, for any triple a, b, c,

[a, b, c] ⇐⇒ (S(a, u, v, w) ∧ S(a, b, v, w) ∧ S(a, b, c, w))
∨ (S(b, u, v, w) ∧ S(b, c, v, w) ∧ S(b, c, a, w))
∨ (S(c, u, v, w) ∧ S(c, a, v, w) ∧ S(c, a, b, w))
∨ (S(a, u, v, w) ∧ S(a, b, v, w) ∧ S(a, b, w, c))
∨ (S(b, u, v, w) ∧ S(b, c, v, w) ∧ S(b, c, w, a))
∨ (S(c, u, v, w) ∧ S(c, a, v, w) ∧ S(c, a, w, b))

Let us writeR(a, b, c, u, v, w) for the relation with 6 variables that appears on the right-
hand side of the equivalence above. Let us fix u, v, w ∈ Ω such that [u, v, w] and let us
assume that g preserves S. If [g(u), g(v), g(w)] then [a, b, c] implies R(a, b, c, u, v, w)
and, since g preserves S, R(g(a), g(b), g(c), g(u), g(v), g(w)) and thus [g(a), g(b), g(c)].
Similarly if [g(u), g(v), g(w)]−1, for a, b, c such that [a, b, c], R(a, b, c, u, v, w) holds and
thus [g(a), g(b), g(c)]−1. This means that g preserves or reverses the cyclic order. □

A.2. Countable dense cyclic orders. — A cyclic order is dense if for all distinct
x, z ∈ Ω, there is y ∈ Ω such that [x, y, z]. There is a unique countable dense cyclic
order O up to isomorphism (this follows from the analogous statement for linear
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orders). Such a cyclic order O has been studied in [Tru09]. The Dedekind completion
of O is S1 with its usual topology.

Example A.6. — A realization of this unique dense countable cyclic order can be
obtained by choosing any dense countable subset of the circle S1. For example, if we
identify S1 with R/Z then Q/Z and Z[1/2]/Z are standard choices.

Throughout the rest of this appendix and all other sections, we denote by O this
countable dense cyclic order and by S the associated separation relation. We denote
by Aut(S) the group of all bijections of Ω that preserve this separation relation S

and by Aut(O) the subgroup of Aut(S) of bijections of Ω that preserve this cyclic
order O. Let us gather a few facts about these two groups.

Remark A.7. — The structures (Ω, O) and (Ω, S) are Fraïssé limits of all finite cyclic
orders and all finite separation relations respectively. In particular, it follows that
Aut(S) and Aut(O) are closed subgroups of Sym([∞]) for the pointwise convergence
topology.

Lemma A.8. — The groups Aut(S) and Aut(O) enjoy the following properties.
(1) Aut(S) is the semi-direct product Aut(O)⋊ Z/2Z.
(2) Aut(O) is 2-transitive.
(3) Aut(S) is 3-transitive.
(4) ∀x ∈ X, the stabilizer Aut(O)x is isomorphic to Aut(Q, <).
(5) ∀x ∈ X, the stabilizer Aut(S)x is isomorphic to Aut(Q, B) where B is the

betweenness relation associated to <.
(6) Aut(S) and Aut(O) are oligormorphic groups.
(7) Aut(O) is a simple group.

Proof
(1) Any bijection preserving the separation relation either preserves or reverses the

cyclic order, so Aut(O) has index 2 in Aut(S). If σ ∈ Aut(S)∖Aut(O) is an involution
(for example the map induced by x 7→ 1−x in the model Ω = Q/Z), then it is readily
verified that Aut(S) = Aut(O)⋊ < σ >.

(2) We use Q/Z as a model for Ω. Let (a, b) and (a′, b′) be two pairs of distinct
points in Q/Z. Since the left action of (Q,+) on Q/Z is transitive and preserves the
cyclic order, we may assume that a = a′ = 0. Now the following piecewise affine map,
where Q/Z is identified with Q ∩ [0, 1), does the job:

Q/Z −→ Q/Z,

x ∈ [0, b) 7−→ b′x

b
,

x ∈ [b, 1) 7−→ b′ +
(1− b′)(x− b)

1− b
.

(3) Let (a, b, c) and (a′, b′, c′) be two triples of distinct points in Q/Z. By the
previous argument, we may assume that a = a′ = 0 and b = b′ = 1/2. If c and c′
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belong to the same interval (0, 1/2) or (1/2, 1), a piecewise affine map as above maps c
to c′ and preserves the cyclic order. Otherwise the symmetry at 1/2 swaps these two
intervals preserving the separation relation and we are in the previous situation.

(4) Once x ∈ Ω is fixed, the linear order y <x z ⇐⇒ [x, y, z] on Ω ∖ {z} is
invariant and isomorphic to (Q, <).

(5) As above, the linear order <x is preserved or reversed.
(6) The group of orientation-preserving piecewise affine maps (over Q) in Aut(O)

acts transitively on cycles (x1, . . . , xn), i.e., images of cyclic order-preserving maps
[n]→ Q/Z. So two n-tuples (x1, . . . , xn) and (y1, . . . , yn) are in the same orbit if and
only if [xi, xj , xk] ⇐⇒ [yi, yj , yk]. Since there are (n − 1)! cyclic orders on [n], the
group Aut(O) (and thus Aut(S)) acts oligomorphically on Ω.

(6) This is [Mac11, Prop. 4.2.8]. □

Remark A.9. — Mathematicians with algebraic taste may think of Q/Z as the pro-
jective line P1Q over Q. Under this point of view, the group of piecewise affine maps
used above is the group PL(P1Q) of piecewise projective homeomorphisms of P1Q

(or Q if∞ is fixed). This is a countable group studied in [Mon13] as a discrete group.
With the pointwise convergence topology, PL+(P1Q) is extremely amenable. This is
a consequence of [Pes98, Main th.].

From the fact that they are oligomorphic, we know that these groups have strong
property (T) and are coarsely bounded.

Corollary A.10. — Both groups Aut(S) and Aut(O) are generated by their point
stabilizers.

Proof. — By points 2 and 3 of Lemma A.8, Aut(S) and Aut(O) are 2-transitive,
so they are generated by their point stabilizers. □

We conclude this appendix by emphasizing that the universal minimal flow of
Aut(O) has been shown in [GM21] to be Split(S1,Ω) where Ω is any countable dense
subset of S1. Since Aut(S) ≃ Aut(O)⋊Z/2Z, we fall in a situation studied in [KS12,
App. 3] where an induced action of Aut(S) on Split(S1,Ω) × Z/2Z is defined via a
lifting Z/2Z → Aut(S). In this situation, it can be shown that any such action is
isomorphic to the diagonal action of Aut(S) on Split(S1,Ω)×Aut(S)/Aut(O), so we
have the following fact.

Proposition A.11. — The universal minimal flow of Aut(S) is Split(S1,Ω) × Z/2Z

with the induced action from the action of Aut(O) on Split(S1,Ω).

Appendix B. Rabbits and airplane as Julia sets

In this section we show that the famous basilica, Douady rabbit and airplane Julia
sets satisfy our Definition A and Definition B.
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We rely on [DH84a, DH85] (an English translation is available on John Hubbard’s
web page [DH84b]) and refer to this for definitions and classical facts about the
Mandelbrot, Julia and Fatou sets. We will merely introduce the notations we use.

We denote by fc the polynomial map z 7→ z2 + c, where c ∈ C. Its Julia set is
denoted by Jc andKc denotes the filled-in Julia set. When c belongs to the Mandelbrot
set, Jc and Kc are connected. Moreover, if fc is subhyperbolic then Jc is locally
connected [DH84a, Prop. 4, Exp. III], so in this case Jc is a Peano continuum and
there is a continuous surjective map φ : R/Z → Jc = ∂Kc, called the Carathéodory
loop, that we also employed in Section 3. Dynamically, the doubling map 2 7→ 2x is
semi-conjugate to the action of fc on Jc:

∀x ∈ R/Z, φ(2x) = fc(φ(x)).

For an x ∈ Jc, its preimages (often identified with the representatives in [0, 1)) are
called the external arguments of x.

By [DH84a, Prop. 3, Exp. II], the boundary of any component of Kc is a circle.
Conversely, If C is a circle in Jc then the bounded component B of C∖C is in Kc (the
complement of Kc is connected) and it is open, so B ⊂ U for some component U of K̊c

and thus B = U . In conclusion, circles in Kc are exactly boundaries of components
of K̊c.

We will only consider points c in the Mandelbrot set with external arguments
of the form p/(2k − 1). These points are roots of hyperbolic components by [DH85,
Exp. VIII, Th. 1].

B.1. The rabbit Julia sets

Proposition B.1. — Let θn = 1/(2n − 1) for n ∈ N⩾2 and cn the point of the Man-
delbrot set with external argument θn. The Julia set Jcn is a regular n-rabbit.

Remark B.2. — For n = 2, 3, these Julia sets are known as the basilica and the
Douady rabbit, respectively. They are often defined by choosing c to be the center
(where we use the root) of the corresponding hyperbolic component of the Julia set
but this gives homeomorphic Julia set thanks to [DH85, Exp. XVIII, Prop. 1].

Proof. — Let us fix n ⩾ 2, let θn = 1/(2n − 1) ∈ Q/Z and let cn be the point in the
Mandelbrot set with external argument θn. The external argument θn is n-periodic
for the doubling map. There is a unique other external ray landing at cn with same
period [Dou93, Prop. 2], so it is of the form k/(2n − 1). The external argument of this
ray is θ′n = 2/(2n − 1) (for example because of [Dou86]). The point α1 with external
argument θn in the Julia set Jcn associated to cn, also has θ′n as external argument.
This implies that α1 is fixed (2θn = θ′n) and thus the external arguments of rays
landing at α1 are exactly 1/(2n − 1), . . . , 2n−1/(2n − 1).

Let U1 be the Fatou component of c1 and U0 that of the critical point 0. For a
component U of K̊c, its image f(U) is also some component of K̊c (this follows from
the fact that fc is an open map) and, if U does not contain 0 (i.e., U ̸= U0), then fc
restricts to a homeomorphism from U to fc(U).
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Since α1 is fixed and fc(U0) = U1, we have that α1 ∈ U0 ∩ U1. The point α1 and
its preimages thus belong to multiple circles. The set collecting such points is dense,
so point 1 of Definition A is proved.

The projection to any component is a cut point. Thus, if x ∈ ∂U and y ∈ ∂V ,
where U and V are distinct components of K̊cn , then the projection of x to V is a
cut point that separates x from y [DH84a, Exp. I, Prop. 4]. This proves point 2 of
Definition A

For x ∈ Kcn , we denote by ℓ(x) the number of components V of K̊cn such that
V ∩ [x, α1] ̸= ∅, where [x, α1] is the legal arc between x and α1 (legal arcs were
introduced in [DH84a, Exp. II, §6] as arcs réglementaires). By construction of legal
arcs, this number is constant on each component U of K̊c, so we denote by ℓ(U)

this common number (which, a priori, could be infinite). We claim that, for any
component U , |ℓ(fc(U)) − ℓ(U)| ⩽ 1. If the legal arc between x ∈ U and α1 does
not contain 0 then there is equality, since fc maps components to components and,
by [DH84a, Exp. IV, Lem. 1], it maps legal arcs to legal arcs injectively if the legal arc
does not contain the critical point in its interior. In case [x, α1] contains 0, we have
that [x, α1] = [x, 0] ∪ [0, α1]. If [fc(x), fc(0)] = [fc(x), c] contains α1, then ℓ(fc(U)) =

ℓ(U) − 1 because [fc(x), c] = [fc(x), α1] ∪ [α1, c] and c belongs to the component U1

which contains α1 in its boundary. If instead [fc(x), c] does not contain α1, then
ℓ(fc(U)) = ℓ(U).

We know that U0 contains a point of the attractive cycle, so for any component U ,
there is n such that fnc (U) = U0. In particular, ℓ(U) ⩽ n+1. So, if x lies on some circle
of Jc, i.e., x ∈ ∂U for some component U of K̊c, then ℓ(x) = ℓ(U) or ℓ(x) = ℓ(U)− 1,
depending on whether x is the projection of α1 on U or not. If x and y belong to
circles, then the collection of circles that separate x from y is included in the collection
of circles that separate x from α1 and y from α1. This is easily seen using the fact
that the legal hull of x, y and α1 (introduced in [DH84a, Exp. II, §7] as enveloppe
réglementaire) is a topological tree. This collection is finite, since ℓ(x), ℓ(y) <∞. This
proves point 3 of Definition A.

By Lemma 1.4, any cut point of Jcn belongs to at least two circles. Any point that
belongs to at least two circles is eventually mapped to α1 (indeed, any component is
eventually mapped to the cycle U0, fc(U0), . . . , f

n
c (U0) where the Ui’s are the images

of U0 by fcn). Finally, any cut point has the same order as α1, which is n, thus Jcn
is an n-regular rabbit. □

B.2. The airplane Julia set

Proposition B.3. — Let θ = 3/7 and c be the point in the Mandelbrot set with external
argument θ. The Julia set Jc is an airplane.

Remark B.4. — As in Remark B.2, this Julia set is known as the airplane.

Proof. — The point c is the root of a hyperbolic component. The external argu-
ments 1/7 and 2/7 land at the same point of the Mandelbrot set, as do 5/7 and 6/7
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by symmetry, so there is only one possibility: 3/7 must land at the same point of the
Mandelbrot set as 4/7.

Let α1 be the point in Jc with the external rays 3/7 and 4/7. This is the projection
of 0 on the component U1 of K̊c that contains c. The point α1 belongs to the circle ∂U1

and is a cut point, since it separates 0 and c. The set of its preimages is dense, which
proves point (1) of Definition B.

The point α1 is mapped to the point with external arguments ±1/7 which is
mapped to the point with external arguments ±2/7. This last point is mapped to α1,
which is thus 3-periodic. Let U0 be the component that contains 0 and let U2 be the
image of U1. These components form a 3-cycle and U0 lies between U1 and U2. For two
components U, V of K̊c, we denote by δ(U, V ) the number of components that the legal
arc from any point in U to any point in V crosses minus 1 (this number can be infinite).
Since U0 is between U1 and U2, we have δ(U1, U2) = δ(U1, U0) + δ(U0, U2). Because
of [DH84a, Exp. IV, Lem. 1], we have δ(U2, U1) = δ(fc(U1), fc(U0)) = δ(U1, U0) and
δ(U0, U1) = δ(fc(U2), fc(U0)) = δ(U2, U0). Since all these numbers are at least 1, they
must all be infinite.

Assume that two circles C1, C2 have a common point. Let V1, V2 be the two compo-
nents of K̊c such that Ci = ∂Vi. There is a large enough k ∈ N such that fkc maps Vi
to Uji (for i = 1, 2 and ji ∈ {0, 1, 2}) . By [DH84a, Exp. IV, Lem. 1], fkc maps the
legal arc between V1 and V2 to the legal arc between Uj1 and Uj2 , so it maps the point
shared by V1 and V2 to a point shared by two of the Ui’s. We have a contradiction,
since the Ui’s have at least one circle that separates them (in fact, infinitely many).
This proves point (3) of Definition B.

Assume that two circles C1, C2 are not separated by a third one. Let Vi’s be compo-
nents as above. The legal arc A joining the centers does not contain 0 and the same is
true for all fnc (A). Let n be a large enough number so that fnc (Vi)’s are some Uj ’s. The
images of V1 and V2 are distinct and thus separated by infinitely many circles. This
implies that A meets infinitely many circles. A contradiction, which proves point (2)
of Definition B.

It remains to prove that every cut point has order 2. Since every cut point has order
at least 2, it suffices to prove there is no cut point of order at least 3. By contradiction,
let x be such a point. Since Kc is obtained by filling circles from Jc, the complement
Kc ∖ {x} has at least 3 connected components. Choose components V1, V2, V3 of K̊c

lying in distinct components of Kc ∖ {x}. Let T the legal hull of the centers of
the Vi’s. Up to choosing a smaller tree, we may assume that T does not contain 0 in
the interior of any of its arcs. It is a tripod with 3 arcs and x as center. We define
a sequence of legal trees in the following way. Let T (0) = T and assume that T (n)

has been constructed and does not contain 0 in the interior of any of its arcs. Then,
by [DH84a, Exp. IV, Lem. 1], fc maps T (n) injectively to fc(T (n)). If the latter does
not contain 0 in the interior of its arcs, we set T (n+1) = fc(T

(n)). If instead 0 lies in
the interior of one of the arcs of fc(T (n)), we replace this arc by [fnc (x), 0] and we
let T (n+1) be the result of this replacement. By construction, at any step n, T (n) is
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a tripod with 3 arcs and fnc (x) as center. Since each Vi is eventually mapped to the
attractive cycle U0, U1, U2, for n large enough the ends of T (n) eventually all fall in
some Ui. Since the U0 is between U1 and U2, we have a contradiction with the fact
that T (n) is a tripod. This proves point(4) of Definition B. □

B.3. Extending homeomorphisms to the complex plane. — Since Julia sets lie by
definition in the complex plane, it is natural to determine which homeomorphisms of
a Julia extend to a global homeomorphism of the complex plane. Let us show that
such homeomorphisms correspond to the elements of Homeo+(Rn) and Homeo+(A)

from Section 3.
We denote by Homeo+J (C) the group of orientation preserving homeomorphisms

of C stabilizing J setwise, i.e., g(J) = J .

Theorem B.5. — Let J be the airplane Julia set or a rabbit Julia set. The subgroup
of Homeo(J) of homeomorphisms that are the restrictions of elements of Homeo+J (C)

coincide with Homeo+(J).

Proof. — Let g ∈ Homeo(J) that is the restriction to J of some g ∈ Homeo+J (C).
Since the Riemann sphere Ĉ is the Alexandroff compactification of C, g extends
uniquely as a homeomorphism of Ĉ fixing∞. Take three points x, y, z on some circle C
of J and arcs Ix, Iy, Iz such that ∞ is one end and x, respectively y or z, is the other
end, and such that Ix ∩ J = {x}, respectively {y} or {z}. We may moreover assume
that these arcs intersect only at ∞. For example, external rays do the job.

Since g is a homeomorphism of Ĉ, the arcs g(Ix), g(Iy) and g(Iz) satisfy the same
conditions and thus OC

φ (x, y, z) = O
g(C)
φ (g(x), g(y), g(z)). So g ∈ Homeo+(J).

Conversely, consider g ∈ Homeo+(J). Then there is a γ ∈ Homeo+(S1) preserving
the lamination LJ such that g ◦ φ = φ ◦ γ. Let D be the closed unit disk in C and
Φ: Ĉ∖D→ Ĉ∖ FJ be the Böttcher coordinates of the complement of the filled in
Julia set FJ . In particular, for any z in the unit circle S1 of C, φ(z) = limr→1 Φ(rz)

and this defines a continuous extension of Φ to the complement of the open unit disk.
We define g on Ĉ∖ FJ (r > 1 and z ∈ S1) via the formula

g(Φ(rz)) = Φ(rγ(z)).

This defines a homeomorphism of (Ĉ∖FJ)∪ J . Any component U of the interior
of FJ is homeomorphic to an open disk with boundary ∂U which is a circle of J .
For such U we choose a homeomorphism between U and the component V of the
interior of FJ bounded by g(∂U) which extends to a homeomorphism between U

and V that coincides with g on ∂U . Patching together all these homeomorphisms of
interior components we get a global homeomorphism g of Ĉ whose restriction to J

is g. □

Remark B.6. — The construction of the extension done in the above proof is not
unique at all, but one can make it canonical. For each component U of the filled-in
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Julia center, one can choose a center cU and this defines internal rays and argu-
ments. Doing a similar construction to the one we do for external rays, one can define
uniquely g on each component U such that it maps internal rays of U to internal rays
of V . This way, one can see that Homeo+J (C) splits as permutational wreath product(

Homeo0(C∖ FJ)×
∏

U∈π0(
◦

FJ)

Homeo0(U)

)
⋊Homeo+(J),

where Homeo0(U) is the subgroup of Homeo(U) that admits a continuous extension
to U that is the identity on ∂U .

Appendix C. Rabbits and airplane as limit spaces of replacement systems

In this section we show that the basilica, rabbits and airplane limit spaces built
with the replacement systems introduced in [BF19] satisfy our Definition A and Def-
inition B thus are homeomorphic to the basilica, rabbits and airplane Julia sets.
In order for this section to be as concise as possible, the introduction to replacement
systems and limit spaces is reduced to its essential parts and the proofs do not delve
into details. We refer to the paper which introduced this topic [BF19] and the second
author’s PhD thesis [Tar24b] for a much more thorough introduction to replacement
systems, limit spaces and (although we will not use them) rearrangement groups.

C.1. Limit spaces of replacement systems. — The essential idea is that a replace-
ment system defines a rewriting system of graphs whose graphs, under mild conditions,
expand and converge towards a limit space, which is the quotient space of a Cantor
set under an equivalence relation. This is all entirely codified by graphs. Let us briefly
describe how.

C.1.1. Replacement systems. — In this section, by graph we mean a quadruple
(V,E, ι, τ), where V and E are finite sets (of vertices and edges) and ι and τ are maps
E → V that associate to each edge its initial and terminal vertices, respectively.

Definition C.1 ([BF19, Def. 1.4]). — A replacement system consists of the following
collection of graphs, all edge-colored by a finite set C of colors:

– a base graph;
– for each color c ∈ C, a replacement graphs Rc equipped with distinct vertices ιc

and τc, which we call initial and terminal vertices.

Base graph

L R

Replacement graph

ι τ0

1

2

Figure 10. The basilica replacement system.
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Base graph

s

Blue replacement graph

b2

b3

ιb τbb1 b4

Red replacement graph

ιr τr

r1 r2

r3

Figure 11. The airplane replacement system.

Two examples of replacement systems are depicted in Figures 10 and 11. Let us fix
a replacement system. A c-colored edge e of a graph can be expanded by replacing e
with the replacement graph Rc, identifying ι(e) and τ(e) with ιc and τc, respectively.
A graph expansion is a graph that can be obtained from the base graph by applying
a finite sequence of expansions. For example, Figure 12 depicts two graph expansions
of the airplane replacement system.

sb2

sb3

sb1 sb4

sb2r2

sb3

sb2r1
sb1 sb4

sb2r3

Figure 12. Two graph expansions of the airplane replacement system.

C.1.2. The symbol space. — Let e1, . . . , ek be all the edges of a replacement graph Rc.
When expanding a c-colored edge f , we denote the newly added edges by fei (see
for example Figure 12). Thus, every edge of a graph expansion corresponds to some
finite word in the alphabet of the edges of the base and replacement graphs.

Definition C.2 ([BF19, Defs. 1.6 & 1.7]). — Fix a replacement system.
– Its symbol space C is the set of infinite sequences α = x1x2 . . . such that each

finite prefix x1 . . . xk is an edge of some graph expansion.
– Its gluing relation ∼ is the binary relation on C defined by setting x1x2 · · · ∼

y1y2 · · · when, for all k large enough, x1 . . . xk and y1 . . . yk are incident edges in all
graph expansions that feature them both.
We equip C with the subspace topology induced from the Cantor space E∞ (which is
the set of all infinite sequences in the alphabet E), where E is the set of edges of the
base and replacement graphs.

Under mild conditions, a replacement system is said to be expanding (see [BF19,
Def. 1.8]). For expanding replacement systems, C is a Cantor space and the gluing
relation is an equivalence relation by [BF19, Prop. 1.9]. It is straightforward to see that
the basilica and airplane replacement systems are expanding replacement systems,
so we can consider the quotient of C/ ∼.
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Definition C.3 ([BF19, Def. 1.7]). — The limit space of a replacement system is the
quotient space C/ ∼.

Edges of graph expansions correspond to sets that tessellate the limit space:

Definition C.4 ([BF19, Def. 1.13]). — To each edge e (which corresponds to some
finite word) we associate a cell, which is the set of those points of C/ ∼ some of whose
representative begins with e.

Although we do not discuss this here, it is worth recalling that replacement systems
allow to easily define countable groups of homeomorphisms of limit spaces, the so-
called rearrangement groups. Such groups include Thompson groups F , T and V

together with new groups acting on fractals such as the basilica [BF15], the airplane
[Tar24a] and Ważewski dendrites [Tar25].

C.1.3. Topology of the limit space. — Two elements of C are equivalent under ∼ when
their prefixes approach a common vertex. Essentially, vertices are where “some topol-
ogy happens.”

Definition C.5. — A point of a limit space is a gluing vertex if it corresponds to a
vertex of some graph expansion and it is a regular point otherwise.

Note that each regular point always has a unique representative in C.

Proposition C.6. — Each limit space X satisfies the following statements.
(1) X is compact and metrizable [BF19, Th. 1.25].
(2) If the base and replacement graphs are connected, then X is connected [BF19,

Rem. 1.27] and locally connected [Tar24b, Cor. 2.33].
(3) A subset is dense if and only if it intersects every cell [PT24, Rem. 3.2].

C.2. Arcs and circles in limit spaces. — Here we briefly develop some tools that
allow to link the shape of graph expansions to the topology of the basilica and airplane
limit spaces.

Definition C.7. — In a directed graph, an undirected walk is a sequence (e1, . . . , ek)

of edges such that ei is adjacent to ei+1 for all i ∈ {1, . . . , k − 1}. Each undirected
walk identifies a sequence of vertices (v0, v1, . . . , vk) that the walk travels through. An
undirected walk is an undirected path if there is no i ̸= j such that vi = vj and it is
an undirected cycle if vi = vj only for i = 0 and j = k.

Proposition C.8. — Let p and q be gluing vertices of a limit space. Every arc between p
and q (if p ̸= q, otherwise every circle that contains p = q) corresponds to a subset of
the limit space obtained as follows.

(1) Choose a graph expansion where p and q appear as vertices and choose an
unoriented path (e1, . . . , ek) joining them (an unoriented cycle if p = q).

(2) For each edge ei, choose an unoriented path (ei1, . . . , eiki
) in its replacement

graph joining the initial and terminal vertices.
(3) Iterate the previous point for each edge eij.
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Note that, if p and q are distinct and not joined by an arc, then they lie in distinct
connected components. In this case, after finitely many (possibly zero) iterations of
this procedure the vertices corresponding to p and q will not be able to be joined by
an unoriented path.

Proof. — First note that, for each graph expansion featuring p and q as vertices, an
arc joining p and q in the limit space is included in the union of cells corresponding
to a unique unoriented path between p and q (this is because non-empty intersections
of cells consist of one or two gluing vertices, so intervals can only travel between cells
corresponding to adjacent edges by going through such gluing vertices). By Propo-
sition 1.24 of [BF19] a cell associated to an edge e1 is included in one associated to
an edge e2 if and only if e2 is a prefix of e1 (as finite words). Thus, given a graph Γ1

that features p and q as vertices and a graph Γ2 that is an expansion of Γ1, if an arc
joining p and q is included in the union of cells of unoriented paths P1 in Γ1 and P2

in Γ2, then P2 must be obtained as an expansion of edges of P1. Thus, every arc is as
in the statement.

For the converse, the idea is that the gluing relation in a sequence of “nested” paths
as in the statement behaves like a generalization of n-ary expansions of numbers in
[0, 1] with no fixed arity (see [BF19], where Proposition 2.6 explains how to obtain
the interval as a limit space with dyadic numbers as gluing vertices and Example 2.14
features examples whose limit spaces are intervals and the gluing vertices have no
fixed arity). Consider a sequence P1, P2, . . . of paths as in the statement. Let Y be
the set of classes of infinite words whose every long enough prefix, as an edge, lies
in some Pi. By [BF19, Prop. 1.22], two elements of the symbol space are equivalent
under the gluing relation if and only if they represent the same gluing vertex. Thus,
for any x = x1x2 . . . and y = y1y2 . . . in the symbol space whose all long enough
prefixes lie in some Pi, one has that x ∼ y if and only if all the long enough prefixes
x1 . . . xk and y1 . . . yk are adjacent edges. Since these prefixes all lie in the paths Pi’s,
the gluing relation on Y is non-trivial precisely on any vertex on the Pi’s, where it
glues the two sequences of edges approaching from the two sides (compare with the
binary gluing relation w0111 · · · ∼ w1000 . . . described in [BF19, Prop. 2.6]). Hence Y
is this homeomorphic to [0, 1] if p ̸= q and to S1 if p = q. □

In many tame yet interesting cases, the previous procedure will stabilize after
finitely many steps and will thus identify all of the finitely many arcs joining the two
points. For example, in the basilica replacement system (Figure 10) there is a sole path
joining the initial and terminal vertices of each replacement graph, so each unoriented
path (e1, . . . , ek) between two distinct vertices of a graph expansion identifies a unique
arc between the two vertices. The same holds for any rabbit limit space (see Figure 14).

Instead, in the airplane replacement system (Figure 11) there are infinitely many
arcs joining for example the gluing vertices corresponding to the initial and the termi-
nal vertices of a blue edge, since each blue edge requires the choice of one of two red
edges and there are infinitely many blue edges at which this choice needs to be made.
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However, if two distinct vertices belong to a red cycle of some graph expansion, then
by Proposition C.8 there are precisely two arcs joining them and there is a unique
circle that corresponds to that cycle.

Remark C.9. — A circle of a limit space must contain some gluing vertex (else it
would be totally disconnected). Thus, each circle in the basilica or in the airplane
limit space corresponds to a cycle in a graph expansion.

The previous remark does not hold unless the procedure described in Proposi-
tion C.8 stabilizes after finitely many steps. For example, this does not work in the
replacement system depicted in Figure 13, whose limit space is homeomorphic to the
Julia set for the complex rational map z 7→ z−2 − 1.

Base graph

l c r

Replacement graph

ι τ1 4
2

3

Figure 13. A replacement system for the Julia set of the rational
map z 7→ z−2 − 1.

C.3. The rabbit limit spaces. — Let us now consider the rabbit limit space Xn, which
is the limit space of the rabbit replacement system schematically depicted in Figure 14:
its base graph is a bouquet of n loops and its replacement graph is a path of length 2

joining ι and τ , with n− 1 loops attached at the central vertex.

Proposition C.10. — The rabbit limit space Xn is an n-regular rabbit in the sense of
Definition A.

Proof. — By points (1) and (2) of Proposition C.6, each rabbit limit space is a Peano
continuum. Each regular point is either an end point or lies on a unique circle (this
only depends on whether its unique representative has or does not have infinitely
many digits in the set {1, 2, . . . , n − 1}), so gluing vertices are the only cut points
of the basilica limit space. Every vertex always separates a graph expansion in n

connected components, so the order of each cut point is 2. We now need to show that
conditions (1), (2) and (3) of Definition A hold.

(1) In every graph expansion of the rabbit replacement system, each edge belongs
to some cycle and its expansion always features a loop, so each cell contains a point
that belongs to multiple circles. By point (3) of Proposition C.6, the set of points that
belong to multiple circles is dense in the rabbit limit space.

(2) Two cycles of any graph expansion can always be separated by removing a
vertex, so any two circles can be separated by a cut point.
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(3) Consider two points p and q that belong to circles, Suppose first that both of
them are gluing vertices. Then every unoriented path joining the two vertices travels
through edges belonging to finitely many unoriented cycles, so each arc that joins p
and q is included in the union of finitely many circles. If p is not a gluing vertex and
belongs to a circle C, then for every gluing vertex x on C there are two arcs joining p
to x that are entirely included in C, so the desired conclusion can also be drawn
when p and/or q are not gluing vertices, as long as they belong to circles. □

Base graph

X1

Xi

Xn

Replacement graph

ι τ

0

1
i

n− 1

n

Figure 14. The n-rabbit replacement system.

C.4. The airplane limit space. — Now consider the airplane limit space, which is
the limit space of the replacement system depicted in Figure 11.

Proposition C.11. — The limit space of the airplane replacement system is an air-
plane in the sense of Definition B.

Proof. — By points (1) and (2) of Proposition C.6, the airplane limit space is a
Peano continuum. We need to show that it satisfies conditions (1), (2), (3) and (4) of
Definition B.

(1) In every graph expansion of the airplane replacement system, each red edge
belongs to some unoriented cycle and its expansion always features a vertex between
that cycle and a blue edge. Each such vertex corresponds to a cut point of the limit
space, so each red cell contains a cut point. Since the expansion of a blue edge always
features two red edges, each blue cell includes a red one and thus contains a cut
point. Thus, the set of all cut points that belong to circles is dense by point (3) of
Proposition C.6.

(2) Every blue cell includes a circle and, in all graph expansions, any two dis-
tinct unoriented cycles are separated by some blue edge. Hence, any two circles are
separated by a third circle.

(3) Clearly, in all graph expansions, every two unoriented cycles are disjoint, so ev-
ery two distinct circles of the limit space are disjoint.

(4) As noted above, those gluing vertices that belong to some circle are cut points.
The removal of the corresponding vertex from a graph expansion breaks the limit
space in two connected components, so these cut points have order 2. Vertices that
do not belong to unoriented cycles instead are end points, so they are not cut points.
Regular cut points of a limit space can only have order 1 or 2, so we are done. □
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[DM80] D. Ž. Djoković & G. L. Miller – “Regular groups of automorphisms of cubic graphs”,

J. Combin. Theory Ser. B 29 (1980), no. 2, p. 195–230.
[Dou86] A. Douady – “Algorithms for computing angles in the Mandelbrot set”, in Chaotic dy-

namics and fractals (Atlanta, Ga., 1985), Notes Rep. Math. Sci. Engrg., vol. 2, Academic
Press, Orlando, FL, 1986, p. 155–168.

[Dou93] , “Descriptions of compact sets in C”, in Topological methods in modern mathe-
matics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, p. 429–465.

[DH84a] A. Douady & J. H. Hubbard – Étude dynamique des polynômes complexes. Partie I, Pub-
lications Mathématiques d’Orsay, vol. 84-2, Université de Paris-Sud, Département de
Mathématiques, Orsay, 1984.

[DH84b] , “Exploring the Mandelbrot set. The Orsay notes”, https://pi.math.cornell.
edu/~hubbard/OrsayEnglish.pdf, 1984.

[DH85] , Étude dynamique des polynômes complexes. Partie II, Publications Mathéma-
tiques d’Orsay, vol. 85-4, Université de Paris-Sud, Département de Mathématiques, Or-
say, 1985, With the collaboration of P. Lavaurs, Tan Lei and P. Sentenac.

[Duc23a] B. Duchesne – “A closed subgroup of the homeomorphism group of the circle with prop-
erty (T)”, Internat. Math. Res. Notices (2023), no. 12, p. 10615–10640.

[Duc23b] , “The Polish topology of the isometry group of the infinite-dimensional hyperbolic
space”, Groups Geom. Dyn. 17 (2023), no. 2, p. 633–670.

[DM19] B. Duchesne & N. Monod – “Structural properties of dendrite groups”, Trans. Amer.
Math. Soc. 371 (2019), no. 3, p. 1925–1949.

[DMW19] B. Duchesne, N. Monod & P. Wesolek – “Kaleidoscopic groups: permutation groups con-
structed from dendrite homeomorphisms”, Fund. Math. 247 (2019), no. 3, p. 229–274.

[ET16] D. M. Evans & T. Tsankov – “Free actions of free groups on countable structures and
property (T)”, Fund. Math. 232 (2016), no. 1, p. 49–63.

[Gao09] S. Gao – Invariant descriptive set theory, Pure and Applied Math., vol. 293, CRC Press,
Boca Raton, FL, 2009.

[Gla06] E. Glasner – “On tame dynamical systems”, Colloq. Math. 105 (2006), no. 2, p. 283–295.
[GM18a] E. Glasner & M. Megrelishvili – “Circularly ordered dynamical systems”, Monatsh.

Math. 185 (2018), no. 3, p. 415–441.
[GM18b] , “More on tame dynamical systems”, in Ergodic theory and dynamical systems in

their interactions with arithmetics and combinatorics, Lect. Notes in Math., vol. 2213,
Springer, Cham, 2018, p. 351–392.

[GM21] , “Circular orders, ultra-homogeneous order structures, and their automorphism
groups”, in Topology, geometry, and dynamics—V. A. Rokhlin-Memorial, Contemp.
Math., vol. 772, American Mathematical Society, Providence, RI, 2021, p. 133–154.

[Gro87] M. Gromov – “Hyperbolic groups”, in Essays in group theory, Math. Sci. Res. Inst. Publ.,
vol. 8, Springer, New York, 1987, p. 75–263.

J.É.P. — M., 2026, tome 13

https://pi.math.cornell.edu/~hubbard/OrsayEnglish.pdf
https://pi.math.cornell.edu/~hubbard/OrsayEnglish.pdf


320 B. Duchesne & M. Tarocchi

[Hun35] E. V. Huntington – “Inter-relations among the four principal types of order”, Trans. Amer.
Math. Soc. 38 (1935), no. 1, p. 1–9.

[KB02] I. Kapovich & N. Benakli – “Boundaries of hyperbolic groups”, in Combinatorial and
geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math., vol.
296, American Mathematical Society, Providence, RI, 2002, p. 39–93.

[KS12] A. S. Kechris & M. Sokić – “Dynamical properties of the automorphism groups of the
random poset and random distributive lattice”, Fund. Math. 218 (2012), no. 1, p. 69–94.

[Mac11] D. Macpherson – “A survey of homogeneous structures”, Discrete Math. 311 (2011),
no. 15, p. 1599–1634.

[Mon13] N. Monod – “Groups of piecewise projective homeomorphisms”, Proc. Nat. Acad. Sci.
U.S.A. 110 (2013), no. 12, p. 4524–4527.

[Nad92] S. B. Nadler, Jr. – Continuum theory, Monographs and Textbooks in Pure and Applied
Math., vol. 158, Marcel Dekker, Inc., New York, 1992.

[Nek05] V. Nekrashevych – Self-similar groups, Math. Surveys and Monographs, vol. 117, Ameri-
can Mathematical Society, Providence, RI, 2005.

[Ner24] Y. A. Neretin – “On the group of homeomorphisms of the basilica”, Topology Proc. 64
(2024), p. 121–128.

[PT24] D. Perego & M. Tarocchi – “A class of rearrangement groups that are not invariably
generated”, Bull. London Math. Soc. 56 (2024), no. 6, p. 2115–2131.

[Pes98] V. G. Pestov – “On free actions, minimal flows, and a problem by Ellis”, Trans. Amer.
Math. Soc. 350 (1998), no. 10, p. 4149–4165.

[Pes99] , “Topological groups: where to from here?”, Topology Proc. 24 (1999), p. 421–502.
[Ros17] C. Rosendal – “Equivariant geometry of Banach spaces and topological groups”, Forum

Math. Sigma 5 (2017), article no. e22 (62 pages).
[Ros22] , Coarse geometry of topological groups, Cambridge Tracts in Math., vol. 223,

Cambridge University Press, Cambridge, 2022.
[Rus03] B. Russell – The principles of mathematics. Vol I, Cambridge University Press, Cam-

bridge, 1903.
[Smi17] S. M. Smith – “A product for permutation groups and topological groups”, Duke Math. J.

166 (2017), no. 15, p. 2965–2999.
[Tar24a] M. Tarocchi – “Generation and simplicity in the airplane rearrangement group”, Groups

Geom. Dyn. 18 (2024), no. 2, p. 603–634.
[Tar24b] , “Rearrangement groups of fractals: Structure and conjugacy”, Phd thesis, Uni-

versitá degli Studi di Milano-Bicocca, Universitá degli Studi di Pavia, 2024, arXiv:
2412.02339.

[Tar25] , “On Thompson groups for Ważewski dendrites”, Math. Proc. Cambridge Philos.
Soc. 179 (2025), no. 1, p. 189–231.

[Tru09] J. K. Truss – “On the automorphism group of the countable dense circular order”, Fund.
Math. 204 (2009), no. 2, p. 97–111.

[Tsa12] T. Tsankov – “Unitary representations of oligomorphic groups”, Geom. Funct. Anal. 22
(2012), no. 2, p. 528–555.
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