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QUANTUM HARISH-CHANDRA ISOMORPHISM FOR

THE DOUBLE AFFINE HECKE ALGEBRA OF GLn

by Joshua Jeishing Wen

For Tom

Abstract. — We prove that for generic parameters, the quantum radial parts map of Varagnolo
and Vasserot gives an isomorphism between the spherical double affine Hecke algebra of GLn

and a quantized multiplicative quiver variety, as defined by Jordan.

Résumé (Isomorphisme de Harish-Chandra quantique pour l’algèbre de Hecke affine double
de GLn)

Nous prouvons que pour des paramètres génériques, l’application des parties radiales quan-
tiques de Varagnolo et Vasserot donne un isomorphisme entre l’algèbre de Hecke affine double
sphérique de GLn et une variété carquois multiplicative quantifiée, telle que définie par Jordan.
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1. Introduction

This paper proves a quantum/multiplicative analogue of the Harish-Chandra iso-
morphism, a result at the source of many fruitful directions of research. For a complex
reductive group G with Lie algebra g, Cartan subalgebra t, and Weyl group W , the
classical isomorphism is concerned with the ring of differential operators D(g). Harish-
Chandra’s radial parts map [HC64] is a homomorphism D(g)G → D(t)W that is in
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204 J. J. Wen

some sense a restriction to t “performed with extra steps”. It was proved to be surjec-
tive by Wallach [Wal93] and Levasseur–Stafford [LS95], and the latter also determined
its kernel [LS96]: the adjoint action induces a homomorphism µ : g → D(g) and the
kernel is the G invariants of the left ideal I := D(g)µ(g). Altogether, we have a
description of D(t)W as a quantum Hamiltonian reduction:[

D(g)
/
I
]G ∼= D(t)W .

The radial parts map is of fundamental importance in the application of rings of
differential operators to geometric representation theory (see references cited above).

In the case G = GLn, this construction admits a 1-parameter deformation, discov-
ered by Etingof–Ginzburg [EG02]. The smash product D(h)⋊W can be deformed via
a parameter c to the rational Cherednik algebra Hn(c) of the symmetric group Σn;
D(h)W is then replaced with the spherical subalgebra SHn(c). On the other side,
we consider D(gln × Cn). The adjoint and vector representations give a map µ :

gln → D(gln × Cn), and the deformation parameter c appears in the ideal via the
trace character tr : gln → C:

Ic := D(gln × Cn)
(
(µ− ctr)(gln)

)
,

Ac :=
[
D(gln × Cn)

/
Ic
]G
.

The deformed Harish-Chandra isomorphism was proved by Gan–Ginzburg [GG06]:

(1.1) Ac
∼= SHn(c).

Ac is a natural quantization of the Hilbert scheme n points in C2, constructed via
Hamiltonian reduction as a Nakajima quiver variety for the Jordan quiver:

(1.2)

Various constructions exist [BFG06, GS06, KR08] to microlocalize modules for Ac

into coherent sheaves on the Hilbert scheme, and the isomorphism (1.1) allows a rich
interplay between such sheaves and representations of Hn(c); in particular, Hn(c)

itself microlocalizes to Haiman’s Procesi bundle [Hai01].
The ladder of deformation affords us more rungs(1)—the rational Cherednik algebra

is itself a degeneration of the double affine Hecke algebra (DAHA) Ḧn(q, t), an algebra
that has appeared across many fields since its initial discovery and application by
Cherednik to solving conjectures from the theory of Macdonald polynomials [Che95].
It is natural to ask if there is an analogue of the Harish-Chandra isomorphism for
Ḧn(q, t) and, more specifically, its spherical subalgebra SḦn(q, t). One can view the
ring D(gln) as C[gln]⊗C[gln] with a nontrivial commutation relation between the two
tensorands. It is almost immediately obvious that D(gln) would need to be replaced

(1)Let us that mention that the intermediate step relating differential operators on GLn and the
trigonometric DAHA was done by Finkelberg–Ginzburg [FG10].
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Quantum Harish-Chandra isomorphism for GLn DAHA 205

by an algebra quantizing C[GLn] ⊗ C[GLn]; this is no longer the coordinate ring
of a cotangent bundle and thus there is no quantization via differential operators
that is available to us “out of the box”. Moreover, to perform quantum Hamiltonian
reduction, the algebra structure of the quantization needs to be equivariant with
respect to whatever symmetry object replaces GLn.

The correct quantization was defined by Varagnolo–Vasserot [VV10]: this is their
ring of quantum differential operators on GLn, which we denote by D. Here, GLn-
equivariance is replaced with equivariance with respect to the quantized universal
enveloping algebra U := Uq(gln). As a U-module, D is isomorphic to the tensor prod-
uct of two copies of O := Oq(GLn), an equivariant version of functions on quantum
GLn. One can construct O from the braided monoidal category of finite-dimensional
U-modules via a braided analogue of Tannakian reconstruction discovered by Majid
[Maj93], and it is also a localization of what is called the reflection equation algebra
[DM03]. D also appeared in prior work of Alekseev–Schomerus [AS96] on quantiza-
tions of character varieties.

Varagnolo–Vasserot also address the other necessary ingredients, but we follow the
definitions of Jordan in his construction of quantized multiplicative quiver varieties
[Jor14]. Out of the same quiver data (1.2), this yields a C(q, t)-algebra At through
a Hopf-algebraic version of quantum Hamiltonian reduction. Our main result is the
following:

Main Theorem. — The quantized multiplicative quiver variety At for the quiver
data (1.2) is isomorphic as a C(q, t)-algebra to the spherical GLn-DAHA SḦn(q, t).

Thus, the two algebras are isomorphic for generic values of the parameters q and t.
Prior to our result, the analogous isomorphism was proved in the following cases:

• when q = 1 [Obl04];
• when q is a root of unity of sufficiently large order [VV10];
• formally over the ring C[[ℏ]] where q = eℏ [Jor14];
• for any q ∈ C× and n = 2 [BJ18].
Our strategy follows the well-established pattern from the rational case [GG06,

EGGO07]. Both sides of the isomorphism are invariant subalgebras, and thus one does
not have a presentation for either; from a general perspective, one may be curious
about techniques for proving two algebras are isomorphic without generators and
relations. In the rational case, the scheme of proof goes as follows:

(1) embed SHn(c) into a ring of differential operators via a Dunkl representation;
(2) map Ac to that same ring via a deformed analogue of the Harish-Chandra

radial parts map;
(3) show that the radial parts map is injective and surjects onto the image of

SHn(c).
SḦn(q, t) has an analogue of (1), the Dunkl-Cherednik embedding into a ring of differ-
ence operators. Step (2) is not straightforward, but Varagnolo–Vasserot [VV10] gave
a brilliant definition for a quantum radial parts map. Namely, the equivariance of At

J.É.P. — M., 2026, tome 13



206 J. J. Wen

ensures that it acts on certain spaces of intertwiners, and Etingof–Kirillov have iden-
tified the weighted traces of these intertwiners with Macdonald polynomials [EK94].
We perform step (3) first for the case t = qk, wherein we use work of Jordan [Jor14]
to perform a classical degeneration q 7→ 1.

Finally, leveraging the t = qk case to general t requires some care because the
Etingof–Kirillov construction for general t uses Verma modules. Our approach to
step (2) at t = qk involves the diagrammatic calculus afforded by the ribbon cate-
gory structure of the category of finite-dimensional U-modules. Much of this structure
persists for Verma modules because they are highest weight; however, being infinite-
dimensional, they lack a coevaluation map. This prevents a straightforward applica-
tion of our approach to the radial parts map to the case of general t. Nonetheless,
in 5.3, we define a diagrammatic action of At on Etingof–Kirillov intertwiners for
general t by turning part of the diagrams upside-down. This construction of the ra-
dial parts map for generic parameters specializes compatibly to the t = qk case, and
step (3) follows essentially from Nakayama’s Lemma.

Further directions. — While it is unclear to us if a geometric story as in the rational
case can be repeated here, the multiplicative setting is interesting due to its relation
to character varieties for the torus. In [AS96] as well as the more recent [BZBJ18a,
BZBJ18b], At has been realized as a quantized character variety. We have added an
appendix that tracks down how the SL2(Z)-action of the DAHA is manifested in At,
which may be interesting from a topological perspective. Let us note the similarities
to conjectures of Morton–Samuelson [MS21] concerning DAHAs and skeins (proved
in [BCMN23]).

Shortly after the initial posting of this paper, we received the extremely interesting
work [GJV23], which initiates a quantum analogue of Springer theory through the
beautiful idea of q-deforming the Hotta–Kashiwara D-module [HK84]. In type A, the
authors are indeed able to relate their construction to Weyl group representations.
Critical to this result is the isomorphism between Aq and a spherical DAHA via
Jordan’s elliptic Schur–Weyl duality [Jor09, JV21], which is only available in type A.
On the other hand, we can also obtain such an isomorphism via the radial parts map
at t = q, wherein both algebras act on characters. This approach generalizes to other
types, although significant challenges remain in establishing such an isomorphism.

2. Double affine Hecke algebras

In this section, we review the GLn DAHA and associated structures. Our main
reference is [Che05], although in order to make better contact with Etingof–Kirillov
theory, we follow the conventions from [Kir97].

2.1. Definition. — Let R := C[q±1, t±1] and K := C(q, t). The GLn-DAHA Ḧn(q, t)

is the K-algebra with generators

{Ti, X±1
j , π±1 | i = 1, . . . , n− 1 and j = 1, . . . , n}

J.É.P. — M., 2026, tome 13



Quantum Harish-Chandra isomorphism for GLn DAHA 207

and relations
(Ti − t)(Ti + t−1) = 0; XiXj = XjXi;

TiTi+1Ti = Ti+1TiTi+1; TiTj = TjTi for j ̸= i, i+ 1;

TiXj = XjTi for j ̸= i, i+ 1; TiXiTi = Xi+1;

πTi = Ti+1π; πnTi = Tiπ
n;

πXi = Xi+1π; πXn = q−2X1π.

We can also define this as an R-algebra, which we denote by ḦR
n (q, t).

2.1.1. Y-generators. — The elements

(2.1) Yi := Ti · · ·Tn−1π
−1T−1

1 · · ·T−1
i−1

for i = 1, . . . , n generate a polynomial subalgebra. They furnish an alternative pre-
sentation of Ḧn(q, t), now with generators{

Ti, X
±1
j , Y ±1

j | i = 1, . . . , n− 1 and j = 1, . . . , n
}

and relations

(2.2)

(Ti − t)(Ti + t−1) = 0;

TiTi+1Ti = Ti+1TiTi+1; TiTj = TjTi for j ̸= i, i+ 1;

XiXj = XjXi; YiYj = YjYi;

TiXiTi = Xi+1 for i ̸= n; T−1
i YiT

−1
i = Yi+1 for i ̸= n;

TiXj = XjTi for j ̸= i, i+ 1; TiYj = YjTi for j ̸= i, i+ 1;

Y1 · · ·YnXj = q2XjY1 · · ·Yn; X1 · · ·XnYj = q−2YjX1 · · ·Xn;

X1Y2 = Y2T
2
1X1.

We note that this presentation is also valid for ḦR
n (q, t). From these relations, we can

define a bigrading on ḦR
n (q, t) by setting:

deg(X±1
j ) = (±1, 0), deg(Y ±1

j ) = (0,±1), deg(Ti) = (0, 0).

2.1.2. Symmetrizer. — The subalgebra Hn(t) of Ḧn(q, t) generated by T1, . . . , Tn−1 is
isomorphic to the usual Hecke algebra for the symmetric group Σn with parameter t.
As such, one can make sense of elements Tw ∈ Hn(t) for any w ∈ Σn. Specifically,
first let si ∈ Σn be the ith adjacent transposition. For any reduced expression w =

si1 · · · sia , the element
Tw := Ti1 · · ·Tia

is independent of the reduced expression. Letting ℓ(w) = a denote the length, define
the symmetrizer

s̃ :=
∑

w∈Σn

tℓ(w)Tw.

J.É.P. — M., 2026, tome 13



208 J. J. Wen

It will be useful to note the following:

Tis̃ = s̃Ti = ts̃ for all i,(2.3) ∑
w∈Σn

sℓ(w) = [n]s!,

s̃2 = [n]t2 !s̃,(2.4)

where

[±k]s =
1− s±k

1− s±1
, [k]s! = [k]s[k − 1]s · · · [1]s

for k ∈ N. From (2.4),

s :=
s̃

[n]t2 !

is an idempotent.

2.1.3. Triangular decomposition. — For a vector v = (v1, . . . , vn) ∈ Zn, denote the
monomial

Y v := Y v1
1 · · ·Y vn

n .

The following is [Che95, Th. 2.3(ii)]:

Theorem 2.1. — Any H ∈ ḦR
n (q, t) can be uniquely written as

(2.5) H =
∑

w∈Σn
v∈Zn

Y vfv,w(X
±1
1 , . . . , X±1

n )Tw

for some Laurent polynomials {fv,w} with coefficients in R.

Corollary 2.2. — ḦR
n (q, t) is a free R-module.

2.2. Spherical DAHA. — The spherical subalgebra SḦn(q, t) is defined as

SḦn(q, t) := sḦn(q, t)s ⊂ Ḧn(q, t).

We denote the localizations R̃ := R[(1 − t2k)−1]k>0 and ḦR̃
n (q, t) := R̃ ⊗ ḦR

n (q, t).
Note that s ∈ ḦR̃

n (q, t), and we define

SḦR
n (q, t) := sḦR̃

n (q, t)s.

We then make sense of the specialization t = qk by setting

SḦR
n (q, q

k) := SḦR
n (q, t)

∣∣
t=qk

,

SḦ(q, qk) := C(q)⊗ SḦR
n (q, q

k).
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2.2.1. Bigrading revisited. — Multiplying both sides of (2.5) by s and absorbing
the Tw into s using (2.3), we can see that SḦR

n (q, t) is spanned by elements of the form

s
(∑
v∈Zn

Y vf(X±1
1 , . . . , X±1

n )
)
s.

For such an element as above that is homogeneous with respect to the bigrading,
we can see from (2.2) that its bidegree can be discerned by commuting with

(2.6)
sX±1

n s := sX±1
1 · · ·X±1

n s,

and sY ±1
n s := sY ±1

1 · · ·Y ±1
n s.

Proposition 2.3. — H ∈ SḦR
n (q, t) has bidegree (a, b) if and only if

(sXns)H
(
sX−1

n s
)
= q−2aH, (sY ns)H

(
sY −1

n s
)
= q2bH.

Let ḦR
n (q, t)IV ⊂ ḦR

n (q, t) denote the subalgebra generated by

{Ti, Xj , Y
−1
j | i = 1, . . . , n− 1 and j = 1, . . . , n},

i.e., we restrict to positive powers ofX-generators and negative powers of Y -generators
(the “fourth quadrant” in the bigrading). We then set

SḦR
n (q, t)IV := s

(
ḦR

n (q, t)IV
)
s ⊂ SḦR

n (q, t).

The subalgebras SḦn(q, t)IV, SḦR
n (q, q

k)IV, and SḦn(q, q
k)IV are defined similarly.

Let SRIV[a, b] denote the homogeneous piece of SḦR
n (q, t)IV of bidegree (a, b) and like-

wise for
St,IV[a, b] ⊂ SḦn(q, t)IV, Sqk,IV[a, b] ⊂ SḦn(q, q

k)IV.

Finally, let
C[xn,yn] := C[x1, . . . , xn, y1, . . . , yn].

The symmetric group Σn acts on C[xn,yn] by permuting subscripts. C[xn,yn] is also
bigraded, where deg(xi) = (1, 0) and deg(yi) = (0, 1). Denote by C[xn,yn]

Σn

a,b the
subspace of invariant homogeneous elements of bidegree (a, b).

Proposition 2.4. — We have

dimK St,IV[a,−b] = dimC(q) Sqk,IV[a,−b] = dimC C[xn,yn]
Σn

a,b .

Proof. — SRIV[a, b] is a direct summand of the free R-module ḦR
n (q, t)IV (Corol-

lary 2.2). Therefore, it is also free, and the dimensions of St,IV[a, b] and Sqk,IV[a, b] are
both equal to its rank. To compute this rank, we can set q = t = 1, in which case

ḦR
n (q, t)IV

∣∣
q=t=1

∼= C[xn,yn]⋊C[Σn], SḦR
n (q, t)IV

∣∣
q=t=1

∼= C[xn,yn]
Σn ,

where xi and yi are the images of Xi and Y −1
i , respectively. □

J.É.P. — M., 2026, tome 13



210 J. J. Wen

2.2.2. Generators. — We use ideas from the proofs of [SV11, Prop. 2.5] and [FFJ+11,
Lem. 5.2] to produce nice generating sets. For r = 1, . . . , n, Let er denote the rth
elementary symmetric polynomial in n variables and set

(2.7)
er(X

±1
n ) := er(X

±1
1 , . . . , X±1

n ),

er(Y
±1
n ) := er(Y

±1
1 , . . . , Y ±1

n ).

Lemma 2.5 ([VV10, Lem. A.15.2]). — We have the following:
(1) SḦn(q, t)IV is generated by

(2.8)
{
ser(Xn)s, ser(Y

−1
n )s

∣∣ r = 1, . . . , n
}

and SḦn(q, t) is generated by the set (2.8) along with sX−1
n s and sY ns.

(2) The analogous statement holds for SḦn(q, q
k)IV and SḦn(q, q

k) for k > 2n.

Proof. — For (a, b) ∈ Z2
⩾0, let

Pa,−b = s
( n∑
i=1

Xa
i Y

−b
i

)
s.

First note that by a classical theorem of Weyl [Wey39], the invariant polynomial ring
C[xn,yn]

Σn is generated by power sums of the form:

pa,b :=

n∑
i=1

xai y
b
i = Pa,−b

∣∣
q=t=1

.

Moreover, by the identity

pa,b =

n∑
i=1

(−1)i−1ei(x1, . . . , xn)pa−i,b,

the pa,b with 0 ⩽ a ⩽ n generate C[xn,y)n]
Σn . Thus, the Pa,b with 0 ⩽ a ⩽ n generate

SḦR
n (q, t)IV modulo the ideal (q − 1, t− 1). By applying Nakayama’s lemma to each

(finite rank) bigraded piece, we get that they generate SḦn(q, t) and SḦn(q, q
k).

Next, note that P1,0 = se1(Xn)s and P0,−1 = se1(Y
−1
n )s. By (2.1), Yi becomes

the q2-shift operator on Xi at t = 1. We thus have

ad (P1,0)
a · P0,−1 = (1− q−2)aPa,−1,

ad (P0,−1)
b · Pa,−1 = (q−2a − 1)bPa,−1−b,(2.9)

where ad (X) is the adjoint operator:

ad (X) = [X,−].

In the case of SḦn(q, t), we have that after localizing to C(q)[t±1], any Pa,−b with
a, b > 0 can be written in terms of se1(Xn)s and se1(Y

−1
n )s modulo the ideal (t−1).

We include the other elementary symmetric polynomials to cover the cases a or b = 0.
The result follows by again apply Nakayama’s Lemma to each bigraded piece. For
SḦn(q, q

k), we need to specialize q = e2πi/k in order to have t = 1. Equation (2.9)
becomes problematic once a ⩾ 2k, but we obtain all 0 ⩽ a ⩽ n once k > 2n. □
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Quantum Harish-Chandra isomorphism for GLn DAHA 211

2.3. Polynomial representation. — While Lemma 2.5 gives generators for SḦn(q, t)

and SḦn(q, q
k), we do not have relations; in compensation, we have instead a faithful

representation.

2.3.1. Demazure-Lusztig operators. — Let K[x±
n ] := K[x±1

1 , . . . x±1
n ] be the ring of

Laurent polynomials in n variables. We similarly use the abbreviation R[x±
n ]. The

symmetric group Σn acts on both rings by permuting variables, and as before, we let
si ∈ Σn denote the usual adjacent transposition.

Theorem 2.6 ([Che95, Th. 2.3]). — The following defines a faithful representation r

of ḦR
n (q, t) on R[x±

n ]: for f ∈ K[x±
n ],

r(Ti) = tsi + (t− t−1)
si − 1

xi/xi+1 − 1
,

r(Xi)f = xif,

r(π)f(x1, x2, . . . , xn) = f(x2, x3, . . . , xn, q
−2x1).

This representation remains faithful on any specialization of (q, t) so long as q is not
sent to a root of unity.

We will abuse notation and use r to also denote its versions obtained via base-
change from R. From the formula for r(Ti), we can see that

f ∈ K[x±
n ]

Σn if and only if r(Ti)f = tf

for all i. It follows from (2.3) that the restriction of r to SḦn(q, t) and SḦR
n (q, t) pre-

serves the subring Λ±
n (q, t) := K[x±

n ]
Σn . We similarly define Λ±

n (q) in the obvious way.
The following is well known:

Proposition 2.7. — The elements ser(X
±1
n )s and ser(Y

±1
n )s act on f ∈ Λ±

n (q, t) by:

r
(
ser(X

±1
n )s

)
f = er(x

±1
1 , . . . , x±1

n )f,

r
(
ser(Y

±1
n )s

)
f =

∑
I⊂{1,...,n}

(∏
i∈I
j ̸∈I

t2 (xi/xj)
±1 − 1

(xi/xj)
±1 − 1

)∏
i∈I

T±1
q2,xi

f,

where Tq2,xi
f(x1, . . . , xi, . . . , xn) = f(x1, . . . , q

2xi, . . . , xn).

2.3.2. Macdonald polynomials. — We will need a nice basis for the representation of
SḦn(q, t) on Λ±

n (q, t). A natural starting point is the basis of monomial symmetric
functions: for λ = (λ1, . . . , λn) ∈ Zn,

mλ :=
∑

w∈Σn/Stab(λ)

xwλ,

where Σn acts on Zn by permutations and for µ = (µ1, . . . , µn) ∈ Zn,

xµ = xµ1

1 xµ2

2 · · ·xµn
n .

We say that λ ∈ Zn is dominant if λ1 ⩾ λ2 ⩾ · · · ⩾ λn; it is easy to see that the mλ

for dominant λ provide a basis of Λ±
n (q, t).
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Theorem 2.8. — We have the following:
(1) For each dominant λ, there exists a unique Pλ(q, t) ∈ Λ±

n (q, t) satisfying
• for f ∈ Λ±

n (q, t),

r (sf(Y1, . . . , Yn)s)Pλ(q, t) = f
(
q2λ1tn−1, q2λ2tn−3, . . . , q2λnt1−n

)
Pλ(q, t);

• the coefficient of mλ is 1.
Moreover, {Pλ(q, t)} form a basis of Λ±

n (q, t).
(2) For any integer k > 0, Pλ(q, t) can be specialized to t = qk.

Proof. — Part (1) is classical. For (2), one can consider the tableaux sum formula for
Pλ(q, t) (cf. [Mac15, VI.6]). □

Pλ(q, t) is the Macdonald polynomial associated to λ.

Remark 2.9. — When λ is a partition (i.e., λn ⩾ 0), our Pλ(q, t) is actually the
Pλ(q

2, t2) found in [Mac15]. As stated in the start of this section, we make this choice
to better align with the Etingof-Kirillov approach to Macdonald polynomials.

3. Quantum groups

3.1. Quantum enveloping algebra. — In this subsection, we review the algebra

U := Uq(gln)

and some of its basic structures.

3.1.1. Roots and weights. — Let εi ∈ Rn be the ith coordinate vector. The root sys-
tem R is the set {εi − εj}, and the set of positive roots R+ is the subset where i < j.
Within R+, we call the n− 1 elements

αi = εi − εi+1 for i = 1, . . . , n− 1

the simple roots. The root lattice Q is the lattice spanned by R, and we denote by Q+

the semigroup generated by R+. We equip Rn with the usual symmetric pairing ⟨−,−⟩
for which {εi} is an orthonormal basis.

The set of weights is the subset{
ω ∈ Rn | ⟨ω, α⟩ ∈ Z for all α ∈ R

}
.

For i = 1, . . . , n, we let
ωi := ε1 + ε2 + · · ·+ εi

denote the ith fundamental weight. The lattice spanned by {ωi} is called the weight
lattice P , which is equal to the lattice spanned by {εi}. For λ, µ ∈ P , we order λ ⩾ µ if
λ−µ ∈ Q+. A weight is dominant if it pairs non-negatively with all roots. Let P+ ⊂ P

denote the subset of dominant elements. This is not the set of dominant weights but
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rather the subset of dominant weights whose coefficient for ωn is an integer. Finally,
we set

ρ :=
(n− 1

2
,
n− 3

2
, . . . ,

1− n

2

)
,

δ := (n− 1, n− 2, . . . , 0).

Both satisfy ⟨ρ, αi⟩ = ⟨δ, αi⟩ = 1 for all i and ⟨ρ, ωn⟩ = ⟨δ, ωn⟩ = 0. Note that 2ρ ∈ P

but ρ ̸∈ P if n is even.

3.1.2. Definition. — U is the C(q)-algebra with generators{
Ei, Fi, q

h | i = 1, . . . , n− 1 and h ∈ P
}

and relations

q0⃗ = 1, qh1qh2 = qh1+h2 ,

qhEiq
−h = q⟨αi,h⟩Ei, q

hFiq
−h = q−⟨αi,h⟩Fi,

EiFj − FjEi = δij
qαi − q−αi

q − q−1
,

E2
i Ei+1 − (q + q−1)EiEi+1Ei + EiE

2
i+1 = 0,

F 2
i Fi+1 − (q + q−1)FiFi+1Fi + FiF

2
i+1 = 0,

where δij is the Kronecker delta. We can endow it with a Hopf algebra structure where
the coproduct ∆, counit ε, and antipode S are given by

∆(Ei) = Ei ⊗ qαi + 1⊗ Ei, ∆(Fi) = Fi ⊗ 1 + q−αi ⊗ Fi, ∆(qh) = qh ⊗ qh;

ε(Ei) = ε(Fi) = 0, ε(qh) = 1;

S(Ei) = −Eiq
−αi , S(Fi) = −qαiFi, S(qh) = q−h.

For coproducts, we will use Sweedler notation:

∆(x) = x(1) ⊗ x(2).

With this Hopf algebra structure, U acts on itself via the adjoint action: for u, v ∈ U,

advu := v(1)uS(v(2)).

Finally, we will denote by Uc the same algebra equipped with the co-opposite coalgebra
structure.

3.2. R-matrix. — The universal R-matrix R is an invertible element in a suitable
completion of U⊗2. We will vaguely write

R =
∑
s

rs ⊗ rs

and even employ an Einstein-like notation: R = rs ⊗ rs. Let Rxy denote the tensor
where rs is inserted in the xth tensorand and rs is inserted in the yth tensorand, and
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let b : U⊗2 → U⊗2 denote the tensor flip. The following equations distinguish R:

(∆⊗ 1)R = R13R23, (1⊗∆)R = R13R12,(3.1)
b∆(h) = R∆(h)R−1.(3.2)

Some consequences of (3.1) are:

(ε⊗ 1)R = (1⊗ ε)R = 1,(3.3)
(S ⊗ 1)R = (1⊗ S)R = R−1,(3.4)
R12R13R23 = R23R13R12.(3.5)

Equation (3.5) is called the quantum Yang-Baxter equation. Finally, we recall a fac-
torization of R. Let U+ be the subspace of U spanned by products of {Ei} and U−

be the subspace spanned by products of {Fi}. We then have

(3.6) R = q−
∑

εi⊗εi(1⊗ 1 + R∗),

where R∗ is an element of a suitable completion of U+ ⊗ U−.
R is an infinite sum, but its action on tensors of highest weight representations is

well-defined. For two representations V and W of U, let bV,W : V ⊗W → W ⊗ V be
the tensor flip. As a result of (3.2), we have that the composition

βV,W := bV,WR
∣∣
V,W

: V ⊗W −→W ⊗ V

is an isomorphism of U-modules. We note that

β−1
V,W = bW,V R

−1
21

∣∣
W,V

.

3.2.1. Vector representation. — Let V := Vω1
∼= Cn be the vector representation of U.

We denote by Ei
j the matrix unit sending

Ei
jej = ei.

The specialized R-matrix R′ := R
∣∣
V,V has the form

R′ = q
∑
i

Ei
i ⊗ Ei

i +
∑
i̸=j

Ei
i ⊗ Ej

j + (q − q−1)
∑
i<j

Ej
i ⊗ Ei

j .

In accordance with [Jor14], we will more often work with the transposed version:

(3.7) R = q
∑
i

Ei
i ⊗ Ei

i +
∑
i ̸=j

Ei
i ⊗ Ej

j + (q − q−1)
∑
i>j

Ej
i ⊗ Ei

j .

Remark 3.1. — Because our R-matrix R′, which is dictated by the coproduct ∆, is
different from that of [Jor14], some of our formulas will differ from those of loc. cit.,
e.g. (4.8).
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3.2.2. Symmetric and exterior powers. — One can check that R satisfies the Hecke
condition:

(3.8) (βV,V − q)(βV,V + q−1) = 0.

In the tensor power V⊗m, let Vi denote the ith tensorand. The Yang-Baxter equation
(3.5) and the Hecke condition (3.8) imply that the map

Ti 7−→ βVi,Vi+1

yields a representation of the Σm Hecke algebra Hm(q) on V⊗m. Similar to 2.1.2,
we can q-symmetrize and q-antisymmetrize by applying the operators∑

w∈Σm

qℓ(w)Tw and
∑

w∈Σm

(−q)−ℓ(w)Tw

respectively to V⊗m. The results are denoted by Sm
q V and ∧m

q V. Since βV,V is an
isomorphism of U-modules, these symmetric and exterior powers are also U-modules.

We call 11 := ∧n
qVn the determinant representation. It is one-dimensional, and

thus U acts via a character that we denote by χ:

(3.9)
χ(Ei) = χ(Fi) = 0,

χ(qh) = q⟨h,ωn⟩.

The action on the tensor powers 1k := (∧n
qV)⊗k is then via χk. We similarly define

1−1 := ∧n
qV∗ and 1−k.

3.2.3. Drinfeld element. — Define the Drinfeld element as

u := m(S ⊗ 1)R21 = S(rs) rs ,

where m is the multiplication map. This is an infinite sum defined in a suitable
completion of U. The following is proved in [Dri89a]:

Proposition 3.2. — The Drinfeld element u satisfies:

u−1 = m(S−1 ⊗ 1)R−1
21 = rs rs ,(3.10)

S2(x) = uxu−1,(3.11)
∆(u) = (R12R)

−1(u⊗ u).(3.12)

3.3. Representations. — We now turn our attention to the category C of finite
dimensional U-modules with weights lying in P . C is semisimple with simple objects
indexed by P+; for λ ∈ P+, we denote the corresponding irreducible representation
by Vλ. Since U is a Hopf algebra, C is a monoidal category. The constructions from
the previous subsection involving the R-matrix endow C with the structure of a ribbon
category. As worked out in [RT90], such categories come with a graphical calculus for
working with morphisms. Here, we will review this calculus as presented in [BK01,
§2.3].
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3.3.1. Arrows. — We will depict a morphism f : V →W of U-modules as an upward
oriented arrow decorated with a coupon marked by f . When V = W and f is the
identity, we will omit the coupon:

Tensor product of objects and morphisms will be denoted by horizontal juxtaposition:

3.3.2. Duality. — For V ∈ C, we endow V ∗ with the structure of a U-module via

x · f(v) = f(S(x)v)

for x ∈ U, f ∈ V ∗, and v ∈ V . We set (V ⊗W )∗ = W ∗ ⊗ V ∗ as they are isomorphic
U-modules under the natural tensor flip. In our graphical calculus, we will denote V ∗

using V but use downward pointing arrows. Note that V and V ∗∗ are isomorphic
under the nontrivial isomorphism S2. It is easy to see that

S2(x) = adq2ρ(x).

Since ∆(q2ρ) = q2ρ ⊗ q2ρ, we can use q2ρ : V → V ∗∗ to identify the two modules in
a manner that respects tensor products. We will do so and write V instead of V ∗∗,
which will always imply a twist by q−2ρ.

3.3.3. Evaluation and coevaluation. — Let {vi} be a basis of V with corresponding
dual basis {vi} and let 1 ∈ C be the trivial representation. The canonical maps

c 7−→ cvi ⊗ vi ∈ V ⊗ V ∗,

V ∗ ⊗ V ∋ vi ⊗ vj 7−→ δij ,

are homomorphisms coevV : 1 → V ⊗ V ∗ and evV : V ∗ ⊗ V → 1, respectively. If V
is irreducible, they are the unique such homomorphisms. Graphically, we will omit
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depicting 1; evV and coevV appear as caps and cups oriented towards the left:

The ordering of tensor factors matters in evV and coevV . To define maps with the
opposite ordering, we will use q2ρ to identify V and V ∗∗.

c 7−→ cvi ⊗ q−2ρvi ∈ V ∗ ⊗ V,

V ⊗ V ∗ ∋ q−2ρvi ⊗ vj 7−→ δij .

We denote these maps by qcoevV and qevV , respectively. Graphically, they will be
depicted as cups and caps with orientations opposite from before:

3.3.4. Adjunction. — The caps and cups allow us to define (right) adjoints. For a
morphism f : V →W , f∗ :W ∗ → V ∗ is given by

f∗ := (evW ⊗ 1V ∗)(1W∗ ⊗ f ⊗ 1V ∗)(1W∗ ⊗ coevV )

Note that the adjoint of the identity map of V is the identity map of V ∗.

3.3.5. Braiding. — We will depict βV,W and β−1
V,W as braid crossings:

The quantum Yang-Baxter equation (3.5) implies that βV,W endows C with the struc-
ture of a braided monoidal category.
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3.3.6. Ribbon structure. — By (3.11), u gives an isomorphism V → V ∗∗ and thus
q−2ρu is an automorphism of V , i.e., it is central. We define the ribbon element ν by

ν :=
(
q−2ρu

)−1
= u−1q2ρ.

Formula (3.12) implies that ν satisfies

(3.13) ∆(ν) = R21R(ν ⊗ ν).

The following was computed in [Dri89a]:

Proposition 3.3. — On Vλ, u acts as q−⟨λ,λ+2ρ⟩q2ρ. Thus, the ribbon element ν acts
by the scalar q⟨λ,λ+2ρ⟩.

Using (3.10), we can see that ν can be drawn in two ways:

(3.14)

Correspondingly, we note that ν−1 can also be drawn in two ways:

(3.15)

It is not quite true that morphisms in C only depend on the isotopy type of its
diagram in R3 under the graphical calculus. Rather, we should view each strand as a
ribbon with a front side and back side, and we require the front side to always face the
reader at the start and end of the ribbon. The back side may appear in the middle if
the loop given by ν appears, in which case the ribbon in twisted twice. Our graphical
calculus assigns to each morphism in C a C-colored ribbon tangle.

Theorem 3.4 ([RT90]). — A morphism in C only depends on the isotopy type of its
associated tangle.

We refer the reader to the original source as well as [BK01] for details. In practice,
we will instead work with strands but keep track of loops representing ν.

3.4. Reflection equation algebra. — Here, we introduce a quantization of the Hopf
algebra of functions on GLn. We would like this Hopf algebra to be a U = Uq(gln)-
module, and, critically, we want its structure maps to be U-homomorphisms. This
requires a braided variant of Tannakian reconstruction, defined by Majid [Maj93].
The resulting algebra is a localization of what is known as the reflection equation
algebra.
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3.4.1. Majid reconstruction. — Recall that C is the category of finite-dimensional U-
modules with weights in P . We define the U-module O as a space of matrix elements:

(3.16) O :=
( ⊕
V ∈C

V ∗ ⊗ V
) / 〈

f∗(w∗)⊗ v − w∗ ⊗ f(v)
∣∣∣ v ∈ V,w∗ ∈W ∗,

f ∈ HomGLn(V,W )

〉
.

For the categorically-minded, O is the coend of the identity functor of C. By consid-
ering for f in (3.16) the projections onto irreducible representations, we obtain an
analogue of the Peter–Weyl Theorem:

(3.17) O =
⊕

λ∈P+

V ∗
λ ⊗ Vλ.

As we will see below, we can use operations on representations to define a Hopf algebra
structure on O that recovers at q = 1 the classical Hopf algebra structure on the ring
of functions on GLn.

• Coalgebra structure: The coalgebra structure is identical to that of the classical
case. For v∗ ⊗ v ∈ V ∗ ⊗ V , we define the coproduct ∇(v∗ ⊗ v) as

∇(v∗ ⊗ v) = v∗ ⊗ coevV (1)⊗ v

The evaluation map evV on V ∗ ⊗ V yields the counit.
• Algebra structure: In the classical case, the product structure entails permuting

tensorands. To make such an operation a U-morphism, we utilize the braiding. For
v∗ ⊗ v ∈ V ∗ ⊗ V and w∗ ⊗ w ∈W ∗ ⊗W ,

m(v∗ ⊗ v ⊗ w∗ ⊗ w) = rtrsw
∗ ⊗ rt v

∗ ⊗ rs v ⊗ w(3.18)

The inclusion 1 → 1
∗ ⊗ 1 ∈ O provides the unit.
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• Antipode: The antipode ι is given by

ι(v∗ ⊗ v) = νrsv ⊗ rs v∗(3.19)

We note that the relations for the coend (3.16) are necessary to show that ι is an
antipode. For example, in computing m ◦ (1⊗ ι) ◦∇, we use the coend relation in the
first equality below:

In the last equality, recall that ν and ν−1 each have two diagrammatic presentations,
given by (3.14) and (3.15), respectively.

3.4.2. Generating matrix. — Since the finite-dimensional representations of U can be
built out of tensor functors applied to the vector representation V, it is perhaps
unsurprising that O has a presentation written in terms of matrix elements of V. The
generators of this presentation are a set of symbols

{
mi

j | i, j = 1, . . . n
}

. We arrange
them into a matrix M = (M i

j) where

M i
j = Ei

j ⊗mi
j .

Definition 3.5. — The reflection equation algebra R is generated by
{
mi

j

}
and has

relations

(3.20) R21M13R12M23 =M23R21M13R12.

Theorem 3.6 ([DM03]). — The map mi
j 7→ ei ⊗ ej gives an embedding from R to O.

It is an isomorphism after inverting a central element of R called the quantum deter-
minant detq(M), which is mapped to qcoev

11
(1).

Equation (3.20) is known as the reflection equation. For an explicit formula for the
quantum determinant, see [JW20].

We will abuse notation and conflate R with its image in O. Let M−1 := (1⊗ι)(M).
By the definition of the antipode, we have:

M−1M =MM−1 = I.

Corollary 3.7. — O is generated by detq(M) and the entries of M−1.
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Proof. — First, note that

ι(detq(M)) = ι−1(detq(M)) = detq(M)−1

Thus, by writing detq(M) in terms of the entries of M and applying ι, we obtain
an expression for detq(M)−1 in terms of the entries of M−1. Similarly, we can write
the entries of (1⊗ ι−1)(M) in terms of the entries of M and detq(M)−1. Applying ι,
we obtain an expression for the entries of M in terms of those of M−1 and detq(M).

□

3.4.3. Killing form. — Matrix elements give functionals on U in the natural way: for
v∗ ⊗ v ∈ V ∗ ⊗ V and x ∈ U:

(v∗ ⊗ v)(x) = v∗(xv).

A quantum analogue of the Killing form would allow us to view matrix elements as
sitting inside the enveloping algebra. The canonical tensor for such a form is given by
R21R.

Theorem 3.8 ([JL92]). — The map κ : O → U given by

κ(v∗ ⊗ v) = ((v∗ ⊗ v)(−)⊗ 1)R21R

is a U-equivariant algebra embedding, where U is endowed with the adjoint action.

Observe that the map V ∗ ⊗ V ⊗W →W given by

v∗ ⊗ v ⊗ w 7−→ κ(v∗ ⊗ v)(w)

is the morphism in C depicted by the following diagram:

We will depict κ(O) by replacing the strand for W above by a dotted line ori-
ented upwards—a “ghost strand”. Our graphical calculus is still valid for such strands
because it holds for any choice of representation W “filling in” the ghost strand; by the
quantum analogue of a theorem of Harish-Chandra [HC49], any x ∈ U that acts triv-
ially on all W ∈ C is necessarily zero. Multiplying left-to-right in κ(O) corresponds to
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stacking ghost strands top-to-bottom. For example, that κ is an algebra map follows
from the manipulation below:

Finally, it can be useful to know that κ ◦ ι yields the opposite crossing:

Theorem 3.8 omits any statement about coalgebra structures because κ does not
intertwine ∇ with ∆. By considering the action of κ(v∗ ⊗ v) on a tensor product of
modules, we see that ∆◦κ merely doubles the dotted strand. We can force an instance
of κ for each dotted strand using ∇ and some braidings:

Properly comprehending the diagram on the right, we get:

Proposition 3.9 ([VV10, Ex. 1.3.3(c)]). — Let {vi} ⊂ V and
{
vi
}
⊂ V ∗ be dual bases.

For v∗ ⊗ v ∈ V ∗ ⊗ V , we have

(3.21) (∆ ◦ κ)(v∗ ⊗ v) = κ(v∗ ⊗ vi)rsrt ⊗ κ( rs vi ⊗ rt v).

In particular, κ(O) is a left coideal subalgebra of U, i.e.,

(∆ ◦ κ)(O) ⊂ U⊗ κ(O).

3.5. Etingof–Kirillov theory. — Equipped with a notion of functions on quantum
GLn, we move on to a realization of Macdonald polynomials as spherical functions
on the quantum group. This was discovered by Etingof and Kirillov, Jr. [EK94].
We conclude this section by making contact with SḦn(q, q

k).
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3.5.1. Traces of intertwiners. — Let U ∈ C. We will be concerned with the space of
homomorphisms

I(Vλ, U) := HomU(Vλ, Vλ ⊗ U)

also called intertwiners. Let vλ ∈ Vλ be a highest weight vector and U [0] denote the
zero weight space. For an intertwiner Φ, set

⟨Φ⟩ = (v∗λ ⊗ 1U )Φ(vλ) ∈ U [0].

Proposition 3.10 (cf. 3.1 in [EL05]). — The map Φ 7→ ⟨Φ⟩ is an injective map
I(Vλ, U) ↪→ U [0].

To extract a Laurent polynomial from this, we take the weighted trace over Vλ:

Φ 7−→ φ := trVλ
(Φ(q2µ)).

Viewing this as a function of µ ∈ P and setting xi = q2⟨εi,−⟩, we obtain a Laurent
polynomial in the variables {xi}ni=1 valued in U [0]. From Proposition 3.10, it follows
that the trace map is injective because the intertwiner is determined by the coefficient
of xλ1

1 · · ·xλn
n .

We would prefer to work instead with what can be called U -spherical functions on
quantum GLn. This amounts to applying quantum coevaluation maps:

I(Vλ, U) ∼= (V ∗
λ ⊗ Vλ ⊗ U)U

Φ 7−→ (1V ∗
λ
⊗ Φ) ◦ (qcoevVλ

) =: Φ∪

Since q2ρ and q2µ are both group like, we have

(3.22) φ = (evVλ
⊗ 1U )

(
(q−2µ−2ρ ⊗ 1Vλ⊗U ) Φ∪

)
.

This has a clear graphical interpretation in terms of closing the loop between the Vλ
strands, but we will refrain from drawing it as the insertion of q−2µ breaks U-equi-
variance.

3.5.2. Macdonald polynomials revisited. — Now, fix k ∈ Z⩾0. We will consider the
case

U = Uk := Sn(k−1)
q V⊗ 1−(k−1).

Uk[0] is one-dimensional, spanned by the vector whose tensorand in Snk
q V is the

q-symmetrization of
(e1 ⊗ e2 ⊗ · · · ⊗ en)

⊗k−1
.

Fixing a vector u0 ∈ Uk[0], we can identify Uk[0] with C(q). Recall that
δ = (n− 1, n− 2, . . . , 0).

Theorem 3.11 ([EK94]). — We have the following:
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(1) For λ ∈ P+, I(Vλ,Uk) is nonzero if and only if λ− (k − 1)δ is dominant. For
λ ∈ P+, set

V k
λ := Vλ+(k−1)δ.

Thus, for λ ∈ P+, there exists a unique nonzero intertwiner
Φk

λ : V k
λ −→ V k

λ ⊗Uk

with ⟨Φk
λ⟩ = u0.

(2) Let φk
λ be the weighted trace trVλ

(Φk
λ(q

2µ)). We have:
Pλ(q, q

k) = φk
λ

/
φk
0 .

3.5.3. Spherical DAHA generators. — Recall the generators of SḦn(q, q
k) from

Lemma 2.5 (cf. also (2.6) and (2.7)). We have two natural actions of OU on the
Macdonald polynomials. Let chVπ

denote the character of Vπ. The first action is
through insertion via κ:

Theorem 3.12 ([EK94]). — We have

Φk
λ(κ(qcoevV ∗

π
(1))−) = q−|π|(n−1)chVπ (q

2(λ+kδ))Φk
λ.

This induces the same action on the weighted trace. In terms of spherical functions,
this corresponds to:

(κ(qcoevVπ
(1))⊗ 1Vλ⊗Uk

) Φ∪
k
λ = q−|π|(n−1)chVπ (q

2(λ+kδ)) Φ∪
k
λ

Note that the discrepancy between Vπ and V ∗
π comes from the change in orientation

on the circle when bending the left leg of Φ∪
k
λ down to obtain Φk

λ. In particular,
we obtain the q−r(n−1)r

(
ser(Y

−1
n )s

)
when Vπ = ∧r

qV∗ and q−n(n−1)r(sY ns) when
Vπ = 11.

For the second action, consider the multiplication map:
m⊗ 1Uk

: O⊗ O⊗Uk −→ O⊗Uk.

Since it is a U-homomorphism, it restricts to a map
OU ⊗ (O⊗Uk)

U −→ (O⊗Uk)
U =

⊕
λ∈P+

(V ∗
λ ⊗ Vλ ⊗Uk)

U.

We can depict (m⊗ 1Uk
)(qcoevVπ

(1)⊗ Φ∪
k
λ) diagrammatically as:

Converting to the weighted trace as in (3.22) yields chVπ
(x1, . . . xn)φ

k
λ. Here, we obtain

r (ser(Xn)s) when Vπ = ∧r
qV and r

(
sX−1

n s
)

when Vπ = 1−1.
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4. Quantum differential operators

4.1. Varagnolo–Vasserot double. — Out of our quantum ring of functions O,
we would like to define a notion of quantum differential operators with very specific
equivariance properties. Let us catalog the U-actions on O:

(1) Left coregular action: g ▷ (v∗⊗v) = gv∗⊗v (this is an action of the co-opposite
Uc);

(2) Right coregular action: g ◁ (v∗ ⊗ v) = v∗ ⊗ gv;
(3) Coadjoint action: g ▷◁ (v∗ ⊗ v) = g(1)v

∗ ⊗ g(2)v.
We have been mainly concerned with the coadjoint action, for which the Hopf alge-
bra structure maps are homomorphisms. Our goal is to construct a smash product
between O and κ(O) utilizing the left coregular action, but we would like all structure
maps to be equivariant with respect to the coadjoint action on O and the adjoint
action on κ(O).

4.1.1. Drinfeld twist. — The left and right coregular actions give an action of Uc⊗U

on O. However, the braidings in (3.18) prevent the product from being a Uc ⊗ U-
homomorphism. This can be fixed by altering the coproduct of Uc⊗U using Drinfeld’s
twisting procedure [Dri89b]. First, let ∆2 denote the coproduct of Uc ⊗ U:

∆2(g ⊗ h) = g(2) ⊗ h(1) ⊗ g(1) ⊗ h(2).

Let Ũ2 denote the algebra Uc ⊗ U endowed with coproduct

∆̃2(g ⊗ h) := (R13R23)
−1∆2(g ⊗ h)(R13R23)

= R−1
23 (g(1) ⊗ h(1) ⊗ g(2) ⊗ h(2))R23

and antipode

S̃2(g ⊗ h) = R21

(
S(g)⊗ S(h)

)
R−1

21 .

With these structures, Ũ2 is a Hopf algebra in a suitably completed sense. We will
use an embellished Sweedler notation for ∆̃2:

∆̃2(g ⊗ h) = g̃(1) ⊗ h̃(1) ⊗ g̃(2) ⊗ h̃(2).

Proposition 4.1. — The multiplication map m of O is a Ũ2-homomorphism.

Proof. — This follows from the calculation:

m
(
∆̃2(g ⊗ h)(v∗ ⊗ v ⊗ w∗ ⊗ w)

)
= βV ∗⊗V,W∗

(
R−1

23 (g(1)v
∗ ⊗ h(1) rs v ⊗ g(2)rsw

∗ ⊗ h(2)w)
)

= rtg(2)rsw
∗ ⊗ rt g(1)v

∗ ⊗ h(1) rs v ⊗ h(2)w

= g(1)rtrsw
∗ ⊗ g(2) rt v

∗ ⊗ h(1) rs v ⊗ h(2)w

= (g ⊗ h)m(v∗ ⊗ v ⊗ w∗ ⊗ w). □
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4.1.2. Three embeddings. — Corresponding to the three actions of U on O, there are
three embeddings of U into Ũ2. First, let us consider the subalgebras U ⊗ 1 and
1⊗U. It is clear that the restrictions of the Ũ2-action on O to these two subalgebras
respectively yield the left and right coregular actions. We have that

(4.1)
∆̃2(g ⊗ 1) = g(1) ⊗ rs rt ⊗ S(rs)g(2)rt ⊗ 1

= g(1) ⊗ rs ⊗ adS(rs)
(g(2))⊗ 1.

Thus, U⊗ 1 is a left coideal subalgebra, and so by Theorem 3.8 and Proposition 3.9,
κ(O)⊗ 1 is a left coideal subalgebra as well.

Next, view the coproduct as a map ∆ : U → Ũ2. Observe that by (3.1),
(∆̃2 ◦∆)(g) = g(1) ⊗ g(2) ⊗ g(3) ⊗ g(4),

(1⊗ S̃)(∆̃2 ◦∆)(g) = g(1) ⊗ g(2) ⊗ S(g(4))⊗ S(g(3)).(4.2)

From these equations, we can see that ∆ is in fact a Hopf algebra morphism. Moreover,
from (4.2), we can see that the adjoint action of ∆(U) on Ũ2 preserves U⊗1, on which
it acts by the usual adjoint action on U.

4.1.3. Smash product. — Now consider the smash product O⋊ Ũ2. This is the tensor
product O⊗ Ũ2 subject to the relation that for v∗ ⊗ v ∈ O and g ⊗ h ∈ Ũ2,
(4.3) (g ⊗ h)(v∗ ⊗ v) = (g̃(1)v

∗ ⊗ h̃(1)v)(g̃(2) ⊗ h̃(2)).

We will abuse notation and use O and Ũ2 to denote O⊗1⊗1 and 1⊗ Ũ2, respectively.
Since κ(O)⊗1 ⊂ Ũ2 is a left coideal, the subspace O⋊(κ(O)⊗1) is in fact a subalgebra.
We denote by ∂▷ the embedding O → 1⊗ κ(O)⊗ 1 ⊂ O⋊ Ũ2.

Definition 4.2 ([VV10]). — The Varagnolo–Vasserot algebra of quantum differential
operators D is the subalgebra O⋊ ∂▷(O) of the smash product O⋊ Ũ2.

The Varagnolo–Vasserot algebra does indeed satisfy our desired equivariance. Let-
ting Ũ2 act on itself via the adjoint action, O⋊ Ũ2 is a Ũ2-module-algebra. Restricting
this action to ∆(U) ⊂ Ũ2, we obtain an action of U on D that gives the coadjoint
action on O and the adjoint action on ∂▷(O). We will also use ▷◁ to denote this U

action on D.
Finally, we note that by (4.1), commuting ∂▷(O) past O in D does not cleanly

incorporate the left coregular action because the right tensorand of O is also affected.
However, the discrepancy has a diagrammatic interpretation that is cleaner than the
symbolic formula gotten by combining (3.21) and (4.1):

∂▷(v
∗ ⊗ v)(w∗ ⊗ w) =

(
∂▷(v

∗ ⊗ vi)rsrtw
∗ ⊗ ru rv w

)(
S(ru)∂▷( rs vi ⊗ rt v)rv

)

(4.4)
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4.1.4. Basic representation. — The smash product O⋊Ũ2 has an action on O, where O
acts by multiplication and Ũ2 acts via the left and and right coregular actions. This
action is Ũ2-equivariant. Moreover, from the definition of the smash product (4.3),
we have that O is an induced representation:

(4.5) O ∼= O⋊ Ũ2
/
O⋊ Ũ2

(
Ũ2 − ε(Ũ2)

)
.

We call the representation O and its restriction to D the basic representation. O is
then a U-equivariant D-module (using the ▷◁ action). Note that even though the
smash product relations do not cleanly incorporate the left coregular action, ∂▷(O)
does indeed act on O via the left coregular action. This follows from (4.1) and (4.5).

4.2. Monodromy matrices. — Recall the generating matrix M for O given in 3.4.2.
Let {aij} denote a copy of {mi

j} given by O ⊂ D and let {bij} denote another copy
given by {∂▷(mi

j)}. We define the matrices A, B, A−1, and B−1 by:

Ai
j = Ei

j ⊗ aij , (A−1)ij = Ei
j ⊗ ι(aij),

Bi
j = Ei

j ⊗ bij , (B−1)ij = Ei
j ⊗ ι(bij) := Ei

j ⊗ ∂▷(ι(m
i
j)).

4.2.1. Determinant bigrading. — We set:

detq(A) := qcoev
11
(1)⊗ 1 ∈ O⊗ 1 ⊂ D,

detq(B) := ∂▷qcoev11
(1) ∈ 1⊗ κ(O) ⊂ D.

As in 3.4.2, these elements can be written in terms of the entries of A and B, respec-
tively. Moreover, detq(A) commutes with O⊗1 and detq(B) commutes with 1⊗κ(O).
Their commutation relations with elements from their respective “opposite” tensor
factors are also nice.

First note that, from the factorization (3.6) and the formulas (3.9) for the deter-
minant representation, we have:

(4.6)

Using these local relations on (4.4), one can see that detq(B) satisfies:
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Similarly, detq(A) satisfies:

Thus, we can define an internal bigrading on D: x ∈ D is homogeneous of
degree (a, b) if

detq(B)x = q2axdetq(B), detq(A)x = q−2bxdetq(A).

The entries of A and B have degrees (1, 0) and (0, 1), respectively.

4.2.2. Double R-matrix presentation. — The following is [VV10, Prop. 1.8.3(b)]:

Proposition 4.3. — Let D+ be the algebra with generators given by the entries of A
and B and relations

R21A13R12A23 = A23R21A13R12,

R21B13R12B23 = B23R21B13R12,

R21B13R12A23 = A23R12B13R
−1
21 .

(4.7)

The elements {detq(A),detq(B)} generate an Ore set in D+ and D is isomorphic to
its localization.

The novel third relation is a rewriting of (4.4), cf. [VV10, A.5]. This algebra was
defined prior to [VV10] by Alekseev and Schomerus [AS96] as an intermediate step to
constructing their quantized character variety for the once-punctured torus. There,
the A- and B-matrices respectively quantize monodromy matrices along the a- and
b-cycles of the torus.

4.3. Quantum Weyl algebra. — A reference for this section is [GZ95]. The quantum
Weyl algebra of rank n, denoted W, is the C(q)-algebra with generators

{ξi, ∂i | 1 ⩽ i ⩽ n}

and relations
ξiξj = qξjξi for i > j,

∂i∂j = q−1∂j∂i for i > j,

∂iξj = qξj∂i for i ̸= j,

∂iξi = 1 + q2ξi∂i + (q2 − 1)
∑
j<i

ξj∂j .

(4.8)

If we set deg ξi = 1 and deg ∂i = −1, then the relations (4.8) respect the grading.
We denote by W0 the subalgebra of degree 0 elements.
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Remark 4.4. — In [Jor14], there is a parameter t that the author then sets to t = 1

(cf. Remark 3.11 of loc. cit.). Here, we instead set t = q−1. This affects the formula
for the moment map later in 4.4.2.

4.3.1. Equivariance. — W has an RTT-type presentation (cf. [Jor14, Ex. 4.9]): if we
define the vectors

ξ⃗ :=

n∑
i=1

ei ⊗ ξi =
(
ξ1 ξ2 · · · ξn

)
,

∂⃗ :=

n∑
i=1

ei ⊗ ∂i =


∂1
∂2
...
∂n


in V⊗W then relations (4.8) can be rewritten as

qξ⃗13ξ⃗23 = ξ⃗23ξ⃗13R,

q∂⃗13∂⃗23 = R∂⃗23∂⃗13,

q−1∂⃗23ξ⃗13 = ξ⃗13R∂⃗23 + q−1
n∑

i=1

ei ⊗ ei ⊗ 1.

This algebra can be written as a quotient of the tensor algebra T(V⊕V∗) by images
of the braidings and evaluations. Here, ∂i corresponds to ei ∈ V∗ and ξi corresponds
to ei ∈ V. Consequently, we have:

Proposition 4.5. — W is a U-module-algebra.

We denote the U-action on W by •. Note that the degree is given by the action of
qωn . Since qωn is central in U, it follows that W0 is a U-submodule.

4.3.2. Functional representation. — Let Wξ be the subalgebra generated by {ξi}. As a
U-module, the subalgebra Wξ is isomorphic to the quantum symmetric algebra of V:

SqV :=
∞⊕

m=0
Sm
q V.

The ordered monomials
ξk1
1 · · · ξkn−1

n−1 ξ
kn
n

form a basis of SqV (cf. Theorem 5.1 below). We can extend the natural multiplication
action of Wξ to one of the entirety of W by setting

∂i(ξ
k1
1 ξk2

2 · · · ξki
i · · · ξkn

n ) = (qξ1)
k1(qξ2)

k2 · · · [ki]q2ξki−1
i ξ

ki+1

i+1 · · · ξkn
n .

This action is merely the one induced by quotienting T(V ⊕ V∗) by the left ideal
generated by V∗. As such, this action is U-equivariant. The action of W0 on SqV
preserves each piece Sm

q V.
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4.3.3. Difference operators. — It will be useful to interpret the functional represen-
tation in terms of difference operators in commuting variables. Let

C(q)[zn] := C(q)[z1, . . . , zn]

and let Tq,zi denote the q-shift operator:

Tq,zizj = qδi,jzj .

For an integer vector λ = (λ1, . . . , λn) ∈ Zn, we define

zλ := zλ1
1 · · · zλn

n , Tλ := Tλ1
q,z1 · · ·T

λn
q,zn .

Consider the following rings of difference operators:

Dq(zn) =
{∑

λ,µ∈Zn aλ,µz
λTµ

∣∣∣ aλ,µ ∈ C(q)
and only finitely many aλ,µ ̸= 0

}
,

D+
q (zn) =

{
D ∈ Dq(zn)

∣∣∣ Df ∈ C(q)[zn]

for all f ∈ C(q)[zn]

}
.

Proposition 4.6. — C(q)[zn] is a faithful representation of D+
q (zn).

The map
ξk1
1 · · · ξkn

n 7−→ zk1
1 · · · zkn

n

induces a vector space isomorphism SqV ∼= C(q)[zn]. Carrying over the actions of U
and W, we obtain homomorphisms of both algebras into D+

q (zn), both of which we
denote by qdiff:
(4.9)
qdiff(qεi) = Tq,zi , qdiff(ξi) = ziTq,z1 · · ·Tq,zi−1

,

qdiff(Ei) =
zi
zi+1

(Tq,zi+1 − T−1
q,zi+1

q − q−1

)
, qdiff(∂i) = z−1

i Tq,z1 · · ·Tq,zi−1

(T 2
q,zi − 1

q2 − 1

)
,

qdiff(Fi) =
zi+1

zi

(Tq,zi − T−1
q,zi

q − q−1

)
.

Since C(q)[zn] ∼= SqV is a faithful D+
q (zn)-module, the fact that SqV is a U-equivariant

W-module implies that qdiff pieces together into an algebra homomorphism out of
the smash product:

qdiff : W⋊ U −→ D+
q (zn).

4.4. Quantum Hamiltonian reduction. — To perform quantum Hamiltonian reduc-
tion, we will need a notion of quantum moment maps in our Hopf-algebraic setting.
Let H be a Hopf algebra acting on an algebra A such that A is an H-module-algebra.
If we denote this action by

(−) ▶ (−) : H ⊗A −→ A,

then a quantum moment map (in the sense of [VV10]) for the action is an algebra
homomorphism µ : H → A such that for h ∈ H and a ∈ A,

(4.10) µ(h)a = (h(1) ▶ a)µ(h(2)).
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More generally, we can define quantum moment maps for the action of a left coideal
subalgebra H ′ ⊂ H, In our case, we will be working with H = U and H ′ = κ(O).

4.4.1. Moment map for D. — The following is [VV10, Prop. 1.8.3(a)] and [Jor14,
Prop. 7.21]:

Proposition 4.7. — The map µD : κ(O) → D given by

(4.11) (1⊗ µD ◦ κ)(M) = BA−1B−1A

is a quantum moment map for the ▷◁-action restricted to the left coideal subalgebra
κ(O) ⊂ U. Moreover, it is U-equivariant.

We emphasize that we are viewing κ(O) as a left coideal subalgebra of U. Thus,
in (4.10), we are are taking the coproduct ∆ instead of ∇.

Proposition 4.8. — For f ∈ O viewed as an element of the basic representation,
we have

µD(x)f = κ(x) ▷◁ f.

Proof. — This was shown in the proof of Proposition 1.8.2(c) of [VV10], but we give a
diagrammatic proof. It suffices to consider entries of the generating matrix M . Using
(3.19) and (4.4), we calculate the entries of BA−1B−1A images of the following a
morphism, working right to left:

(4.12)
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Acting on V ∗ ⊗ V ⊂ O, we obtain

upon applying the coend relation (3.16). □

4.4.2. Moment map for W. — The following was proved by Jordan [Jor14]:

Proposition 4.9. — The action of the left coideal subalgebra κ(R) ⊂ U on W has a
quantum moment map

µW(mi
j) = δi,j + (1− q−2)∂iξj .

This map is U-equivariant. The powers of µW(detq(M)) form an Ore set. Let W◦

denote the localization at those powers. Then µW extends to a quantum moment map
for κ(O) into W◦.

Note that the image of µW lies in the degree zero part W◦
0.

Proposition 4.10. — We have for f ∈ SqV,

µW(mi
j)f = κ(mi

j) • f.

Proof. — We view SqV as the quotient of W by the left ideal I∂ generated by {∂i}.
By Proposition 3.9, we have

µW(mi
j)f =

∑
k

(
κ(mi

k)rs • f
)
µW

(
ad rs

(mk
j )
)
.

The equivariance of µW implies

µW

(
ad rs

(mk
j )
)
= rs • µW(mk

j ).

On the other hand, using relations for W, we have that after quotienting by I∂ ,

µW(mk
j ) + I∂ = δk,j + I∂ .

The proposition follows once we note that I∂ is closed under the U-action. □

Corollary 4.11. — Recall the map qdiff (4.9). We have:

qdiff ◦ κ = qdiff ◦ µW.

Corollary 4.12. — The functional representation SqV is preserved under the action
of the localization W◦.
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4.4.3. Reduction. — Finally, we consider the tensor product algebra

M := D⊗W◦

in the braided monoidal category of locally-finite U-modules. Thus, the product
involves R: for a1, a2 ∈ D and b1, b2 ∈ W◦,

(a1 ⊗ b1)(a2 ⊗ b2) = a1(rs ▷◁ a2)⊗ ( rs • b1)b2.

With this braiding, M is a U-module algebra and thus MU is an algebra.
Next, we collate the moment maps into one for M. We define

µM := (µD ⊗ µW) ◦ (κ⊗ κ) ◦ ∇ : O −→ M.

It is a U-equivariant algebra homomorphism (each of its components are). The fol-
lowing is [GJS25, Prop. 3.10], which features a nice diagrammatic proof:

Proposition 4.13. — The map µM : O → M is a quantum moment map.

Recall the determinant character χk defined in (3.9). We will abuse notation and
use χk to also denote the induced character χk ◦ κ of O. In terms of the generating
matrix M of O, we can use the factorization of R (3.6) to deduce

(1⊗ χk)(M) = q−2kI.

Definition 4.14. — Let Ik ⊂ M be the following left ideal:

Ik := M
(
(1⊗ µM)(M)− q−2(k−1)I

)
.

The quantized multiplicative quiver variety is defined to be Ak :=
(
M
/
Ik
)U.

Proposition 4.15 ([VV10, GJS25]). — Ak is an algebra.

4.4.4. Radial parts map. — Denote by

(O⊗ SqV)χ
k

the subspace where U acts by the character χk. From the Peter-Weyl decomposition
for O (3.17), we can see that qωn acts trivially on O. Thus,

(O⊗ SqV)χ
k

= (O⊗ Snk
q V)χ

k

.

We can further identify

(O⊗ Snk
q V)χ

k ∼= (O⊗Uk)
U =

⊕
λ∈P+

(V ∗
λ ⊗ Vλ ⊗Uk)

U.

By Theorem 3.11, we can identify the last space with Λ±
n (q) by taking the weighted

trace.
M acts on the tensor product representation O ⊗ SqV, where this tensor product

representation is taken in the braided monoidal category of locally-finite U-modules.
Therefore, the action involves the braiding between W◦ and O and the action map is
U-equivariant. This action on O⊗SqV then restricts to an action of MU on (O⊗SqV)χ

k .
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Proposition 4.16. — For k ⩾ 0, the action of MU on (O⊗ SqV)χ
k

factors to an
action of Ak+1.

Proof. — We first show that µM(mi
j) acts on O⊗SqV as κ(mi

j) (i.e., via the U-action).
Let aM be the action map of M on O⊗SqV. Using Propositions 4.8 and 4.10, we have:

It follows that the restricted action map

aM : M⊗ (O⊗ SqV)χ
k

−→ O⊗ SqV

factors through Ik+1. The result follows from taking invariants of M
/
Ik+1. □

Definition 4.17. — We denote the representation map by radk : Ak → End (Λ±
n (q))

and called it the quantum radial parts map.

Proposition 4.18. — For k > n, the image of radk contains the image of SḦn(q, q
k)

under r:
radk (Ak) ⊃ r

(
SḦn(q, q

k)
)
.

Moreover, this inclusion respects the bigradings.

Proof. — Recall the generators of SḦn(q, q
k) from Lemma 2.5 (in the case k > n).

Our analysis in 3.5.3 shows that

(4.13)

radk
(
qcoev∧r

qV(1)
)
= r

(
ser(Xn)s

)
,

radk
(
∂▷qcoev∧r

qV∗(1)
)
= qr(n−1)r

(
ser(Y

−1
n )s

)
,

radk
(
detq(A)

−1
)
= r

(
sX−1

n s
)
,

radk
(
detq(B)

)
= q−n(n−1)r

(
sY ns

)
.

The last two imply the statement about bigradings. □
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5. Isomorphism

5.1. Classical degeneration. — Recall that D+ ⊂ D is the subalgebra generated by
the entries of A and B (so we exclude those of A−1 and B−1). From the relations (4.7)
and the formula (3.7) for R, we can expect that D+ becomes the commutative ring
C[gln × gln] when q 7→ 1. Similarly, the quantum Weyl algebra W (4.8) should degen-
erate to the usual Weyl algebra D(Cn). Here, we review work of Jordan [Jor14] that
makes this precise and we enhance these results to address invariants.

5.1.1. Lattices. — Let
M+ := D+ ⊗W

(as in 4.4.3, we mean the braided tensor product of algebras). As in [Jor14], we define
a standard monomial in M+ to be a product

(5.1) ai1j1 · · · a
iα
jα
bk1

ℓ1
· · · bkβ

ℓβ
ξr1 · · · ξrγ∂s1 · · · ∂sδ ,

where if u < v,

(5.2)

iu < iv or (iu = iv and ju ⩽ jv) ,

ku < kv or (ℓr = ℓs and ju ⩽ jv) ,

ru ⩽ rv,

su ⩽ sv,

whenever such indices are present.

Theorem 5.1 ([Jor14]). — Let M+,Z ⊂ M+ be the C[q±1]-subalgebra generated by the
generators {aij , bkℓ , ξr, ∂s}. The standard monomials form a basis of M+,Z. Thus,[

C[q±1]
/
(q − 1)

]
⊗C[q±1] M+,Z ∼= C[gln × gln]⊗D(Cn),

where D(Cn) is the Weyl algebra.

For technical reasons, we will need a slight alteration of this result. First, we con-
sider instead the subalgebra DIV ⊂ D generated by the entries of A and B−1 and
correspondingly set

MIV := DIV ⊗W.

Next, we will replace ∂i with
∂̃i := (1− q−2)∂i.

We then define a standard monomial to be

ai1j1 · · · a
iα
jα
ι(b

kβ

ℓβ
) · · · ι(bk1

ℓ1
)ξr1 · · · ξrγ ∂̃s1 · · · ∂̃sδ ,

where the indices still satisfy (5.2) when u < v.
Let

M := gln × gln × Cn × (Cn)
∗
.
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Corollary 5.2. — Let MIV,Z ⊂ MIV be the C[q±1]-subalgebra generated by{
aij , ι(b

i
j), ξr, ∂̃s

}
.

The standard monomials form a basis of MIV,Z. Moreover,[
C[q±1]

/
(q − 1)

]
⊗C[q±1] MIV,Z ∼= C[M].

Proof. — The basis statement is clear because ι is an algebra anti-automorphism—we
can map M+ isomorphically to MIV within D⊗W in a manner that sends standard
monomials to standard monomials. Finally, note that from (4.8), we have:

∂̃iξi = (1− q−2) + q2ξi∂̃i + (q2 − 1)
∑
k>i

ξk∂̃k.

Therefore,
[
C[q±1]

/
(q − 1)

]
⊗C[q±1] MIV,Z is a commutative ring. □

Thus, whenever we perform q 7→ 1 degeneration in MIV, it will always be with
respect to this basis of standard monomials. Namely, for any subspace V ⊂ MIV,
we define:

VZ := V ∩MIV,Z,(5.3)

Vq=1 :=
{
f1(1)M1 + · · ·+ fm(1)Mm

∣∣∣ f1(q)M1 + · · ·+ fm(q)Mm ∈ VZ for
standard monomials M1, . . . ,Mm

}
.(5.4)

Proposition 5.3. — For a finite-dimensional subspace V ⊂ MIV, we have:

(5.5) dimC(q) V = rankC[q±1]VZ = dimC Vq=1.

Proof. — This follows from the fact that MIV,Z is free and C[q±1] is a PID. □

5.1.2. Invariants. — We endow C[M] = C
[
gln × gln × Cn × (Cn)

∗] with the follow-
ing GLn-action: for the natural coordinate functions (X,Y, i, j) on M and g ∈ GLn,
let

g(X,Y, i, j) = (g−1Xg, g−1Y g, (g−1)i, jg).

Here, we view the last factor j as a row vector. U(gln) then acts on C[M] via deriva-
tions induced by the coadjoint and vector representations. By a classic theorem of
Weyl [Wey39], C[M]GLn is generated by classical trace functions:

(5.6) tr(Xa1Y b1(ij)c1 · · ·XamY bm(ij)cm)

for a1, b1, c1, a2, b2, c2, . . . , am, bm, cm ∈ Z⩾0.
We identify (A,B−1, (1 − q−2)∂⃗, ξ⃗) with (X,Y, i, j) in the q 7→ 1 degeneration as

follows:

(5.7) A 7−→ X, B−1 7−→ Y, (1− q−2)∂⃗ 7−→ i, ξ⃗ 7−→ j.

With this, let us define natural quantum versions of (5.6). For k ⩾ 0, we define the
quantum trace of Mk as:

(5.8) trq(M
k) :=

∑
1⩽i1,...,ik⩽n

q−⟨2ρ,εik ⟩mik
i1
mi1

i2
· · ·mik−1

ik
.
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Similarly, for a1, b1, c1, a2, b2, c2, . . . , am, bm, cm ∈ Z⩾0, we define

(5.9) trq
(
Aa1B−b1(µW(M)− I)c1 · · ·AamB−bm(µW(M)− I)cm

)
∈ MIV

as (5.8) with mi
j replaced with aij , ι(b)ij , or

(µW(M)− I)
i
j = ∂̃iξj ,

depending on the location. We call these quantum trace elements.

Proposition 5.4. — The quantum traces are elements of MU
IV ∩MIV,Z that are sent

to their corresponding classical traces when q 7→ 1.

Proof. — It is obvious that quantum traces are contained in MIV,Z and are sent
to (5.6) when q 7→ 1. To see that they are U-invariants, observe that they are the
image of 1 ∈ 1 under a composition of U-morphisms:

(1) the map 1 → (V∗ ⊗ V)⊗k induced by

1 7−→
∑

1⩽i1,...,ik⩽n

q−⟨2ρ,εik ⟩mik
i1
⊗mi1

i2
⊗ · · · ⊗m

ik−1

ik
,

which is depicted diagrammatically as

(2) the antipode ι on tensorands that will correspond to B−1 matrix elements;
(3) the inclusion into MIV (identity for A-matrix elements, ∂▷ for B−1-matrix

elements, and µW − evV);
(4) the product in MIV. □

Lemma 5.5. — For any U-submodule V ⊂ MIV, Vq=1 is a GLn-module. Furthermore,
we have

[V U]q=1 = [Vq=1]
GLn .

Proof. — Observe that U acts on standard monomials in a way that preserves the
lattice MIV,Z. Moreover, because of (5.7), the action of Ei and Fi degenerate to
the action of their corresponding generators ei, fi ∈ U(gln) on monomials in C[M].
Finally, the degeneration preserves the weight. Thus, Vq=1 is a GLn-module and we
have the containment

[V U]q=1 ⊂ [Vq=1]
GLn .

For the other containment, let v ∈ VZ be a lift of v ∈ [Vq=1]
GLn . We can write v in

terms of classical traces. Let trvq ∈ MIV,Z be the element where every classical trace
is replaced with its quantum version. We can write

v = trvq + (q − 1)w

for some w ∈ MIV,Z. Since trvq is U-invariant, we have that

Eiv = (q − 1)Eiw, Fiv = (q − 1)Fiw
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for all i. If v ̸∈ V U, then one of the expressions above is nonzero and w ∈ V due to
complete reducibility (MIV is locally-finite). It then follows that trvq is an element of
V U ∩MIV,Z that lifts v. □

We can combine (5.5) with Lemma 5.5 to obtain:

Proposition 5.6. — For a finite-dimensional U-submodule V ⊂ MIV,

(5.10) dimC(q) V
U = dimC[Vq=1]

GLn .

5.2. The case t = qk. — By Proposition 4.18, Ak is at least as large as SḦn(q, q
k).

Our strategy to handle the t = qk case is to show that Ak is also no bigger than
SḦn(q, q

k). Of course, this is but an impressionistic statement—we will need to make
it precise.

5.2.1. Mise en place. — We begin with a little result that allows us to focus on D:

Lemma 5.7. — The image of the composition

DU ↪−→ MU −→ Ak

becomes all of Ak after performing a localization.

Proof. — First note that by considering the action of qωn , any U-invariant of M must
have degree zero in its W component, i.e.,

MU = (D⊗W◦
0)

U
,

IUk = (Ik ∩D⊗W◦
0)

U
.

From multiplication on the left, we have

(5.11) D⊗W0

(
δi,j + (q − q−1)∂iξj − q−2k

∑
i

(A−1BAB−1)ij

)
⊂ Ik ∩D⊗W0.

On the other hand, W0 is generated by {∂iξj}. For any w ∈ W0 and x ∈ D, we can
use the R-matrix to move w to the right:

wx = (rs ▷◁ x)( rs • w).

We can then use (5.11) to write rs • w in terms of D in the quotient

D⊗W0

/
(Ik ∩D⊗W0).

Therefore, the map

D ↪−→ D⊗W0 −→ D⊗W0

/
(Ik ∩D⊗W0)

is surjective. Since all the U-modules involved are locally-finite, taking U-invariants is
exact. After doing so, detq(M) can be written in terms of elements of DU. We localize
the image at that latter expression. □

Corollary 5.8. — Ak is a localization of Ak,IV := DU
IV

/
(DIV ∩ Ik)

U.
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We can thus focus on DIV and Ak,IV. The left ideal Ik is generated by elements
with homogeneous determinant bigrading, and so Ak and Ak,IV are also bigraded.
Let Ak,IV[a, b] denote its bidegree (a, b) piece. Recall our notation from Section 2.2.1.
Proposition 4.18 implies that

(5.12) dimC(q) Ak,IV[a,−b] ⩾ dimC(q) Sqk,IV[a,−b] = dimC C [xn,yn]
Σn

a,b .

We will use classical degeneration, as covered in 5.1, to obtain the opposite bound.

5.2.2. Almost commuting variety. — Let Mac ⊂ M = C
[
gln × gln × Cn × (Cn)∗

]
be

the closed subscheme with ideal generated by the entries of

(5.13) [X,Y ]− ij,

where (X,Y, i, j) are the usual coordinates of M. The following results are proved by
Gan–Ginzburg [GG06]:

Theorem 5.9. — The projection map p : M → gln × gln induces an isomorphism:

(5.14) C[Mac]
GLn ∼=

(
C[gln × gln]

/
I
)GLn ∼= C[xn,yn]

Σn ,

where I is the ideal generated by the equations [X,Y ] = 0 and the second isomorphism
is induced by restriction to diagonal matrices.

Mac is called the almost commuting variety. We can endow C[M] with a bigrading
where the entries of X have bidegree (1, 0) and those of Y have bidegree (0, 1). The
ideal (5.13) identifies elements of bidegree (1, 1) with those of bidegree (0, 0), so C[Mac]

inherits this bigrading. Let C⟨X,Y ⟩ ⊂ C[Mac] denote the subalgebra generated by
the entries of X and Y and let C⟨X,Y ⟩GLn

a,b denote the bidegree (a, b) piece of the
invariant subalgebra. Tracing through the isomorphism (5.14), we have:

Corollary 5.10. — For each bidegree (a, b),

dimC C⟨X,Y ⟩GLn

a,b = dimC C[xn,yn]
Σn

a,b .

Lemma 5.11. — There is an algebra homomorphism

ψ : C[Mac] −→ (MIV)q=1

/
(Ik ∩MIV)q=1

that restricts to a surjection

ψ : C⟨X,Y ⟩ −→−→ (DIV)q=1

/
(Ik ∩DIV)q=1

which respects bigradings.

Proof. — From left multiplication on the generators of Ik, we can see that

(5.15) MIV

(
(B−1A)ij + (B−1A)iℓ∂̃ℓξj − q−2k(AB−1)ij

)
⊂ Ik ∩MIV.

Let (A,B−1, ξ⃗, ∂⃗) denote the coordinates of Spec (MIV)q=1
∼= M and (X,Y, i, j) denote

the coordinates for another copy of M. Upon setting q = 1, the containments (5.15)
imply that

(X,Y, i, j) 7−→ (A,B−1, B−1A∂⃗, ξ⃗, )

induces the desired homomorphism ψ. □
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Theorem 5.12. — For k > n, the radial parts map radk gives an isomorphism

Ak
∼= SḦn(q, q

k).

Proof. — By Lemma 2.5, equations (4.13), and Corollary 5.8, it suffices to show that
radk restricts to an isomorphism

Ak,IV
∼= SḦn(q, q

k)IV,

because localization is exact. To that end, we just need to provide the opposite bound
to (5.12). Applying Propositions 5.3 and 5.6 and Lemma 5.5, we have

dimC(q) Ak,IV[a, b] = dimC(q) D
U
IV[a, b]− dimC(q) Ik ∩DU

IV[a, b]

= dimC (DIV[a, b]q=1)
GLn − dimC (Ik ∩DIV[a, b]q=1)

GLn

= dimC
[
(DIV)q=1

/
(Ik ∩DIV)q=1

]GLn

a,b
,(5.16)

where in the final line, the subscript denotes the bidegree (a, b) piece. Finally, we can
combine Corollary 5.10 and Lemma 5.11 to bound (5.16) above by dimC C[xn,yn]

Σn

a,b .
□

5.3. Generic parameters. — Now we introduce the variable t and establish the iso-
morphism over K = C(q, t). Let Ut := K ⊗ U. We will base change U and all its
modules to Ut but still denote them by the same symbols to avoid notational clutter.
Let α be a parameter such that t = qα; we introduce it for stylistic/notational reasons
so as to neatly replace the integer k. All constructions below can be described fully
in terms of t rather than α.

5.3.1. Etingof–Kirillov theory at t. — In order to extend 3.5, we need a suitable gen-
eralization of Snk

q V, and moreover it should be a representation of W◦
0. Recall the

notation from 4.3.3, wherein we translated the actions of U and W on SqV to ones on
the polynomial ring C(q)[zn] := C(q)[z1, . . . , zn]. From this we constructed an algebra
homomorphism

qdiff : W⋊ U −→ Dq(zn),

where Dq(zn) is a ring of difference operators. Using Corollary 4.11 and the U-equi-
variance of µW, we can extend qdiff to W◦ ⋊ U by setting

qdiff(µM(detq(M))−1) = (qdiff ◦ κ)(detq(M)−1) = qdiff(q2ωn).

We will abuse notation and use qdiff to also denote its base change to K.
Let Wα be the K-vector space spanned by “monomials” of the form{

zk1+α−1
1 zk2+α−1

2 · · · zkn+α−1
n

∣∣ (k1, . . . , kn) ∈ Zn
}
.

We emphasize that the ki are now allowed to be negative. Dq(zn) naturally acts on
this space by

zi
(
zk1+α−1
1 · · · zkn+α−1

n

)
= zk1+α−1

1 · · · zki+1+α−1
i · · · zkn+α−1

n ,

Tq,zi
(
zk1+α−1
1 · · · zkn+α−1

n

)
= qki−1tzk1+α−1

1 · · · zkn+α−1
n .
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Therefore, we obtain an action of W◦ ⋊ Ut on Wα. In particular, the W◦-action is
Ut-equivariant. From the formulas (4.9) for qdiff, it is clear that W◦

0⋊U preserves the
subspace

W 0
α := spanK

{
zk1+α−1
1 zk2+α−1

2 · · · zkn+α−1
n

∣∣∣ (k1, . . . , kn) ∈ Zn

k1 + · · ·+ kn = 0

}
.

W 0
α will be our replacement for Sn(k−1)

q V.
Next, we will need a t-version of the determinant representation. Let χ±α : Ut → K

be the characters given by

χ(Ei) = χ(Fi) = 0, χ(qh) = t±⟨h,ωn⟩.

We denote by 1−α
∼= K the dimension 1 representation defined using χ−α. It is natural

to interpret integer shifts of α as tensoring by 1k. The zero weight space Wα⊗11−α[0]

is of dimension 1, spanned by zα−1
1 · · · zα−1

n ⊗ 1; we thus identify it with K.
Finally, Vλ+(k−1)δ is replaced with the Verma module

Mα
λ :=Mλ+(α−1)δ,

which is simple when t is left as a parameter. With this set, the case of general t is in
many ways quite similar to that of t = qk.

Theorem 5.13 ([EK94]). — We have the following:
(1) For λ ∈ P , there is a nonzero, unique up to constant intertwiner

Φ̃α
λ :Mα

λ −→Mα
λ ⊗W 0

α ⊗ 11−α.

(2) For λ ∈ P+, upon picking consistent normalizations for {Φ̃α
λ}, the weighted

trace φ̃α
λ satisfies

Pλ(q, t) = φ̃α
λ

/
φ̃α
0 .

We note in passing that φ̃α
λ is no longer a polynomial but rather a power series.

5.3.2. Admissible diagrams. — Since Mα
λ is infinite-dimensional, we can no longer

convert the intertwiner Φ̃α
λ into an invariant vector as we we did in 3.5. More generally,

the graphical calculus covered in 3.3 still applies to Mλ except that it no longer has
classical and quantum coevaluations. This leads to some awkwardness in defining the
action of non-invariant elements of M. Our goal here is to be able to turn elements of
M “upside-down”.

We have already made use of diagrammatic calculus for D—let us give a similar con-
struction for W◦. The inclusion of the generators {∂i} and {ξi} come from morphisms
V∗ → W and V → W, respectively, and likewise the inclusion of µM(detq(M))−1

comes from a morphism 1 → W◦. Since the product mW of W◦ is a U-morphism,
we can write any element of W◦ as a linear combination of images of morphisms
d : X → W◦ for some U-module X.
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Altogether, we have a way to present elements of M ∼= O⊗ κ(O)⊗W◦ as a linear
combination of morphisms of the form

(5.17)

evaluated at various inputs. We can define a product ∗ of two such morphisms by

This yields the product in M upon evaluation.
More generally, the diagram of a morphism D :W1 ⊗W2 → M is called admissible

if it is of the form

(5.18)

where the ghost strand only undergoes braidings. For such a D, we define

D : O −→ W◦ ⊗W ∗
2 ⊗ U⊗W ∗

1
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to be the morphism given by

where every morphism inside D is replaced with its adjoint and the orientation of
the ghost strand is reversed. While W◦ is infinite-dimensional, it is locally finite and
thus the coevaluation is done on a finite-dimensional subrepresentation. Specializing
U to act on a finite-dimensional module U , D is obtained from D in terms of partial
adjoints. Thus, this is an operation on morphisms, not just diagrams.

Finally, for a diagram D1 like (5.17) and a general admissible diagram D2, we define
the product D1 ∗D2 by:

Observe that D1 ∗D2 is also admissible.

5.3.3. Action on linear maps. — Let

(5.19) tHomα :=
⊕

M highest weight
U finite-dimensional

HomU (M,M ⊗Wα ⊗ U∗)
/

〈
(f ⊗ 1⊗ 1) ◦ ψ − ψ ◦ f

∣∣∣ ψ ∈ HomU (M ′,M ⊗Wα ⊗ U∗) ,

f ∈ HomU(M,M ′)

〉
.
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The relations (5.19) are analogous to the coend relations (3.16)—the “t” stands for
homomorphisms identified if they have the same trace. One should view the extra
tensorand U∗ as something we will contract away to yield an K-linear map M →
M ⊗Wα. Since the Verma module Mα

λ is simple, the intertwiners {Φ̃α
λ} are linearly

independent in tHomα.
Let aW : W◦ ⊗ Wα → Wα be the action map. For an admissible diagram D :

W1 ⊗W2 → M as in (5.18) and

ϕ ∈ HomU (M,M ⊗Wα ⊗ U∗) ⊂ tHomα,

we define
D ⋆ ϕ : V ⊗M −→ (V ⊗M)⊗Wα ⊗ (W1 ⊗W2 ⊗ U)∗

to be the class of the morphism:

(5.20)

Such a morphism is well-defined for infinite-dimensional M because M only undergoes
braidings. Moreover, any f as in the relations (5.19) can pass through such braidings.
This implies that D⋆ϕ is independent of the representative of the class of ϕ. We leave
it as a drawing exercise to see that for a diagram D1 of the form (5.17) and an
admissible diagram D2, we have

(5.21) D1 ⋆ (D2 ⋆ ϕ) = (D1 ∗D2) ⋆ ϕ.

Consider now the space of K-linear maps:

(5.22) tHomα :=
⊕

M is highest weight
HomRq

(M,M ⊗Wα ⊗ 11−α)
/

〈
(f ⊗ 1) ◦ ψ − ψ ◦ f

∣∣∣ ψ ∈ HomRq
(M ′,M ⊗Wα ⊗ 11−α) ,

f ∈ HomU(M,M ′)

〉
.

For the class of ϕ :M →M ⊗Wα ⊗ 11−α in tHomα, we define an operation by each
of the three tensor components of M ∼= O⊗ ∂▷(O)⊗W◦:

• for v∗ ⊗ v ∈ V ∗ ⊗ V ⊂ O⊗ 1 ⊂ D, define

(5.23)
(v∗ ⊗ v) ⋆ ϕ : V ⊗M −→ V ⊗M ⊗Wα ⊗ 11−α(

(v∗ ⊗ v) ⋆ ϕ
)
(x⊗m) = v∗( rs x)

[
S( rt )v ⊗ ϕ(rtrsm)

]
;
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• for κ(v∗ ⊗ v) ∈ 1⊗ ∂▷(O) ⊂ D, define

(5.24)
κ(v∗ ⊗ v) ⋆ ϕ :M −→M ⊗Wα ⊗ 11−α(

κ(v∗ ⊗ v) ⋆ ϕ
)
(m) = v∗ (S( rt rs)v)ϕ(rt rs m);

• for w ∈ W◦ define

(5.25)
w ⋆ ϕ :M −→M ⊗Wα ⊗ 11−α(

w ⋆ ϕ
)
(m) = (rt ⊗ ( rt S( rs ) • w)⊗ 1) ▶ ϕ(rsm),

where the ▶ means acting on the output of ϕ via the U- and W◦-actions.
Because the input of ϕ and M -tensorand of the output of ϕ is only acted on by
elements of U, these operations are well-defined on the quotient (5.22). A priori,
we do not know that they piece together to form an action of M. To that end, let:

• tHomD
α be the subspace of tHomα generated by these operations from the inter-

twiners {Φ̃α
λ}λ∈P (the D is for “diagram”);

• Intα ⊂ tHomD
α be the span of {Φ̃α

λ}λ∈P ;
• Int+α ⊂ Intα be the span of {Φ̃α

λ}λ∈P+ .
Finally, we set

M[t] := C(q)[t±1]⊗M,

MK := K ⊗M = C(q, t)⊗M.

Lemma 5.14. — The operations (5.23)–(5.25) define actions of M[t] and MK on
tHomD

α . Under this action, MU preserves Intα.

Remark 5.15. — The formulas (5.23)–(5.25) should define an action of M on the
entire space tHomα. We leave the proof to a more skillful scholar of the Yang-Baxter
equation.

Proof. — On tHomD
α , the operations (5.23)–(5.25) are obtained by contracting the

diagram actions on tHomα with ϕ set equal to an intertwiner Φ̃α
λ . Equation (5.21)

implies that the diagram actions yield an M-action upon contraction. From the di-
agram action (5.20) with W1 = W2 = 1, it is evident that MU sends Φ̃α

λ to some
other intertwiner. As pointed out in the proof of Lemma 5.7, MU ⊂ D⊗W◦

0, and thus
acting with an element of MU sends Φ̃α

λ to some intertwiner

V ⊗Mα
λ −→ V ⊗Mα

λ ⊗W 0
α ⊗ 11−α

for some finite-dimensional V . Using the modified coend relation (5.22), this can be
rewritten as a linear combination of {Φ̃α

λ}λ∈P . □

5.3.4. Radial parts at generic parameters. — Let us now discuss quantum Hamiltonian
reduction. Consider the left ideal Iα ⊂ M[t] given by

Iα := M[t]

(
µM(M)− q2t−2I

)
⊂ M[t].

Lemma 5.16. — The MU
[t] action on Intα factors through the subspace IUα .
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Proof. — We approach this similarly to how we proved Proposition 4.16. Namely,
we prove that the action map

M[t] ⊗ Intα −→ tHomD
α

factors through Iα. To that end, we compute the action of µM(M) on Φ̃α
λ . Using

(4.12), we get:

For the first equality, we applied the modified coend relation (5.22). From (3.6), one
can see that the final diagram is equal to the action of the diagram for q2t−2evV,
which yields the entries of q2t−2I upon contraction. □

We define
A[t]

α := (M[t]

/
Iα)

U, Aα := K ⊗Aα.

Like in Proposition 4.15, A[t]
α and Aα are in fact algebras. Let us also define

M
[t]
IV := C(q)[tpm1]⊗MIV,

A
[t]
α,IV :=

(
M

[t]
IV

/
(M

[t]
IV ∩ Iα)

)U
.

Proposition 5.17. — Aα is generated by{
qcoev∧r

qV(1), ∂▷qcoev∧r
qV∗(1)

}n

r=1
∪
{
detq(A)

−1,detq(B)
}
.

Proof. — Because tensoring is right exact, there is a surjective map

Ak,IV −→
[
C(q)[t±1]

/
(t− qk)

]
⊗A

[t]
α,IV.
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For k > n, the analogous generation statement for Ak is true due to Theorem 5.12 and
Lemma 2.5. The result follows from applying Nakayama’s Lemma to each (finitely
generated) bigraded piece and then localizing. □

Lemma 5.18. — The actions of A[t]
α and Aα on Intα preserve the subspace Int+α .

Proof. — It suffices to prove the statement for Aα. We then consider each of the
generators given in Proposition 5.17. The elements ∂▷qcoev∧r

qV∗(1) and detq(B) act by
inserting central elements of U into Φ̃α

λ , and thus they act diagonally. For qcoev∧r
qV(1)

and detq(A)
−1, note that the action of either on Φ̃α

λ yields the intertwiner

idV ⊗ Φ̃α
λ : V ⊗Mα

λ −→ V ⊗Mα
λ ⊗W 0

α

for some finite-dimensional U-module V . By [BGG71, Lem. 5], V ⊗Mα
λ decomposes

into a direct sum of {Mα
µ } for finitely many µ ∈ P , and thus

idV ⊗ Φ̃α
λ =

∑
µ

cλµ(q, t)Φ̃
α
µ

for some {cλµ(q, t)} ⊂ K. We will show that we can set cλµ(q, t) = 0 for any µ ̸∈ P+

and for µ ∈ P+, cλµ(q, t) is a Pieri coefficient [Mac15, VI.6].
To do so, let us review some details from the proof of Theorem 2 of [EK94]. Let

Uq(n−) ⊂ U be the subalgebra generated by the {Fi} and let {βa} be a weight basis of
Uq(n−). Picking a highest weight vector vαν for Mα

ν , we obtain a weight basis {βavαν }
for Mα

ν . We will also make use of the natural monomial basis {mc} of W 0
α, which is

also a weight basis. An intertwiner is determined by the coefficients {νR̃a
bc(q, t)} ⊂ K

such that:
Φ̃α

ν (βav
α
ν ) =

∑
b,c

νR̃
a
bc(q, t)βbv

α
ν ⊗mc.

Given k > 0 and ν ∈ P+, the subset of {βa} such that

ν − wt(βa) =
∑
i

niεi

with 0 ⩽ ni ⩽ k likewise provides a basis for the finite-dimensional module V k
ν .

Likewise, an appropriate subset of the monomials {mc} give a basis of Uk. The inter-
twiner Φk

ν is determined by the coefficients {kνRa
bc(q)} ⊂ C(q):

Φk
ν(βav

k
ν ) =

∑
b,c

k
νR

a
bc(q)βbv

k
ν ⊗mc.

In loc. cit., the authors showed that given (ν, a, b, c), we have

νR̃
a
bc(q, q

k) = k
νR

a
bc(q)

for all k sufficiently large for the right-hand-side to make sense.
Now, let v ∈ V be a weight vector and consider v ⊗ βaλ

vαλ . We can write this
tensor as

v ⊗ βaλ
vαλ =

∑
µ

∑
ℓ

daℓ
µ
(q, t)βaℓ

µ
vαµ
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for some coefficients {daℓ
µ
(q, t)} ⊂ K. Consider any k large enough that:

• λR̃
aλ

bc (q, q
k) = k

λR
aλ

bc (q) for the bc-indices appearing in Φ̃α
λ(βaλ

vαλ );
• for µ ∈ P+, µR̃

aℓ
µ

bc (q, q
k) = k

µR
aℓ
µ

bc (q) for the bc-indices appearing in the evaluations
Φ̃α

µ(βaℓ
µ
vαµ );

• daℓ
µ
(q, qk) is well-defined for all aℓµ.

The Pieri rules for Pλ(q, q
k) yield the equality

v ⊗ Φ̃α
λ(βaλ

vαλ )
∣∣∣
t 7→qk

=
∑
µ

cλµ(q, t)
∑
aℓ
µ

daℓ
µ
(q, t)Φ̃α

µ(βaℓ
µ
vαµ )

∣∣∣
t7→qk

.

Here, by t 7→ qk, we mean specialize the coefficients of the output basis {βbvαµ ⊗mc}.
Since this equality holds at t = qk for infinitely many values of k, it also holds for
general t. □

The action on Int+α yields an algebra homomorphism

radα : A[t]
α −→ EndK(Λ±

n (q, t))

that we also call the radial parts map. Through analysis similar to what was done in
Section 3.5.3, the analogue of Proposition 4.18 and its proof holds in this case as well:

Proposition 5.19. — Upon base change to K, the image of radα contains the image
of SḦn(q, t) under r:

radk (Aα) ⊃ r
(
SḦn(q, t)

)
.

This inclusion respects the bigradings and

radα
(
qcoev∧r

qV(1)
)
= r(ser(Xn)s),

radα
(
∂▷qcoev∧r

qV∗(1)
)
= qr(n−1)r

(
ser(Y

−1
n )s

)
,

radα
(
detq(A)

−1
)
= r(sX−1

n s),

radα
(
detq(B)

)
= q−n(n−1)r(sY ns).

Theorem 5.20. — Upon base change to K, the radial parts map is an isomorphism
onto r

(
SḦn(q, t)

)
.

Proof. — On the generators from Proposition 5.17, one can see that specializing radα
to t = qk yields radk, and thus this is true for the entirety of Aα,IV. Therefore,
a torsion-free element of a bigraded piece A

[t]
α,IV[a, b] in the kernel of radα must vanish

at infinitely many specializations t = qk. Since A
[t]
α,IV[a, b] is finitely generated and

C(q)[t±1] is a PID, this implies that the kernel is torsion and hence disappears upon
base change to K. □
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Appendix. Modular transformations

Here, we investigate the relationship between the quantum radial parts map and
the SL2(Z)-action on the DAHA. The main result is that our isomorphism sends a
slope subalgebra of SḦn(q, t) to a subalgebra of Aα generated by quantum traces of
monodromy matrices over a suitable cycle on the torus.

A.1. SL2(Z)-action on DAHA. — W begin by reviewing the SL2(Z)-action on the
DAHA, as presented in [Che05, §3.7]. Recall that SL2(Z) has a presentation with
generators

σ =

(
0 1

−1 0

)
, τ =

(
1 0

1 1

)
and relations

σ4 = 1, (στ)3 = σ2.

It acts on Ḧn(q, t) by R-algebra automorphisms given by

σ(Ti) = Ti, σ(Xi) = Y −1
i , σ(Yi) = T−1

w0
Xn−i+1Tw0 ,

τ(Ti) = Ti, τ(X1 · · ·Xi) = qi(Y1 · · ·Yi)(X1 · · ·Xi), τ(Yi) = Yi,

where w0 ∈ Σn is the longest element. Since the generators fix {Ti}, it follows that
SL2(Z) acts on SḦn(q, t).

It will be easier to work with a generating set smaller than the one we used previ-
ously in 2.2.2:

Lemma A.1 ([FFJ+11, Lem. 5.2]). — SḦn(q, t) is generated by the four elements:{
se1(Xn)s, se1(X

−1
n )s, se1(Y n)s, se1(Y

−1
n )s

}
.

Proposition A.2. — We have:

σ(se1(Xn)s) = se1(Y
−1
n )s, σ(se1(Y n)s) = se1(Xn)s,

σ(se1(X
−1
n )s) = se1(Y n)s, σ(se1(Y

−1
n )s) = se1(X

−1
n )s.

A.2. Gaussian. — The following element can be defined in a suitable completion of
Ḧn(q, t):

γ :=
24tn log(t)2

n(n2 − 1) log(q)
exp

( n∑
i=1

log(Yi)
2

log(q)

)
.

Recall from 2.3 the polynomial representation r of Ḧn(q, t), which is faithful. We can
view SḦn(q, t) via its image r(SḦn(q, t)) ⊂ End(Λ±

n (q, t)). Thus, rather than go into
detail about the completion, we will just confirm that r(γ) is a well-defined operator.

Proposition A.3 ([DFK19]). — The following hold:
(1) The action of γ on Λ±

n (q, t) is well-defined:

(A.1) r(γ)Pλ(q, t) =

n∏
i=1

qλ
2
i t(n−2i)λiPλ(q, t).

(2) The action of τ ∈ SL2(Z) on SḦn(q, t) is equal to adγ .
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A.3. Fourier transform. — Lemma 5.7 can also be adapted to the case of generic t.
It implies that we can define an algebra automorphism on Aα by defining it on D

provided that it preserves invariants as well as the image of the moment map. The
analogue of the automorphism σ is given by Definition-Proposition 6.11 of [Jor14]:

Proposition A.4. — The following defines an algebra automorphism F of D:

(1⊗ F)(A±1) = B±1,

(1⊗ F)(B±1) = q∓2nBA∓1B−1.

Observe that the moment map µD (4.11) is left unchanged by F. It is also clear
that F sends quantum trace elements to other quantum trace elements. A corollary
of Proposition 5.4 is that DU is generated by quantum trace elements, so this implies
that F preserves DU. Therefore, F descends to an automorphism of Ak.

Lemma A.5. — We have the following equalities in D:

F
(
trq(A

±1)
)
= trq(B

±1),

F
(
trq(B

±1)
)
= trq(A

∓1).

Proof. — Only the identities in the second row are nontrivial. Notice we have:

The constant q2n comes from using Proposition 3.3 to compute ν2 on V = Vω1
. For

trq(BAB
−1) = q−2ntrq(A), the calculations are similar. □

Corollary A.6. — Under the isomorphism radα, F induces the automorphism σ on
r
(
SḦn(q, q

k)
)
.

A.4. B-Dehn twist. — Here, we will view the ribbon element ν as 1⊗ν⊗1 ∈ O⋊Ũ2.
In this manner, we can make sense of radα(ν) by having it act on intertwiners, whereby
it acts by insertion into the input. Combining Proposition 3.3 and Theorem 3.11
gives us:

(A.2)
radα(ν)Pλ(q, t) = q−⟨λ,λ⟩−α⟨λ,2ρ⟩−(α−1)(α+1)⟨ρ,ρ⟩Pλ(q, t)

= q−(α−1)(α+1)⟨ρ,ρ⟩
n∏

i=1

q−λ2
i t−λi(n−2i)Pλ(q, t).
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Comparing the λ-dependent parts of the eigenvalue with (A.1) gives us:

Proposition A.7. — We have

q−(α−1)(α+1)⟨ρ,ρ⟩radα(ν
−1) = r(γ).

From (A.2), it is clear that conjugation by ν preserves the ker(radα) and thus
defines an algebra automorphism of Aα. Moreover, by Propositions A.3 and A.7, this
action coincides with τ−1 on r(SḦn(q, t)). An analogue of the following lemma was
proved in [Fai19] in the setting of finite-dimensional Hopf algebras, although we note
that our proof is quite different:

Lemma A.8. — Conjugation by ν yields the algebra automorphism on D induced by:

(1⊗ adν)(A) = qnB−1A, (1⊗ adν)(B) = B.

Proof. — Only the first equation is nontrivial. We use (3.13) to commute ν past an
A-matrix element:

On the other hand, we have:

The qn compensates for the extra loop. □

A.5. Slope versus cycles. — Let
SḦn(q, t)0 :=

〈
ser(Xn)s, ser(X

−1
n )s

∣∣ 1 ⩽ r ⩽ n
〉
,

SḦn(q, t)∞ :=
〈
ser(Y n)s, ser(Y

−1
n )s

∣∣ 1 ⩽ r ⩽ n
〉
.

For b/a ∈ Q with a and b relatively prime, define

SḦn(q, t)b/a := g
(
SḦn(q, t)0

)
for any g ∈ SL2(Z) such that g(1, 0) = (a, b). Such a g can always be constructed
using the Euclidean algorithm. On the other hand, the definition does not depend
on g since the stabilizer of (1, 0) is generated by

η :=

(
1 −1

0 1

)
= στσ−1

and η acts trivially on SḦn(q, t)0. We call SḦn(q, t)b/a the slope b/a subalgebra.
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Analogously, we consider the following subalgebras of Aα:

A(1,0)
α :=

〈
trq(A

m)
∣∣ m ∈ Z

〉∼= OU,

A(0,1)
α :=

〈
trq(B

m)
∣∣ m ∈ Z

〉 ∼= ∂▷(O
U).

If we view Aα as a quantized character variety for the torus (cf. [AS96, BZBJ18a,
BZBJ18b]), then these subalgebras are generated by quantized traces of monodromy
matrices over the a- and b-cycles, respectively. Our analysis in 3.5 shows that:

radα
(
A(1,0)

α

)
= r

(
SḦn(q, t)0

)
,

radα
(
A(0,1)

α

)
= r

(
SḦn(q, t)∞

)
.

For b/a ∈ Q with a and b relatively prime, we define

A(a,b)
α := rad−1

α

(
r
(
SḦn(q, t)b/a

))
.

By Corollary A.6 and Proposition A.7, we can obtain A
(a,b)
α by applying the appro-

priate combinations of F and adν to A
(1,0)
α . Since σ and τ generate SL2(Z), we can

make sense of the action of any g ∈ SL2(Z) on Ak in this manner.
We end with an observation relating b/a and the (a, b)-cycle on the torus. For a

product Π of A- and B-matrices, we define its support

supp(Π) := (a, b) ∈ Z2,

where:
• a is the sum of all exponents of A-matrices appearing in Π;
• b is the sum of all exponents of B-matrices appearing in Π.

Thus, if Π can be viewed as a monodromy over the (a, b)-cycle. The following is an
easy consequence of the definition of F and Lemma A.8:

Corollary A.9. — For g ∈ SL2(Z), we have

g (trq(A
m)) = ctrq(Π

m)

for some c ∈ K and product Π of A- and B-matrices such that supp(Π) = g(1, 0).

Thus, A(a,b)
α is generated by certain quantum traces of monodromy matrices sup-

ported on the (a, b)-cycle.
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