Quantum Harish-Chandra isomorphism for the double affine Hecke algebra of GL$_n$
[Isomorphisme de Harish-Chandra quantique pour l’algèbre de Hecke affine double de $\mathrm{GL}_n$]
Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 203-254

We prove that for generic parameters, the quantum radial parts map of Varagnolo and Vasserot gives an isomorphism between the spherical double affine Hecke algebra of $\mathrm{GL}_n$ and a quantized multiplicative quiver variety, as defined by Jordan.

Nous prouvons que pour des paramètres génériques, l’application des parties radiales quantiques de Varagnolo et Vasserot donne un isomorphisme entre l’algèbre de Hecke affine double sphérique de $\mathrm{GL}_n$ et une variété carquois multiplicative quantifiée, telle que définie par Jordan.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.326
Classification : 20C08, 33D52, 53D55, 16G20
Keywords: Deformation quantization, double affine Hecke algebras, multiplicative quiver varieties
Mots-clés : Quantification par déformation, algèbre de Hecke affine double, variété carquois multiplicative

Joshua Jeishing Wen  1

1 Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2026__13__203_0,
     author = {Joshua Jeishing Wen},
     title = {Quantum {Harish-Chandra} isomorphism for the~double affine {Hecke} algebra {of~GL}$_n$},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {203--254},
     year = {2026},
     publisher = {\'Ecole polytechnique},
     volume = {13},
     doi = {10.5802/jep.326},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.326/}
}
TY  - JOUR
AU  - Joshua Jeishing Wen
TI  - Quantum Harish-Chandra isomorphism for the double affine Hecke algebra of GL$_n$
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2026
SP  - 203
EP  - 254
VL  - 13
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.326/
DO  - 10.5802/jep.326
LA  - en
ID  - JEP_2026__13__203_0
ER  - 
%0 Journal Article
%A Joshua Jeishing Wen
%T Quantum Harish-Chandra isomorphism for the double affine Hecke algebra of GL$_n$
%J Journal de l’École polytechnique — Mathématiques
%D 2026
%P 203-254
%V 13
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.326/
%R 10.5802/jep.326
%G en
%F JEP_2026__13__203_0
Joshua Jeishing Wen. Quantum Harish-Chandra isomorphism for the double affine Hecke algebra of GL$_n$. Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 203-254. doi: 10.5802/jep.326

[AS96] A. Y. Alekseev & V. Schomerus - “Representation theory of Chern-Simons observables”, Duke Math. J. 85 (1996) no. 2, p. 447-510 | DOI | Zbl

[BCMN23] L. Bittmann, A. Chandler, A. Mellit & C. Novarini - “Type A DAHA and doubly periodic tableaux”, Adv. Math. 416 (2023), article ID 108919, 58 pages | DOI | Zbl | MR

[BFG06] R. Bezrukavnikov, M. Finkelberg & V. Ginzburg - “Cherednik algebras and Hilbert schemes in characteristic p, Represent. Theory 10 (2006), p. 254-298 | DOI | Zbl

[BGG71] I. N. Bernšteĭn, I. M. Gelʼfand & S. I. Gelʼfand - “Structure of representations that are generated by vectors of highest weight”, Funkcional. Anal. i Priložen. 5 (1971) no. 1, p. 1-9 | DOI | Zbl

[BJ18] M. Balagovic & D. Jordan - “The Harish-Chandra isomorphism for quantum GL 2 , J. Noncommut. Geom. 12 (2018) no. 3, p. 1161-1197 | DOI | Zbl | MR

[BK01] B. Bakalov & A. Kirillov - Lectures on tensor categories and modular functors, University Lect. Series, vol. 21, American Mathematical Society, Providence, RI, 2001 | DOI | Zbl | MR

[BZBJ18a] D. Ben-Zvi, A. Brochier & D. Jordan - “Integrating quantum groups over surfaces”, J. Topology 11 (2018) no. 4, p. 874-917 | DOI | Zbl | MR

[BZBJ18b] D. Ben-Zvi, A. Brochier & D. Jordan - “Quantum character varieties and braided module categories”, Selecta Math. (N.S.) 24 (2018) no. 5, p. 4711-4748 | DOI | Zbl | MR

[Che95] I. Cherednik - “Double affine Hecke algebras and Macdonald’s conjectures”, Ann. of Math. (2) 141 (1995) no. 1, p. 191-216 | DOI | Zbl | MR

[Che05] I. Cherednik - Double affine Hecke algebras, London Math. Soc. Lect. Note Series, vol. 319, Cambridge University Press, Cambridge, 2005 | DOI | Zbl | MR

[DFK19] P. Di Francesco & R. Kedem - “(t,q)-deformed Q-systems, DAHA and quantum toroidal algebras via generalized Macdonald operators”, Comm. Math. Phys. 369 (2019) no. 3, p. 867-928 | DOI | Zbl | MR

[DM03] J. Donin & A. Mudrov - “Reflection equation, twist, and equivariant quantization”, Israel J. Math. 136 (2003), p. 11-28 | DOI | Zbl | MR

[Dri89a] V. G. Drinfel’d - “Almost cocommutative Hopf algebras”, Algebra i Analiz 1 (1989) no. 2, p. 30-46 | Zbl

[Dri89b] V. G. Drinfel’d - “Quasi-Hopf algebras”, Algebra i Analiz 1 (1989) no. 6, p. 114-148 | Zbl

[EG02] P. Etingof & V. Ginzburg - “Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism”, Invent. Math. 147 (2002) no. 2, p. 243-348 | DOI | Zbl | MR

[EGGO07] P. Etingof, W. L. Gan, V. Ginzburg & A. Oblomkov - “Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products”, Publ. Math. Inst. Hautes Études Sci. 105 (2007), p. 91-155 | DOI | Numdam | Zbl | MR

[EK94] P. I. Etingof & A. A. Kirillov - “Macdonald’s polynomials and representations of quantum groups”, Math. Res. Lett. 1 (1994) no. 3, p. 279-296 | DOI | Zbl | MR

[EL05] P. Etingof & F. Latour - The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems, Oxford Lect. Series in Math. and its Applications, vol. 29, Oxford University Press, Oxford, 2005 | DOI | Zbl | MR

[Fai19] M. Faitg - “Modular group representations in combinatorial quantization with non-semisimple Hopf algebras”, SIGMA Symmetry Integrability Geom. Methods Appl. 15 (2019), article ID 077, 39 pages | DOI | Zbl | MR

[FFJ + 11] B. Feigin, E. Feigin, M. Jimbo, T. Miwa & E. Mukhin - “Quantum continuous 𝔤𝔩 : semiinfinite construction of representations”, Kyoto J. Math. 51 (2011) no. 2, p. 337-364 | DOI | Zbl | MR

[FG10] M. Finkelberg & V. Ginzburg - “Cherednik algebras for algebraic curves”, in Representation theory of algebraic groups and quantum groups, Progress in Math., vol. 284, Birkhäuser/Springer, New York, 2010, p. 121-153 | DOI | Zbl

[GG06] W. L. Gan & V. Ginzburg - “Almost-commuting variety, 𝒟-modules, and Cherednik algebras”, Internat. Math. Res. Papers (2006), article ID 26439, 54 pages | Zbl | MR

[GJS25] I. Ganev, D. Jordan & P. Safronov - “The quantum Frobenius for character varieties and multiplicative quiver varieties”, J. Eur. Math. Soc. (JEMS) 27 (2025) no. 7, p. 3023-3084 | DOI | Zbl | MR

[GJV23] S. Gunningham, D. Jordan & M. Vazirani - “Quantum character theory”, 2023 | arXiv | Zbl

[GS06] I. Gordon & J. T. Stafford - “Rational Cherednik algebras and Hilbert schemes. II. Representations and sheaves”, Duke Math. J. 132 (2006) no. 1, p. 73-135 | DOI | Zbl | MR

[GZ95] A. Giaquinto & J. J. Zhang - “Quantum Weyl algebras”, J. Algebra 176 (1995) no. 3, p. 861-881 | DOI | Zbl | MR

[Hai01] M. Haiman - “Hilbert schemes, polygraphs and the Macdonald positivity conjecture”, J. Amer. Math. Soc. 14 (2001) no. 4, p. 941-1006 | DOI | Zbl | MR

[HC49] Harish-Chandra - “On representations of Lie algebras”, Ann. of Math. (2) 50 (1949), p. 900-915 | DOI | Zbl | MR

[HC64] Harish-Chandra - “Invariant differential operators and distributions on a semisimple Lie algebra”, Amer. J. Math. 86 (1964), p. 534-564 | DOI | Zbl | MR

[HK84] R. Hotta & M. Kashiwara - “The invariant holonomic system on a semisimple Lie algebra”, Invent. Math. 75 (1984) no. 2, p. 327-358 | DOI | Zbl | MR

[JL92] A. Joseph & G. Letzter - “Local finiteness of the adjoint action for quantized enveloping algebras”, J. Algebra 153 (1992) no. 2, p. 289-318 | DOI | Zbl | MR

[Jor09] D. Jordan - “Quantum D-modules, elliptic braid groups, and double affine Hecke algebras”, Internat. Math. Res. Notices (2009) no. 11, p. 2081-2105 | DOI | Zbl | MR

[Jor14] D. Jordan - “Quantized multiplicative quiver varieties”, Adv. Math. 250 (2014), p. 420-466 | DOI | Zbl | MR

[JV21] D. Jordan & M. Vazirani - “The rectangular representation of the double affine Hecke algebra via elliptic Schur-Weyl duality”, Internat. Math. Res. Notices (2021) no. 8, p. 5968-6019 | DOI | Zbl | MR

[JW20] D. Jordan & N. White - “The center of the reflection equation algebra via quantum minors”, J. Algebra 542 (2020), p. 308-342 | DOI | Zbl | MR

[Kir97] A. A. Kirillov - “Lectures on affine Hecke algebras and Macdonald’s conjectures”, Bull. Amer. Math. Soc. (N.S.) 34 (1997) no. 3, p. 251-292 | DOI | Zbl | MR

[KR08] M. Kashiwara & R. Rouquier - “Microlocalization of rational Cherednik algebras”, Duke Math. J. 144 (2008) no. 3, p. 525-573 | DOI | Zbl | MR

[LS95] T. Levasseur & J. T. Stafford - “Invariant differential operators and an homomorphism of Harish-Chandra”, J. Amer. Math. Soc. 8 (1995) no. 2, p. 365-372 | Zbl | DOI | MR

[LS96] T. Levasseur & J. T. Stafford - “The kernel of an homomorphism of Harish-Chandra”, Ann. Sci. École Norm. Sup. (4) 29 (1996) no. 3, p. 385-397 | DOI | Numdam | Zbl | MR

[Mac15] I. G. Macdonald - Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015 | Zbl

[Maj93] S. Majid - “Braided groups”, J. Pure Appl. Algebra 86 (1993) no. 2, p. 187-221 | DOI | Zbl | MR

[MS21] H. R. Morton & P. Samuelson - “DAHAs and skein theory”, Comm. Math. Phys. 385 (2021) no. 3, p. 1655-1693 | DOI | Zbl | MR

[Obl04] A. Oblomkov - “Double affine Hecke algebras and Calogero-Moser spaces”, Represent. Theory 8 (2004), p. 243-266 | DOI | Zbl | MR

[RT90] N. Y. Reshetikhin & V. G. Turaev - “Ribbon graphs and their invariants derived from quantum groups”, Comm. Math. Phys. 127 (1990) no. 1, p. 1-26 | DOI | Zbl | MR

[SV11] O. Schiffmann & E. Vasserot - “The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials”, Compositio Math. 147 (2011) no. 1, p. 188-234 | DOI | Zbl | MR

[VV10] M. Varagnolo & E. Vasserot - “Double affine Hecke algebras at roots of unity”, Represent. Theory 14 (2010), p. 510-600 | DOI | Zbl | MR

[Wal93] N. R. Wallach - “Invariant differential operators on a reductive Lie algebra and Weyl group representations”, J. Amer. Math. Soc. 6 (1993) no. 4, p. 779-816 | DOI | Zbl | MR

[Wey39] H. Weyl - The classical groups. Their invariants and representations, Princeton University Press, Princeton, NJ, 1939 | MR

Cité par Sources :