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QUANTUM HARISH-CHANDRA ISOMORPHISM FOR
THE DOUBLE AFFINE HECKE ALGEBRA OF GL,

BY Josuua JeisHinG WEN

For Tom

Asstract. — We prove that for generic parameters, the quantum radial parts map of Varagnolo
and Vasserot gives an isomorphism between the spherical double affine Hecke algebra of GLy,
and a quantized multiplicative quiver variety, as defined by Jordan.

Résumi (Isomorphisme de Harish-Chandra quantique pour l'algébre de Hecke affine double
de GLy)

Nous prouvons que pour des paramétres génériques, I’application des parties radiales quan-
tiques de Varagnolo et Vasserot donne un isomorphisme entre 1’algebre de Hecke affine double
sphérique de GL,, et une variété carquois multiplicative quantifiée, telle que définie par Jordan.
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1. INnTRODUCTION

This paper proves a quantum/multiplicative analogue of the Harish-Chandra iso-
morphism, a result at the source of many fruitful directions of research. For a complex
reductive group G with Lie algebra g, Cartan subalgebra t, and Weyl group W, the
classical isomorphism is concerned with the ring of differential operators D(g). Harish-
Chandra’s radial parts map [HC64] is a homomorphism D(g)¢ — D(t)V that is in
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204 J. J. Wen

some sense a restriction to t “performed with extra steps”. It was proved to be surjec-
tive by Wallach [Wal93] and Levasseur—Stafford [LS95], and the latter also determined
its kernel [LS96]: the adjoint action induces a homomorphism p : g — D(g) and the
kernel is the G invariants of the left ideal J := D(g)u(g). Altogether, we have a
description of D(t)V" as a quantum Hamiltonian reduction:

[D(g) /9]¢ = D()™.

The radial parts map is of fundamental importance in the application of rings of
differential operators to geometric representation theory (see references cited above).

In the case G = GL,,, this construction admits a 1-parameter deformation, discov-
ered by Etingof-Ginzburg [EG02]. The smash product D(h) x W can be deformed via
a parameter ¢ to the rational Cherednik algebra H,/(c) of the symmetric group %,;
D(5)W is then replaced with the spherical subalgebra SH,(c). On the other side,
we consider D(gl,, x C™). The adjoint and vector representations give a map p :

gl, — D(gl,, x C"), and the deformation parameter ¢ appears in the ideal via the
trace character tr: gl, — C:

Je = D(gl, x C")((p — ctr)(gl,)),

A = [D(gh, x C")/3]%.
The deformed Harish-Chandra isomorphism was proved by Gan-Ginzburg [GGO6]:
(1.1) A, = SH,(c).

A, is a natural quantization of the Hilbert scheme n points in C?, constructed via
Hamiltonian reduction as a Nakajima quiver variety for the Jordan quiver:

(1.2)

Various constructions exist [BFG06, GS06, KRO8] to microlocalize modules for 2.
into coherent sheaves on the Hilbert scheme, and the isomorphism (1.1) allows a rich
interplay between such sheaves and representations of H,(c); in particular, H,(c)
itself microlocalizes to Haiman’s Procesi bundle [Hai0l].

The ladder of deformation affords us more rungs")—the rational Cherednik algebra
is itself a degeneration of the double affine Hecke algebra (DAHA) H,, (¢, t), an algebra
that has appeared across many fields since its initial discovery and application by
Cherednik to solving conjectures from the theory of Macdonald polynomials [Che95].
It is natural to ask if there is an analogue of the Harish-Chandra isomorphism for
U"'(n(q, t) and, more specifically, its spherical subalgebra SH,, (g,t). One can view the
ring D(gl,,) as C[gl,,] ®Clgl,,] with a nontrivial commutation relation between the two
tensorands. It is almost immediately obvious that D(gl,,) would need to be replaced

(DLet us that mention that the intermediate step relating differential operators on GL, and the
trigonometric DAHA was done by Finkelberg—Ginzburg [FG10].
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Quantum Harisu-Cranora 1somorerism ror GLy, DAHA 205

by an algebra quantizing C[GL,] ® C[GL,]; this is no longer the coordinate ring
of a cotangent bundle and thus there is no quantization via differential operators
that is available to us “out of the box”. Moreover, to perform quantum Hamiltonian
reduction, the algebra structure of the quantization needs to be equivariant with
respect to whatever symmetry object replaces GL,,.

The correct quantization was defined by Varagnolo—Vasserot [VV10]: this is their
ring of quantum differential operators on GL,, which we denote by D. Here, GL,,-
equivariance is replaced with equivariance with respect to the quantized universal
enveloping algebra U := U,(gl,,). As a U-module, D is isomorphic to the tensor prod-
uct of two copies of O := O4(GL,,), an equivariant version of functions on quantum
GL,,. One can construct O from the braided monoidal category of finite-dimensional
U-modules via a braided analogue of Tannakian reconstruction discovered by Majid
[Maj93], and it is also a localization of what is called the reflection equation algebra
[DMO3]. D also appeared in prior work of Alekseev—Schomerus [AS96] on quantiza-
tions of character varieties.

Varagnolo—Vasserot also address the other necessary ingredients, but we follow the
definitions of Jordan in his construction of quantized multiplicative quiver varieties
[Jorl4]. Out of the same quiver data (1.2), this yields a C(q,t)-algebra A; through
a Hopf-algebraic version of quantum Hamiltonian reduction. Our main result is the
following:

Main Tueorem. — The quantized multiplicative quiver variety A; for the quiver
data (1.2) is isomorphic as a C(q,t)-algebra to the spherical GL,,-DAHA 8H,(q,t).

Thus, the two algebras are isomorphic for generic values of the parameters ¢ and ¢.
Prior to our result, the analogous isomorphism was proved in the following cases:

« when ¢ = 1 [ODbl04];

. when ¢ is a root of unity of sufficiently large order [VV10];

. formally over the ring C[A] where ¢ = e [Jor14];

. for any ¢ € C* and n = 2 [BJ18].

Our strategy follows the well-established pattern from the rational case [GGO6,
EGGOQ07]. Both sides of the isomorphism are invariant subalgebras, and thus one does
not have a presentation for either; from a general perspective, one may be curious
about techniques for proving two algebras are isomorphic without generators and
relations. In the rational case, the scheme of proof goes as follows:

(1) embed SH,(c) into a ring of differential operators via a Dunkl representation;

(2) map 2. to that same ring via a deformed analogue of the Harish-Chandra
radial parts map;

(3) show that the radial parts map is injective and surjects onto the image of
SH,,(¢c).
8H,,(q, t) has an analogue of (1), the Dunkl-Cherednik embedding into a ring of differ-
ence operators. Step (2) is not straightforward, but Varagnolo—Vasserot [VV10] gave
a brilliant definition for a quantum radial parts map. Namely, the equivariance of A;
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200 J. J. Wex

ensures that it acts on certain spaces of intertwiners, and Etingof-Kirillov have iden-
tified the weighted traces of these intertwiners with Macdonald polynomials [EK94].
We perform step (3) first for the case t = ¢¥, wherein we use work of Jordan [Jor14]
to perform a classical degeneration ¢ — 1.

Finally, leveraging the t = ¢* case to general ¢ requires some care because the
Etingof-Kirillov construction for general ¢ uses Verma modules. Our approach to
step (2) at t = ¢* involves the diagrammatic calculus afforded by the ribbon cate-
gory structure of the category of finite-dimensional U-modules. Much of this structure
persists for Verma modules because they are highest weight; however, being infinite-
dimensional, they lack a coevaluation map. This prevents a straightforward applica-
tion of our approach to the radial parts map to the case of general ¢. Nonetheless,
in 5.3, we define a diagrammatic action of A; on Etingof-Kirillov intertwiners for
general ¢ by turning part of the diagrams upside-down. This construction of the ra-
dial parts map for generic parameters specializes compatibly to the t = ¢* case, and
step (3) follows essentially from Nakayama’s Lemma.

Further directions. — While it is unclear to us if a geometric story as in the rational
case can be repeated here, the multiplicative setting is interesting due to its relation
to character varieties for the torus. In [AS96] as well as the more recent [BZBJ18a,
BZBJ18b], A; has been realized as a quantized character variety. We have added an
appendix that tracks down how the SLa(Z)-action of the DAHA is manifested in Ay,
which may be interesting from a topological perspective. Let us note the similarities
to conjectures of Morton—-Samuelson [MS21] concerning DAHAs and skeins (proved
in [BCMNZ23)).

Shortly after the initial posting of this paper, we received the extremely interesting
work [GJV23], which initiates a quantum analogue of Springer theory through the
beautiful idea of ¢-deforming the Hotta—Kashiwara D-module [HK84]. In type A, the
authors are indeed able to relate their construction to Weyl group representations.
Critical to this result is the isomorphism between A, and a spherical DAHA via
Jordan’s elliptic Schur—Weyl duality [Jor09, JV21], which is only available in type A.
On the other hand, we can also obtain such an isomorphism via the radial parts map
at t = ¢, wherein both algebras act on characters. This approach generalizes to other
types, although significant challenges remain in establishing such an isomorphism.

2. DoUBLE AFFINE HECKE ALGEBRAS

In this section, we review the GL,, DAHA and associated structures. Our main
reference is [Che05], although in order to make better contact with Etingof-Kirillov
theory, we follow the conventions from [Kir97].

2.1. Dermvition. — Let R := C[g*!, ¢! and K := C(q,t). The GL,-DAHA j{n(q,t)
is the K-algebra with generators

(T, X 75 i=1,...,n—land j=1,...,n}

JE.P — M., 2026, tome 13



Quantum Harisu-Cranora 1somorerism ror GLy, DAHA 207

and relations

(T; — t)(T; + 1) = 0; X X; = X; X;;

LT T; = T TiT 15 T;T; = T;T; for j # 4,1+ 1;
TiX; = X;T; for j #ii+1; T,XT = X;p1;

7Ty = Tipam; 7"l = Tim";

X = Xip1m; X, = q_2X17r.

We can also define this as an R-algebra, which we denote by 5% (q,t).

2.1.1. Y-generators. The elements
(2.1) Y, =TT o ' T
for i = 1,...,n generate a polynomial subalgebra. They furnish an alternative pre-

sentation of H,, (g, t), now with generators
(T, X7 v i=1,...,n—1land j=1,...,n}

and relations
(T = (T + ) =0

T T =T Ty 10 TiTy = T;T; for j #i,i+ 1;
XiXj = X; X5 YiY; =YY
(2.2) T; X;T; = X;41 for i # n; T[lYinl =Y. for i # n;

TiX; = X;T; for j #i,i+1; T)Y; =Y;T, for j #i,i+ 1;
Y- Y, X :q2ij1...yn; X X,Y; :q72YjX1"'Xn;
XY, = YoT2X,.
We note that this presentation is also valid for HE(q,t). From these relations, we can
define a bigrading on 3*(q,t) by setting:
deg(X;™") = (£1,0), deg(Y;"") = (0,%1), deg(T;) = (0,0).

2.1.2. Symmetrizer. — The subalgebra H, (t) of H,, (g, t) generated by Tt . .., Tp_1 is
isomorphic to the usual Hecke algebra for the symmetric group ,, with parameter ¢.
As such, one can make sense of elements T,, € 3, (¢) for any w € X,,. Specifically,
first let s; € ¥, be the ith adjacent transposition. For any reduced expression w =
Siy * - Si,, the element

Ty =1 -1,

is independent of the reduced expression. Letting ¢(w) = a denote the length, define

5= Z i), .

weEX,

the symmetrizer
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208 J. J. Wex

It will be useful to note the following:

(2.3) T,5 =38T; =ts for all 4,
Z st = [n]s!,
wEX,
(2.4) 3% = [n]l3,
where
1 — gtk
[£k]s = 1_ £l [k]s! = [K]s[k —1]s (1]s

for k € N. From (2.4),

s
s =
[n]s2!
is an idempotent.
2.1.3. Trangular decomposition. — For a vector v = (vq,...,v,) € Z", denote the

monomial
YU =Y Y

The following is [Che95, Th. 2.3(ii)]:

Tueorem 2.1. — Any H € HE(q,t) can be uniquely written as
(2.5) H= > Y'fouXi', ... X7,
wWED,
veZ™

for some Laurent polynomials {f,.,} with coefficients in R.
CoroLrARY 2.2 j{f(q,t) s a free R-module.

2.2. SeuericaL DAHA. — The spherical subalgebra Sj"Cn(q, t) is defined as
8Ho(q,t) 1= 83 (g, t)s C Halg, ).

We denote the localizations R := R[(1 — t2*)~1];50 and f}"{f(q,t) = R® HE(q,t).
Note that s € 5% (q,t), and we define

STE(q,t) == 855 (q, t)s.

We then make sense of the specialization t = ¢* by setting
8H(4,4") = 8HH(a, )] _ v

8H(g,q") := C(q) ® 83/ (q,4")-
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2.2.1. Bigrading revisited. Multiplying both sides of (2.5) by s and absorbing
the T, into s using (2.3), we can see that 8H(q,t) is spanned by elements of the form

S(EZZ YUF(XEL, ,Xﬁfl))s.

For such an element as above that is homogeneous with respect to the bigrading,
we can see from (2.2) that its bidegree can be discerned by commuting with

Tl . oyl +1
sX,s:=8X{ --- X s,

2.6
(26) and sY s = sV ...V, Fls.

Prorosirion 2.3. H € 8HE(q,t) has bidegree (a,b) if and only if

(sX,s)H (sX,_lls) =q %"H, (sY,s)H (SY;IS) = ¢**H.

Let HE(q,t)rv C HE(q,t) denote the subalgebra generated by
{7, X;, Y, '|i=1,...,n—1and j=1,...,n},

i.e., we restrict to positive powers of X-generators and negative powers of Y-generators
(the “fourth quadrant” in the bigrading). We then set

Sj{g(% t)IV = S(j{rlj(qv t)IV)s - Sj{r}?(qv t)

The subalgebras Sj.{n(q,t)w, Sj'{f'(q,qk)w, and Sf}u{n(q,qk)w are defined similarly.
Let 8% [a,b] denote the homogeneous piece of 8HX(q,t)1v of bidegree (a,b) and like-
wise for

8u.1v(a, b C 83 (g, t)rv, Sqr 1via, b C 83, (g, ¢")rv.
Finally, let
(C[:Bnayn] = (C[JT], e Ty Y1y e e 7yn]

The symmetric group %, acts on C[x,,,y,,] by permuting subscripts. C[x,,, y,,] is also
bigraded, where deg(z;) = (1,0) and deg(y;) = (0,1). Denote by C[a:n,yn]f}; the
subspace of invariant homogeneous elements of bidegree (a,b).

Prorosition 2.4. — We have
dimg 8¢ 1v]a, —b] = dimg(g) Syr rvla, —b] = dime Cla,,, y,,]275.

Proof. — 8[a,b] is a direct summand of the free R-module 3(Z(q,t)ry (Corol-
lary 2.2). Therefore, it is also free, and the dimensions of 8 v [a,b] and 8 v[a, b] are
both equal to its rank. To compute this rank, we can set ¢ =t = 1, in which case

f}(r}?(qv t)IV|q:t:1 = (C[wnv yn] X C[En}v ‘Sg{r}?(% t)IV|q:t:1 = (C[wru yn]zny

where x; and y; are the images of X; and Yi_l, respectively. |
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210 J. J. Wen

2.2.2. Generators. We use ideas from the proofs of [SV11, Prop. 2.5] and [FFJT11,
Lem. 5.2] to produce nice generating sets. For » = 1,...,n, Let e, denote the rth
elementary symmetric polynomial in n variables and set

en( X = e (X, XY,

2.7
@7 er(YEY) i= e, (Y, ..., Y EY).

Lemma 2.5 ([VV10, Lem. A.15.2]). We have the following:
(1) 8H,(q,t)1v is generated by

(2.8) {se;(Xn)s, se. (Y, \)s|r=1,...,n}

and 8K, (q,t) is generated by the set (2.8) along with sX,'s and sY ,s.
(2) The analogous statement holds for 83, (q,q")1rv and 83, (q,q") for k > 2n.

Proof. — For (a,b) € 7%, let

Pa,*b = 8(2 X;ly;*b) S.
i=1

First note that by a classical theorem of Weyl [Wey39], the invariant polynomial ring

Clzn, y,,|>" is generated by power sums of the form:

n
— a,b _
Pab = E LYy = Pa,—b|q:t:1'
i=1

Moreover, by the identity

n
Dab = Z(*l)iflei(xl, c oy Tn)Pa—ibs

i=1
the pqp with 0 < a < n generate Clx,,, Y)n)Z". Thus, the P, ;, with 0 < a < n generate
Sj{f(q, t)ry modulo the ideal (¢ — 1,¢ — 1). By applying Nakayama’s lemma to each
(finite rank) bigraded piece, we get that they generate Sj:fn(q, t) and Sj-'fn(q, q").

Next, note that P; o = se1(X,,)s and Py_1 = sel(Y,_Ll)s. By (2.1), Y; becomes

the g2-shift operator on X; at ¢t = 1. We thus have

ad (P1o)" - Po-1=(1—q *)*Pa 1,
(2.9) ad (Po,—1)" Pa—1 = (72 = 1)° Py 1,
where ad (X) is the adjoint operator:
ad (X) = [X, —].

In the case of Sj{n(q,t), we have that after localizing to C(q)[t*!], any P, _; with
a,b > 0 can be written in terms of se;(X,,)s and se; (Y, ')s modulo the ideal (£ —1).
We include the other elementary symmetric polynomials to cover the cases a or b = 0.
The result follows by again apply Nakayama’s Lemma to each bigraded piece. For

27/ k

Sj:fn(q, q"), we need to specialize ¢ = e in order to have ¢t = 1. Equation (2.9)

becomes problematic once a > 2k, but we obtain all 0 < a < n once k > 2n. O
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2.3. POLYNOMIAL REPRESENTATION. While Lemma 2.5 gives generators for 8H, (g, t)
and 87, (q, ¢*), we do not have relations; in compensation, we have instead a faithful
representation.

2.3.1. Demazure-Lusztig operators. — Let K[zF] := K[zi',... 2] be the ring of

Laurent polynomials in n variables. We similarly use the abbreviation R[zX]. The
symmetric group X, acts on both rings by permuting variables, and as before, we let
s; € 3, denote the usual adjacent transposition.

Turorem 2.6 ([Che95, Th.2.3]). — The following defines a faithful representation v
of HE(q,t) on R[xX]: for f € K[z},

s;—1
T) =tsi+ (t —t ) ——,
o(T3) = tsi + ( )xi/xM—l
(X)) f =i f,
t(ﬂ.)f(xlvaW"?zn) :f(xg,xg,...,xn,qf%cl).

This representation remains faithful on any specialization of (q,t) so long as q is not
sent to a root of unity.

We will abuse notation and use t to also denote its versions obtained via base-
change from R. From the formula for v(T;), we can see that
f e KlxX]® if and only if ¢(T}) f = tf
for all 4. It follows from (2.3) that the restriction of ¢ to 8, (¢,t) and SHE(q,t) pre-
serves the subring A (q,t) := K[z;5]®". We similarly define A;(g) in the obvious way.
The following is well known:

Prorosirion 2.7. The elements se,(XE')s and se,.(Y:1)s act on f € AE(q,t) by:

t(se (XENs) f=er (a2,

y 1 -~ t? (xz‘/l‘j)il —1 71
t(se (Y )s) f= ) H—ﬂl il
IC{1,..,n} el (wi/x;)" — il
J¢I
where Ty o, f(x1, ..., 24, ..., 2n) = f(21,..., Py, Ty).
2.3.2. Macdonald polynomials. — We will need a nice basis for the representation of

Sj:fn(q7t) on A*(g,t). A natural starting point is the basis of monomial symmetric
functions: for A= (Aq,..., \,) € Z",
my = Z T,
wEL, /Stab(\)
where ¥,, acts on Z"™ by permutations and for p = (u1,...,u,) € 2",
R e A

We say that A € Z" is dominant if \y > Ao > --- > \,; it is easy to see that the m)
for dominant \ provide a basis of A (q,t).

JIP — M., 2026, tome 13



219 J. J. Wen

Treorem 2.8. We have the following:
(1) For each dominant \, there exists a unique Py(q,t) € A (q,t) satisfying

. fOT’ f S A;‘L:(Qa t):
v(sf(Y1,...,Yy)s) Pa(q,t) = f (M, g2, . ? M t7") Pa(q,t);

« the coefficient of my is 1.

Moreover, {Px(q,t)} form a basis of AF(q,t).
(2) For any integer k > 0, Px(q,t) can be specialized to t = q".

Proof. — Part (1) is classical. For (2), one can consider the tableaux sum formula for
Py(q,t) (cf. [Macl5, V1.6)). O

Py(q,t) is the Macdonald polynomial associated to A.

Remark 2.9. — When A is a partition (i.e., A, = 0), our Py\(g,t) is actually the
Py(¢?%,t?) found in [Macl5]. As stated in the start of this section, we make this choice
to better align with the Etingof-Kirillov approach to Macdonald polynomials.

3. QUANTUM GROUPS
3.1. QUANTUM ENVELOPING ALGEBRA. In this subsection, we review the algebra
W= Ug(gl,)

and some of its basic structures.

3.1.1. Roots and weights. — Let ¢; € R™ be the ith coordinate vector. The root sys-
tem R is the set {e; — ¢;}, and the set of positive roots R* is the subset where i < j.
Within RT, we call the n — 1 elements

a;=€;—¢gip1 fori=1,...,n—1

the simple roots. The root lattice @ is the lattice spanned by R, and we denote by QT
the semigroup generated by RT. We equip R” with the usual symmetric pairing (—, —)
for which {g;} is an orthonormal basis.

The set of weights is the subset

{weR"|(w,a) € Z for all a € R}.
Fori=1,...,n, we let
w; i =€1+€ex+ -+ &

denote the ith fundamental weight. The lattice spanned by {w;} is called the weight
lattice P, which is equal to the lattice spanned by {e;}. For A\, u € P, we order A > p if
A—p € QF. A weight is dominant if it pairs non-negatively with all roots. Let Pt C P
denote the subset of dominant elements. This is not the set of dominant weights but
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Quantum Harisu-Cranora 1somorerism ror GLy, DAHA 213

rather the subset of dominant weights whose coefficient for w,, is an integer. Finally,
we set

Both satisfy {(p, ;) = (3, ;) =1 for all ¢ and (p,w,) = (§,w,) = 0. Note that 2p € P
but p € P if n is even.

3.1.2. Definition. — U is the C(g)-algebra with generators
{E;,F;,¢"|i=1,...,n—1and h € P}

and relations
q6 — 17 thqh2 — qh1+h27
¢"Eiq" = ¢ ME;, " Fig " = g M E,

g q_ai

E,F; — F;E; = 6;; 2

q—q
ElEiy1—(q+q )EEiEi+ EE;, =0,
FlFip—(q+q YEFnF +FiFA, =0,

where 6;; is the Kronecker delta. We can endow it with a Hopf algebra structure where
the coproduct A, counit €, and antipode S are given by

AEB)=E®q +10E, AF)=Fol+tq ¥ oF, A@G")=4¢oqd",
e(B)=¢e(F)=0, e(d")=1L
S(E) =-Eiq ™, S(F)=—q¢"F, S@")=q¢"
For coproducts, we will use Sweedler notation:
Ar) = (1) ® 2(2)-
With this Hopf algebra structure, U acts on itself via the adjoint action: for u,v € U,
adyu := v)yuS(v(2)).

Finally, we will denote by U, the same algebra equipped with the co-opposite coalgebra
structure.

3.2. R-matrix. — The universal R-matriz R is an invertible element in a suitable
completion of U®2. We will vaguely write

R:Zsr@)rs

and even employ an Einstein-like notation: R = ;r» ® r,. Let R;, denote the tensor
where ,r is inserted in the xth tensorand and r, is inserted in the yth tensorand, and
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let b: U®? — U®? denote the tensor flip. The following equations distinguish R:
(3.1) (A® 1R = Ry3Ra3, (1R A)R = Ry3R10,
(3.2) bA(h) = RA(h)R™L.
Some consequences of (3.1) are:
E@D)R=(1®e)R=1,
(Se)R=(125R=R",
R12R13R23 = RozR13Ra2.

Equation (3.5) is called the quantum Yang-Baxter equation. Finally, we recall a fac-
torization of R. Let UT be the subspace of U spanned by products of {F;} and U™
be the subspace spanned by products of {F;}. We then have

(3.6) R=q 2 (1@1+RY),

where R* is an element of a suitable completion of UT ® U™.

R is an infinite sum, but its action on tensors of highest weight representations is
well-defined. For two representations V and W of U, let by, : VW — W ® V be
the tensor flip. As a result of (3.2), we have that the composition

BV,W = bV,W:R|VW VW —WeV
is an isomorphism of U-modules. We note that
ﬁ;iv = bW,V:R2_11|W,V'

3.2.1. Vector representation. — Let V :=V,, = C" be the vector representation of U.
We denote by E; the matrix unit sending
E;:ej = €;.

The specialized R-matrix R := 1R|VV has the form

R=q) Ei@E+) BloE +(-q¢ ")) E oB.

i i#£] i<j

In accordance with [Jorl4], we will more often work with the transposed version:

(3.7) _qZE@EwZE‘@Eﬂ )Y E/®E],.
i#] 1>
Remark 3.1. — Because our R-matrix R/, which is dictated by the coproduct A, is

different from that of [Jorl4], some of our formulas will differ from those of loc. cit.,
e.g. (4.8).
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3.2.2. Symmetric and exterior powers. One can check that R satisfies the Hecke
condition:
(3.8) (Bvy — @) (Bvy +q~') =0.

In the tensor power V™ let V¢ denote the ith tensorand. The Yang-Baxter equation
(3.5) and the Hecke condition (3.8) imply that the map
T — Byi i

yields a representation of the 3, Hecke algebra H,,(g) on V™. Similar to 2.1.2,
we can g-symmetrize and g-antisymmetrize by applying the operators

S T ad Y (gL,
WEX WEXm,

respectively to V¥, The results are denoted by Sg"V and AF'V. Since fyv is an
isomorphism of U-modules, these symmetric and exterior powers are also U-modules.
We call 1y := AyV™ the determinant representation. It is one-dimensional, and

thus U acts via a character that we denote by x:
(3.9) X(E:) = x(F;) =0,
' NMUBE A

The action on the tensor powers 1 := (/\gV)‘@k is then via x*. We similarly define
1_,:= /\ZLV* and 1_,.
3.2.3. Drinfeld element. — Define the Drinfeld element as

u:=m(S ®@1)Roy = S(r,),r,

where m is the multiplication map. This is an infinite sum defined in a suitable
completion of U. The following is proved in [Dri89al:

Prorosition 3.2 The Drinfeld element u satisfies:

(3.10) ut=m(STt @ )Ry =1, .1,

(3.11) S%(z) = uau™t,

(3.12) Au) = (R12R) " (u @ u).

3.3. Representations. — We now turn our attention to the category € of finite

dimensional U-modules with weights lying in P. C is semisimple with simple objects
indexed by PT; for A € P*, we denote the corresponding irreducible representation
by V. Since U is a Hopf algebra, € is a monoidal category. The constructions from
the previous subsection involving the R-matrix endow € with the structure of a ribbon
category. As worked out in [RT90], such categories come with a graphical calculus for
working with morphisms. Here, we will review this calculus as presented in [BKO1,
§2.3].
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3.3.1. Arrows. We will depict a morphism f : V' — W of U-modules as an upward
oriented arrow decorated with a coupon marked by f. When V' = W and f is the
identity, we will omit the coupon:

Dﬂv

Tensor product of objects and morphisms will be denoted by horizontal juxtaposition:

WMe---W, W, Wy, Wy Wo W, Wa
=L ] [ree =[] ]
Vi@V, i W, i W Vi Va

3.3.2. Duality. — For V € C, we endow V* with the structure of a U-module via

z- f(v) = f(S(x)v)

forzelU, feV* andveV. Weset (VW) =W*®V* as they are isomorphic
U-modules under the natural tensor flip. In our graphical calculus, we will denote V*
using V' but use downward pointing arrows. Note that V and V** are isomorphic
under the nontrivial isomorphism S2. It is easy to see that

S?(z) = ad 20 ().

Since A(¢??) = ¢?” @ ¢*¢, we can use ¢* : V — V** to identify the two modules in
a manner that respects tensor products. We will do so and write V instead of V**,
which will always imply a twist by ¢—2°.

3.3.3. Evaluation and coevaluation. — Let {v;} be a basis of V with corresponding
dual basis {v'} and let 1 € € be the trivial representation. The canonical maps

c— v, @0 eV VT,
V*®V9Ui®’l}jl—>5ij,

are homomorphisms coevy : 1 — V& V* and evy : V* @ V — 1, respectively. If V
is irreducible, they are the unique such homomorphisms. Graphically, we will omit
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depicting 1; evy and coevy appear as caps and cups oriented towards the left:
1 vV Vv vV v

vV v vV v 1

The ordering of tensor factors matters in evy and coevy . To define maps with the
opposite ordering, we will use ¢%” to identify V and V**.

c— ' @q Py, e VIRV,
Ve V* > q_2”vi ®’Uj — (51]

We denote these maps by qcoevy, and qevy,, respectively. Graphically, they will be
depicted as cups and caps with orientations opposite from before:
1

vV v Vv Vv

Vv v Vv v 1

3.3.4. Adjunction. The caps and cups allow us to define (right) adjoints. For a
morphism f:V - W, f*: W* — V* is given by

ffi=(eviy @ 1y« ) (lw= @ f @ 1y« ) (1w« ® coevy)
v v

[

W w
Note that the adjoint of the identity map of V is the identity map of V*.

3.3.5. Braiding. We will depict By and ,8‘7%,[, as braid crossings:
w v w v vV W |7

b —k [ - )
| (

vw v W w v w v

The quantum Yang-Baxter equation (3.5) implies that 8y, endows € with the struc-
ture of a braided monoidal category.
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3.3.6. Ribbon structure. By (3.11), u gives an isomorphism V — V** and thus
¢~ 2%Pu is an automorphism of V, i.e., it is central. We define the ribbon element v by
V= (q*Q"u)_l =u g%,

Formula (3.12) implies that v satisfies
(3.13) Av) = R R(v @ v).
The following was computed in [Dri89a]:

(MA+2p)

Prorosition 3.3. On Vy, u acts as g~ q%°. Thus, the ribbon element v acts

by the scalar ¢ A120)

Using (3.10), we can see that v can be drawn in two ways:

\% \% \%4
(3.14) v = P = }
14 %4 14
Correspondingly, we note that ! can also be drawn in two ways:
\% \% \%
(3.15) E*l = b = )
14 %4 14

It is not quite true that morphisms in € only depend on the isotopy type of its
diagram in R3 under the graphical calculus. Rather, we should view each strand as a
ribbon with a front side and back side, and we require the front side to always face the
reader at the start and end of the ribbon. The back side may appear in the middle if
the loop given by v appears, in which case the ribbon in twisted twice. Our graphical
calculus assigns to each morphism in € a C-colored ribbon tangle.

Turorem 3.4 ([RT90]). A morphism in C only depends on the isotopy type of its
associated tangle.

We refer the reader to the original source as well as [BKO01] for details. In practice,
we will instead work with strands but keep track of loops representing v.

3.4. REFLECTION EQUATION ALGEBRA. Here, we introduce a quantization of the Hopf
algebra of functions on GL,,. We would like this Hopf algebra to be a U = Ugy(gl,,)-
module, and, critically, we want its structure maps to be U-homomorphisms. This
requires a braided variant of Tannakian reconstruction, defined by Majid [Maj93].
The resulting algebra is a localization of what is known as the reflection equation
algebra.
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3.4.1. Majid reconstruction. Recall that € is the category of finite-dimensional U-
modules with weights in P. We define the U-module O as a space of matrix elements:

(3.16) O = (V@e Ve V) / <f*(w*) ®v—w*® f(v) 1} i Eolggi%;’w) >

For the categorically-minded, O is the coend of the identity functor of C. By consid-
ering for f in (3.16) the projections onto irreducible representations, we obtain an
analogue of the Peter—Weyl Theorem:

(3.17) 0= 6 VyixV.
AEPT

As we will see below, we can use operations on representations to define a Hopf algebra
structure on O that recovers at ¢ = 1 the classical Hopf algebra structure on the ring
of functions on GL,,.

o Coalgebra structure: The coalgebra structure is identical to that of the classical
case. For v* @ v € V* ® V, we define the coproduct V(v* @ v) as

V' @v) =v"®coevy(l) Qv
Vvvyv Vv VvV

\U

The evaluation map evy on V* ® V yields the counit.

. Algebra structure: In the classical case, the product structure entails permuting
tensorands. To make such an operation a U-morphism, we utilize the braiding. For
v*QueV*@Vandw* Quwe W W,

(3.18) mv* @uew* w) =rr.w' @ vt @ rvew
wWvvw WwWVVW

1
|

Vvww VVWW

The inclusion 1 — 1* ® 1 € O provides the unit.
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o Antipode: The antipode ¢ is given by

(3.19) (v* ®@v) =vroe® ot
vV v vV v

Vv v vV v

We note that the relations for the coend (3.16) are necessary to show that ¢ is an
antipode. For example, in computing mo (1 ®¢) o V, we use the coend relation in the

first equality below:
VvvvVv

9y

In the last equality, recall that v and v»~! each have two diagrammatic presentations,
given by (3.14) and (3.15), respectively.

3.4.2. Generating matrix. — Since the finite-dimensional representations of U can be
built out of tensor functors applied to the vector representation V, it is perhaps
unsurprising that O has a presentation written in terms of matrix elements of V. The
generators of this presentation are a set of symbols {m; li,j=1,... n} We arrange
them into a matrix M = (M;) where

M! = B! @ mi.

DeriNirion 3.5. The reflection equation algebra R is generated by {mé} and has
relations
(3.20) Ro1 MizRioMas = MaogRoy Mz Ryo.

Tueorem 3.6 ([DMO3]). — The map m} — €' ® e; gives an embedding from R to O.
It is an isomorphism after inverting a central element of R called the quantum deter-
minant detq(M), which is mapped to qcoevy (1).

Equation (3.20) is known as the reflection equation. For an explicit formula for the
quantum determinant, see [JW20].

We will abuse notation and conflate R with its image in O. Let M ~! := (1®.)(M).
By the definition of the antipode, we have:

M *M=MM'=1

CoroLLARY 3.7. O is generated by det,(M) and the entries of M~".
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Proof. — First, note that

t(dety(M)) = 7 (dety(M)) = dety (M)~?
1, 1 1, 1 1, 1,

/) o)

Thus, by writing det,(M) in terms of the entries of M and applying ¢, we obtain
an expression for det,(M)~! in terms of the entries of M ~!. Similarly, we can write
the entries of (1 ® ¢~ !)(M) in terms of the entries of M and det,(M)~'. Applying ¢,
we obtain an expression for the entries of M in terms of those of M ! and det,(M).

O

3.4.3. Killing form. — Matrix elements give functionals on U in the natural way: for
v'ueV*®V and x € U:

(v* ®v)(x) = v*(zv).

A quantum analogue of the Killing form would allow us to view matrix elements as

sitting inside the enveloping algebra. The canonical tensor for such a form is given by
Ra1 R.

Tueorem 3.8 ([JLI2)). The map k : O — U given by
KU ®@v) = ((v" ®@v)(—) ® 1)RaR
is a U-equivariant algebra embedding, where U is endowed with the adjoint action.
Observe that the map V*®@ V@ W — W given by
VFRuvwr— k(v* ®v)(w)

is the morphism in € depicted by the following diagram:
w

Sl

vV w

We will depict x(0) by replacing the strand for W above by a dotted line ori-
ented upwards—a “ghost strand”. Our graphical calculus is still valid for such strands
because it holds for any choice of representation W “filling in” the ghost strand; by the
quantum analogue of a theorem of Harish-Chandra [HC49], any = € U that acts triv-
ially on all W € € is necessarily zero. Multiplying left-to-right in x(0O) corresponds to
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stacking ghost strands top-to-bottom. For example, that x is an algebra map follows
from the manipulation below:

A A

Theorem 3.8 omits any statement about coalgebra structures because x does not
intertwine V with A. By considering the action of x(v* ® v) on a tensor product of
modules, we see that Aok merely doubles the dotted strand. We can force an instance
of K for each dotted strand using V and some braidings:

Ao

Properly comprehending the diagram on the right, we get:

Prorosition 3.9 ([VV10, Ex. 1.3.3(c)]). — Let {v;} CV and {v'} C V* be dual bases.
Forv*®@v e V*®V, we have

(3.21) (Ao k)(v* ®v) = k(v* @v)r,r, @ k(o' @ ro).
In particular, K(O) is a left coideal subalgebra of U, i.e.,

(Aok)(0) cUR K(0).

3.5. Emincor-KiriLLov tHEORY. — Equipped with a notion of functions on quantum
GL,,, we move on to a realization of Macdonald polynomials as spherical functions
on the quantum group. This was discovered by Etingof and Kirillov, Jr. [EK94].
We conclude this section by making contact with Sj{,L(q, ).
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3.5.1. Traces of intertwiners. Let U € €. We will be concerned with the space of
homomorphisms

I(Vy,U) :== Homy (Vx, VA ®@ U)
also called intertwiners. Let vy € V) be a highest weight vector and U[0] denote the
zero weight space. For an intertwiner ®, set

(D) = (vy ® 1y)®@(va) € UJ0].

Prorosition 3.10 (cf. 3.1 in [EL05]). — The map ® — (®) is an injective map
I(V)\,U) < U|0].
To extract a Laurent polynomial from this, we take the weighted trace over V):
D — = try, (2(¢™)).
Viewing this as a function of u € P and setting x; = ¢%(*"~, we obtain a Laurent
polynomial in the variables {z;}}_; valued in UJ0]. From Proposition 3.10, it follows
that the trace map is injective because the intertwiner is determined by the coefficient

An

A
of &' -~ xpm.

We would prefer to work instead with what can be called U-spherical functions on
quantum GL,,. This amounts to applying quantum coevaluation maps:
IV U) 2 (Vi e U)Y
@ +— (lyy @ @) o (qeoevy, ) =: @
Vi v U \
@ =

Ww W U

Since ¢7 and ¢?* are both group like, we have

(3:22) ¢ = (evy, ® 1) (@77 @ Ly eu) u®).
This has a clear graphical interpretation in terms of closing the loop between the V)

strands, but we will refrain from drawing it as the insertion of ¢~2* breaks U-equi-
variance.

3.5.2. Macdonald polynomials revisited. Now, fix k € Z>o. We will consider the
case
U=Up=8DVR1_gy).

Ug[0] is one-dimensional, spanned by the vector whose tensorand in S;‘kV is the
g-symmetrization of

(1®er @ ®en)® T,
Fixing a vector ug € U [0], we can identify Ug[0] with C(g). Recall that

§=(m—1,n—2,...,0).

Tueorem 3.11 ([EK94]). We have the following:
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(1) For A € P+, I(Vy,Uy) is nonzero if and only if X\ — (k — 1)d is dominant. For

A€ PT, set
V¥ = Vg 15
Thus, for A € P, there exists a unique nonzero intertwiner
ok vk s vEeU,

with (®X) = ug.

(2) Let @k be the weighted trace try, (®%(¢**)). We have:

Px(q,4%) = ©5 /5.

3.5.3. Spherical DAHA generators. — Recall the generators of Sj{n(q,qk) from
Lemma 2.5 (cf. also (2.6) and (2.7)). We have two natural actions of O on the
Macdonald polynomials. Let chy, denote the character of V;. The first action is
through insertion via k:

Treorem 3.12 ([EK94]). We have
@k (k(qeoevy. (1)) =) = ¢~ 1™ Nehy, (7)) @5,

This induces the same action on the weighted trace. In terms of spherical functions,

this corresponds to:
(k(acoevy, (1)) ® lv,eu,) U5 = ¢ ™ Dehy, (AHF) 0%

vE vk U

Note that the discrepancy between V; and V' comes from the change in orientation
on the circle when bending the left leg of U<I>’§ down to obtain <I>’§. In particular,
we obtain the ¢7" Yt (se, (Y, ")s) when V, = APV* and ¢~"("De(sY ,s) when
Vﬂ— = ]11.
For the second action, consider the multiplication map:
m®ly, :0®0® U, — 0® Uy.

Since it is a U-homomorphism, it restricts to a map

@ OeUYE — (00U = @ (Vie Ve Ut
AepP+

We can depict (m ® 1y, )(qcoevy, (1) ® (@) diagrammatically as:
VE Ve Vi VE U

Converting to the weighted trace as in (3.22) yields chy, (21, ... 2, )¢%. Here, we obtain
v(se,(X,)s) when Vy = ATV and v (sX,'s) when Vy = 1_;.
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4, Q[IANTUM DIFFERENTIAL OPERATORS

4.1. VARAGNOLO-VAsSEROT DOUBLE. — Out of our quantum ring of functions O,
we would like to define a notion of quantum differential operators with very specific
equivariance properties. Let us catalog the U-actions on O:

(1) Left coregular action: gt (v* ®v) = gv* Qv (this is an action of the co-opposite
Ue);

(2) Right coregular action: g < (v ®@ v) = v* ® gv;

(3) Coadjoint action: g > (v* @ v) = g1yv* @ g(2)v.

We have been mainly concerned with the coadjoint action, for which the Hopf alge-
bra structure maps are homomorphisms. Our goal is to construct a smash product
between O and x(O) utilizing the left coregular action, but we would like all structure
maps to be equivariant with respect to the coadjoint action on O and the adjoint
action on k(0).

4.1.1. Drinfeld twist. — The left and right coregular actions give an action of U, ® U
on O. However, the braidings in (3.18) prevent the product from being a U, ® U-
homomorphism. This can be fixed by altering the coproduct of U, ®U using Drinfeld’s
twisting procedure [Dri89b]. First, let Ay denote the coproduct of U, & U:

A2(g @ h) = g2) @ ha) @ 91) @ hya)-
Let U2 denote the algebra U, ® U endowed with coproduct
As(g @ h) := (R1sRa3) " As(g @ h)(Ri3Ras)
=R (9(1) ® b1y @ g(2) @ h(2))Ras
and antipode
Sa(g ® h) = Ran (S(9) ® S(h))Ray'-

With these structures, U2 is a Hopf algebra in a suitably completed sense. We will
use an embellished Sweedler notation for As:

As(g®@h) = 9y ® E(n ® g(2) @ E(2)~
Prorosition 4.1. The multiplication map m of O is a ﬁQ—homomorphism.

Proof. — This follows from the calculation:
m(ﬁg(g @h) (v Qv w @w))
= Br-av,w+ (Raz (910" @ h(1) 10 ® goyr,w™ @ higyw))
=T192)TsW" ® rg1)v” @ h(1)rv @ higyw
= g)TeTsw* @ g2y, rv" @ h1yrv @ hgyw
=(g@hm(v* v w* @ w). O
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4.1.2. Three embeddings. Corresponding to the three actions of U on O, there are
three embeddings of U into uz. First, let us consider the subalgebras U ® 1 and
1®U. Tt is clear that the restrictions of the U2-action on O to these two subalgebras
respectively yield the left and right coregular actions. We have that

Ao(g®1) = g1y ® gryr @S(ry)g2yr: ® 1

(4.1)
=901) ® ;- ®ads(r)(9(2)) ® 1.

Thus, U® 1 is a left coideal subalgebra, and so by Theorem 3.8 and Proposition 3.9,
k(0) ® 1 is a left coideal subalgebra as well.
Next, view the coproduct as a map A : U — U2. Observe that by (3.1),

(As 0 A)(g) = g01) ® g(2) @ 93) @ Gay.
(4.2) (1® S)(Az0A)(g) = 9y ® 9(2) @ S(g)) @ S(g(3))-

From these equations, we can see that A is in fact a Hopf algebra morphism. Moreover,
from (4.2), we can see that the adjoint action of A(U) on U? preserves U® 1, on which
it acts by the usual adjoint action on U.

4.1.3. Smash product. — Now consider the smash product O x U2. This is the tensor
product O ® U2 subject to the relation that for v* ® v € O and ¢ ® h € U?,

(4.3) (9@ h)(v* @) = (Gyv* ® hayo)(Gr2) @ hz))-

We will abuse notation and use O and U2 to denote O®1®1 and 1 ®ﬁ2, respectively.
Since k(0)®1 C U? is a left coideal, the subspace O x (£(0)®1) is in fact a subalgebra.
We denote by 9, the embedding O — 1® k(0) ® 1 C O x U2.

Derinition 4.2 ([VV10]). — The Varagnolo—Vasserot algebra of quantum differential
operators D is the subalgebra O x 8, (0) of the smash product O x UZ.

The Varagnolo—Vasserot algebra does indeed satisfy our desired equivariance. Let-
ting U2 act on itself via the adjoint action, O x U2 is a ﬁz—module—algebra. Restricting
this action to A(U) C U2, we obtain an action of U on D that gives the coadjoint
action on O and the adjoint action on 9, (0). We will also use <1 to denote this U
action on D.

Finally, we note that by (4.1), commuting 9,(0) past O in D does not cleanly
incorporate the left coregular action because the right tensorand of O is also affected.
However, the discrepancy has a diagrammatic interpretation that is cleaner than the
symbolic formula gotten by combining (3.21) and (4.1):

(" @v)(w* @w) = (8[>(v* ® v;)ryrw* @ urvrw) (S(ru)ab(srvi ® trv)rv)

w W w W

A

a8

v W vV VvV W w
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4.1.4. Basic representation. The smash product O x U2 has an action on O, where O
acts by multiplication and U2 acts via the left and and right coregular actions. This
action is ﬂ2—equivariant. Moreover, from the definition of the smash product (4.3),
we have that O is an induced representation:

(4.5) 020 xU/0 x U (U2 - e(U?)).

We call the representation O and its restriction to D the basic representation. O is
then a U-equivariant D-module (using the < action). Note that even though the
smash product relations do not cleanly incorporate the left coregular action, 0, (0O)
does indeed act on O via the left coregular action. This follows from (4.1) and (4.5).

4.2. Monobromy matrices. — Recall the generating matrix M for O given in 3.4.2.
Let {a’} denote a copy of {m}} given by O C D and let {b’} denote another copy
given by {9,(m’)}. We define the matrices A, B, A=, and B~" by:

i _ i “1vi i i
As = E; ® aj, (A7) = B} ®@u(aj),
B} = E; @b}, (B! = Ej @ 1(b}) := B} ® 8, (¢(m)).
4.2.1. Determinant bigrading. — We set:

dety(A) :=qeoevy (1) ®1€0®1CD,
dety(B) := Orqcoevy (1) € 1® k(0) C D.

As in 3.4.2, these elements can be written in terms of the entries of A and B, respec-
tively. Moreover, det,(A) commutes with O ® 1 and det,(B) commutes with 1® x(0O).
Their commutation relations with elements from their respective “opposite” tensor
factors are also nice.

First note that, from the factorization (3.6) and the formulas (3.9) for the deter-
minant representation, we have:

w 1y W 1y 1, W 1, W
= g~ 2(wn,A) ) \ = g 2wn,A)
(4.6) e é a
A A
N 1 i 1, 1, Vi 1, Vy

Using these local relations on (4.4), one can see that det,(B) satisfies:

Vi W Vi Va n W

A A

1 1

Vi Vi Vi Va : i W
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Similarly, det,(A) satisfies:
1, 1

V/\ V)\ V)\

1, 1

A U A
— q2(wn,)\)

Vi W

Thus, we can define an internal bigrading on D: =z € D is homogeneous of
degree (a,b) if
dety(B)z = ¢**xz det,(B), det,(A)z =g 2tz dety(A).
The entries of A and B have degrees (1,0) and (0, 1), respectively.
4.2.2. Double R-matrix presentation. The following is [VV10, Prop. 1.8.3(b)]:

Prorosition 4.3. Let Dy be the algebra with generators given by the entries of A
and B and relations

Ro1A13R12A23 = AagRo1 A13 R0,
(4.7) R91B13R12Bo3 = BazRo1 B3 Rio,
Ro1Bi3Ri2As3 = A3 Ri2Bis Ryl

The elements {det,(A), dety(B)} generate an Ore set in Dy and D is isomorphic to
its localization.

The novel third relation is a rewriting of (4.4), cf. [VV10, A.5]. This algebra was
defined prior to [VV10] by Alekseev and Schomerus [AS96] as an intermediate step to
constructing their quantized character variety for the once-punctured torus. There,
the A- and B-matrices respectively quantize monodromy matrices along the a- and
b-cycles of the torus.

4.3. Quantum WEYL ALGEBRA. A reference for this section is [GZ95]. The quantum
Weyl algebra of rank n, denoted W, is the C(g)-algebra with generators
{6,011 <i<n}

and relations

§i&j = q§;&  fori > g,

ai(‘)j = q_lﬁjai for i > j,
(4.8) 0;&; = q€;0; for i # j,

0i&i =14+ ¢°60i + (¢° — 1) ijaj*

J<i

If we set degé; = 1 and degd; = —1, then the relations (4.8) respect the grading.
We denote by Wy the subalgebra of degree 0 elements.
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Remark 4.4. In [Jorl4], there is a parameter ¢ that the author then sets to ¢ =1
(cf. Remark 3.11 of loc. cit.). Here, we instead set t = ¢~'. This affects the formula
for the moment map later in 4.4.2.

4.3.1. Fquivariance. — ‘W has an RTT-type presentation (cf. [Jorl4, Ex.4.9]): if we
define the vectors

§=) e0&=(a& &),
=1

O

L& 02
0:= Zei ® 0; =

i=1 .

On

in V® W then relations (4.8) can be rewritten as

613623 = £23€13RR,
013023 = R3d13, .
g Oaaéis = E13ROb3 + Zei ®e; @1
i=1
This algebra can be written as a quotient of the tensor algebra T(V & V*) by images

of the braidings and evaluations. Here, §; corresponds to e’ € V* and &; corresponds
to e; € V. Consequently, we have:

Prorosition 4.5. — W is a U-module-algebra.

We denote the U-action on W by e. Note that the degree is given by the action of
q@“~. Since ¢ is central in U, it follows that Wy is a U-submodule.

4.3.2. Functional representation. — Let W¢ be the subalgebra generated by {¢;}. As a
U-module, the subalgebra W is isomorphic to the quantum symmetric algebra of V:
(oo}
S, V= @ S;'V.
m=0
The ordered monomials
1 kn— n
TG

form a basis of S,V (cf. Theorem 5.1 below). We can extend the natural multiplication
action of W¢ to one of the entirety of W by setting

Bi(Elrehe . ebi gk = (g€) R (g€a)"2 - - kil €l e L gk,

This action is merely the one induced by quotienting T(V & V*) by the left ideal
generated by V*. As such, this action is U-equivariant. The action of Wy on S,V
preserves each piece S7'V.
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4.3.3. Difference operators. It will be useful to interpret the functional represen-
tation in terms of difference operators in commuting variables. Let

C(q)[zn]) :=C(q)[z1, - - -, 2n]
and let T} ., denote the g-shift operator:
Tyei2j = 4" 2.
For an integer vector A = (A1,...,A,) € Z", we define
2= zf‘l ~-~z,)l‘”, Ty = T;:;l ~-~Tq):gn.

Consider the following rings of difference operators:

€ C(g)
D _ { . s AT ‘ ax,u },
a(Zn) 2o pezn Oz T and only finitely many ay , # 0

Df e C(q)[z]

D =DeD .

a (#n) { €D4(zn) | o am 1 e (C(q)[zn]}

Prorosirion 4.6. — C(q)[z,] is a faithful representation of DF (z,).
The map

kn
n

é‘fl...gﬁn p_>zf1 ez
induces a vector space isomorphism S,V = C(¢)[z,]. Carrying over the actions of U
and W, we obtain homomorphisms of both algebras into I[Dq+ (zn), both of which we

denote by qoiff:

(4.9)
qoiff(¢™") = T,z qoiff(&i) = ZiTgz  Toz s
T, =T T2 —1
. Zi q,Zi41 q,Zi+1 . —1 q,2;
Oiff(E;) = ( )’ 0 6i:‘Tz"'TZ'( )’
q 1ff( ) Zig1 q- q,l q 1ff( ) 2 49,21 q,%i—1 qQ -1
1
: Ziv1 (Tgz =T 2,
dff(F) = ( ’ )
qoiff(£5) ol G

Since C(q)[zn] = S,V is a faithful D (z,,)-module, the fact that S,V is a U-equivariant
W-module implies that qoiff pieces together into an algebra homomorphism out of
the smash product:

qoiff : W x U — D (25).

4.4. Quantum HamiLronian repucrion. — To perform quantum Hamiltonian reduc-
tion, we will need a notion of quantum moment maps in our Hopf-algebraic setting.
Let H be a Hopf algebra acting on an algebra A such that A is an H-module-algebra.
If we denote this action by

(=)»(-): H®A— A,

then a quantum moment map (in the sense of [VV10]) for the action is an algebra
homomorphism p : H — A such that for h € H and a € A,

(4.10) p(h)a = (hey » a)u(he))-
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More generally, we can define quantum moment maps for the action of a left coideal
subalgebra H' C H, In our case, we will be working with H = U and H' = (0).

4.4.1. Moment map for D. — The following is [VV10, Prop.1.8.3(a)] and [Jorl4,
Prop. 7.21]:

Provosirion 4.7. — The map pp : k(0) = D given by
(4.11) (1®ppor)(M)=BA'B~ A

18 a quantum moment map for the <-action restricted to the left coideal subalgebra
k(0) C U. Moreover, it is U-equivariant.

We emphasize that we are viewing x(0) as a left coideal subalgebra of U. Thus,
in (4.10), we are are taking the coproduct A instead of V.

Prorosition 4.8. — For f € O viewed as an element of the basic representation,
we have

Proof. — This was shown in the proof of Proposition 1.8.2(c) of [VV10], but we give a
diagrammatic proof. It suffices to consider entries of the generating matrix M. Using
(3.19) and (4.4), we calculate the entries of BA™'B~!A images of the following a
morphism, working right to left:

(4.12)
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Acting on V* ® V C O, we obtain
Vv V.V VvV V Vv

N

V\/VV\/\/VV

upon applying the coend relation (3.16). |
4.4.2. Moment map for W. — The following was proved by Jordan [Jorl4]:

Provosirion 4.9. — The action of the left coideal subalgebra k(R) C U on W has a
quantum moment map

pw(my) = di; + (1 - q7)0ig;.

This map is U-equivariant. The powers of pw(dety(M)) form an Ore set. Let W°
denote the localization at those powers. Then puw extends to a quantum moment map
for k(0) into W°.

Note that the image of pw lies in the degree zero part Wg.

Prorosition 4.10. — We have for f € S,V,

Proof. — We view S,V as the quotient of W by the left ideal Iy generated by {0;}.
By Proposition 3.9, we have

mi)f = Z )rs e f) pw(ad - (mf)).

The equivariance of py implies
W (adsr(m?)) = e pw(m?).
On the other hand, using relations for W, we have that after quotienting by Iy,
uw(mf) + Iy = i, + Io.
The proposition follows once we note that Iy is closed under the U-action. O
CoroLrary 4.11. Recall the map qoiff (4.9). We have:
qoiff o K = qOiff o pw.

Cororrary 4.12. — The functional representation S4V is preserved under the action
of the localization W°.
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4.4.3. Reduction. Finally, we consider the tensor product algebra
M:=DeW°

in the braided monoidal category of locally-finite U-modules. Thus, the product
involves R: for a1,as € D and by, by € W°,

(a1 ® bl)(ag X bQ) = al(rs > GQ) ® (ST' o bl)bg.

With this braiding, M is a U-module algebra and thus MY is an algebra.
Next, we collate the moment maps into one for M. We define

e = (up @ pw) o (k@ K)oV : O — M.

It is a U-equivariant algebra homomorphism (each of its components are). The fol-
lowing is [GJS25, Prop. 3.10], which features a nice diagrammatic proof:

Prorosition 4.13. — The map pune : O — M is a quantum moment map.

Recall the determinant character x* defined in (3.9). We will abuse notation and
use x* to also denote the induced character x* o x of O. In terms of the generating
matrix M of O, we can use the factorization of R (3.6) to deduce

(L@ x")(M) = ¢ 1.
Derintrion 4.14. — Let I, € M be the following left ideal:
I = M((1® pae) (M) — g >* V1),
The quantized multiplicative quiver variety is defined to be Ay := (M/f]k)u.
Prorosiriox 4.15 ([VV10, GJS25]). — Ay is an algebra.
4.4.4. Radial parts map. — Denote by
(0@ V)X

the subspace where U acts by the character x*. From the Peter-Weyl decomposition
for O (3.17), we can see that ¢“~ acts trivially on O. Thus,

(0® S, V)X" = (0@ STV,
We can further identify
O SV = (0eU) = @ (V5o Ve Uyt
AeP+

By Theorem 3.11, we can identify the last space with A (g) by taking the weighted
trace.

M acts on the tensor product representation O ® S,V, where this tensor product
representation is taken in the braided monoidal category of locally-finite U-modules.
Therefore, the action involves the braiding between W° and O and the action map is
U-equivariant. This action on O®S,V then restricts to an action of MY on ( O®SQV)XIC .
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. k
Prorosition 4.16. — For k > 0, the action of MY on (0 ® S,V)* factors to an
action of Ak41.

Proof. — We first show that pat(m) acts on 0©S5,V as x(m) (i.e., via the U-action).
Let aj¢ be the action map of M on O ®S,V. Using Propositions 4.8 and 4.10, we have:

VoV SV VoV SV

|1 fT’

i | _
1

=111 (7

|
|
|
r
\% vV VvV VvV smy \% Yy VvV VvV Ssmy

q q

It follows that the restricted action map
te M (02 S,V — 085,V

factors through Ji41. The result follows from taking invariants of M / Jkt1- O

Derivirion 4.17. — We denote the representation map by tady : A, — End (A (q))
and called it the quantum radial parts map.

Prorosition 4.18. — For k > n, the image of vady contains the image of Sf}"{n(q, q)
under t:

vady, (Ar) O t(8Ha(q,q")).
Moreover, this inclusion respects the bigradings.

Proof. — Recall the generators of 8H, (g, ¢*) from Lemma 2.5 (in the case k > n).
Our analysis in 3.5.3 shows that

(se,« " s),
g b (se (Y_l)s),

v(s X, 's),

_"(" 1) (sY s)

tady (qcoeVMV 1) )
tady (qucoev,\rv* 1) =
tady, (dety(A) 1)

tady, (dety(B)) =

(4.13)

The last two imply the statement about bigradings. |
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5. IsoMORPHISM

5.1. CrassicaL pEGENERATION. — Recall that Dy C D is the subalgebra generated by
the entries of A and B (so we exclude those of A~! and B~!). From the relations (4.7)
and the formula (3.7) for R, we can expect that D, becomes the commutative ring
Clgl,, x gl,,] when ¢ — 1. Similarly, the quantum Weyl algebra W (4.8) should degen-
erate to the usual Weyl algebra D(C™). Here, we review work of Jordan [Jorl4] that
makes this precise and we enhance these results to address invariants.

5.1.1. Lattices. — Let
M+ = 'D_;,_ ® W
(as in 4.4.3, we mean the braided tensor product of algebras). As in [Jor14], we define

a standard monomial in M4 to be a product

i ia k
(5.1) ajll"'ajabzl"'btzfjfﬁ"'fmasl"'ass’
where if u < v,

iy < iy or (iy =1, and j, < jy),

ku < kv or (Er = és and ]u <jv)7
(5.2)

Ty K Ty,

~
Su < Su,
whenever such indices are present.

Tueorem 5.1 ([Jorld]). Let My 7z C My be the Clg*™t]-subalgebra generated by the
generators {aé-, bf,{r, 0s}. The standard monomials form a basis of My z. Thus,

[Clg*]/(a = 1] @cfg1 My z = Clgl, x gl,] ® D(C"),
where D(C™) is the Weyl algebra.

For technical reasons, we will need a slight alteration of this result. First, we con-
sider instead the subalgebra Dy C D generated by the entries of A and B~! and
correspondingly set

My := Drv @ W.
Next, we will replace 0; with
0= (1—q )0
We then define a standard monomial to be
agh e af (b)) LOF oy o &, Oy - O

where the indices still satisfy (5.2) when u < v.
Let

M = gl, x gly x C" x (C")".
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CoroLrARry 5.2. Let Myy.z C My be the Clg*™t]-subalgebra generated by
{aj, (b)), 6,05}
The standard monomials form a basis of My z. Moreover,
[(C[qil]/(q - 1)] ®c[qi1] MIV,Z = (C[Dﬁ]

Proof. — The basis statement is clear because ¢ is an algebra anti-automorphism—we
can map M isomorphically to My within D ® W in a manner that sends standard
monomials to standard monomials. Finally, note that from (4.8), we have:

0i& = (1— ¢ )+ ¢°&0; + (¢ — 1) ka5k~
E>i
Therefore, [C[g*!]/(q — 1)] ®cpg21) Miv,z is a commutative ring. O
Thus, whenever we perform ¢ — 1 degeneration in Myy, it will always be with

respect to this basis of standard monomials. Namely, for any subspace V' C Mpy,
we define:

(5.3) Vg = VﬂM]vz,

(5:4) Vomr = { AMy + -+ + ()M FUOM+ - + fin(@) M € V2 for}.

™ | standard monomials M, ..., M,,
Prorosition 5.3. — For a finite-dimensional subspace V.C Mry, we have:
(5.5) dimg () V' = rankgg+1)Vz = dime Vo=1.
Proof. — This follows from the fact that My 7 is free and C[¢*!] is a PID. O

5.1.2. Invariants. We endow C[9] = C [gl,, x gl,, x C" x (C™)*] with the follow-
ing GL,-action: for the natural coordinate functions (X,Y,4,7) on 9 and g € GL,,,
let

9(X.Yi,7) = (97" Xg.97'Yg, (g7 ")i, jg)-
Here, we view the last factor j as a row vector. U(gl,,) then acts on C[9] via deriva-

tions induced by the coadjoint and vector representations. By a classic theorem of
Weyl [Wey39], C[9]St~ is generated by classical trace functions:

(5.6) tr(X YL (if)er - X0 Y P (5)0m)
for ay,b1,c1,a2,b2,¢2,. .., am, b, Cm € Zxo.
We identify (4, B~L, (1 — ¢2)d,€) with (X,Y,4,5) in the ¢ — 1 degeneration as
follows:
(5.7) A X, B lrsY, (1-¢2dri, £—j

With this, let us define natural quantum versions of (5.6). For k > 0, we define the
quantum trace of M k as:

(58) trg(M*) = D g B dmitml

i1 i ik
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Similarly, for aq,b1,c1,a2,b2,¢2,. .., Qm, by, cm € Lo, we define
(5.9) trg (A" B (uw (M) — 1) -+ A B~ (g (M) — 1)) € Myy

as (5.8) with m/ replaced with a}, ¢(b)}, or

i

YR
(hw (M) = I); = 0i&;,

depending on the location. We call these quantum trace elements.

Prorosition 5.4. — The quantum traces are elements of M}{, N My, z that are sent
to their corresponding classical traces when q — 1.

Proof. — Tt is obvious that quantum traces are contained in My z and are sent
to (5.6) when g — 1. To see that they are U-invariants, observe that they are the
image of 1 € 1 under a composition of U-morphisms:

(1) the map 1 — (V* ® V)®F induced by

1k

Lo Y e et e ol
1<, ik <.
which is depicted diagrammatically as
VVVYVVYV

U
k—1

(2) the antipode ¢ on tensorands that will correspond to B~! matrix elements;
(3) the inclusion into Myy (identity for A-matrix elements, 8, for B~!-matrix
elements, and pw — evy);

(4) the product in Myy. a
Levma 5.5. — For any U-submodule V. C Myy, Vy=1 is a GL,,-module. Furthermore,
we have

[Vu}q=1 = [Vq=1]GL"-

Proof. — Observe that U acts on standard monomials in a way that preserves the
lattice Mry z. Moreover, because of (5.7), the action of E; and F; degenerate to
the action of their corresponding generators e;, f; € U(gl,,) on monomials in C[90].
Finally, the degeneration preserves the weight. Thus, V,—; is a GL,-module and we
have the containment
[Vu]qzl - [qul]GLn-

For the other containment, let v € V7 be a lift of v € [Vy=1] ™. We can write v in
terms of classical traces. Let tr(‘; € Miv,z be the element where every classical trace
is replaced with its quantum version. We can write

]GL

v =try 4+ (¢ — Dw
for some w € Myy z. Since tr; is U-invariant, we have that

Ewv=(¢—-1)EBw, Fuv=(¢—1)Fw
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for all 4. If v € VY, then one of the expressions above is nonzero and w € V due to
complete reducibility (Myy is locally-finite). It then follows that try is an element of
V%N My 7 that lifts v. O

We can combine (5.5) with Lemma 5.5 to obtain:

~
J.

Prorosition 5.6. — For a finite-dimensional U-submodule V- C Myy,
(5.10) dime (g VY = dime Vo] 95,
5.2. Tue case t = ¢*. — By Proposition 4.18, A}, is at least as large as Sj{n(q,qk).

Our strategy to handle the t = ¢* case is to show that A is also no bigger than
83, (g, ¢*). Of course, this is but an impressionistic statement—we will need to make

it precise.
5.2.1. Mise en place. — We begin with a little result that allows us to focus on D:
Lemva 5.7. — The image of the composition

DU 5 MY —5 A,
becomes all of Ay after performing a localization.

Proof. — First note that by considering the action of ¢*, any U-invariant of M must
have degree zero in its W component, i.e.,

MY = (D& W)Y,
T = (T, NDoWHY.

From multiplication on the left, we have
(5.11) Do W, (51,3« e Z(A*BAB*);) C 9 ND W,
On the other hand, Wy is generated by {9;&;}. For any w € Wy and = € D, we can
use the R-matrix to move w to the right:

wr = (ry X< x)(,r ow).
We can then use (5.11) to write ,r @ w in terms of D in the quotient

D@ Wo /(I N D ® Wp).
Therefore, the map

De—DR@Wo — DWo/(TND @ W)

is surjective. Since all the U-modules involved are locally-finite, taking U-invariants is
exact. After doing so, det, (M) can be written in terms of elements of D%. We localize
the image at that latter expression. |

CoroLLARY D.8. A s a localization of Ay v := @}{,/(DIV NIt
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We can thus focus on Dry and Ay 1v. The left ideal Jj, is generated by elements
with homogeneous determinant bigrading, and so A and Ay v are also bigraded.
Let Ay 1v]a, b] denote its bidegree (a, b) piece. Recall our notation from Section 2.2.1.
Proposition 4.18 implies that
(5.12) dimc(q) A v [a, —b] > dim(c(q) qu‘,IV [a, —b] = dim¢ C |2, yn]i’g .

We will use classical degeneration, as covered in 5.1, to obtain the opposite bound.
5.2.2. Almost commuting variety. — Let Moo C M = Clgl,, x gl,, x C" x (C")*] be
the closed subscheme with ideal generated by the entries of

(5.13) X,Y] - ij,

where (X,Y, 4, j) are the usual coordinates of 9. The following results are proved by
Gan—Ginzburg [GGOG6]:

Turorem 5.9. — The projection map p : M — gl,, X gl induces an isomorphism:
(5.14) C[Mae] O = (Clgl, x gl,,] /1) = Cln, y, ™",

where I is the ideal generated by the equations [X,Y] = 0 and the second isomorphism

1s induced by restriction to diagonal matrices.

M, is called the almost commuting variety. We can endow C[901] with a bigrading
where the entries of X have bidegree (1,0) and those of Y have bidegree (0,1). The
ideal (5.13) identifies elements of bidegree (1, 1) with those of bidegree (0,0), so C[M,]
inherits this bigrading. Let C(X,Y) C C[9,.] denote the subalgebra generated by
the entries of X and Y and let C(X, Y)S’f;” denote the bidegree (a,b) piece of the
invariant subalgebra. Tracing through the isomorphism (5.14), we have:

Cororrary 5.10. — For each bidegree (a,b),
dim¢ C(X, Y)S’I;" = dim¢ Cx,,, yn]i’g.

Lemva 5.11. — There is an algebra homomorphism

¥ C[Mac] — (Mav) =y / (T N Miv) oy
that restricts to a surjection

Y :C(X,Y) —» (Drv),— /(TN Drv)y=1
which respects bigradings.
Proof. — From left multiplication on the generators of Ji, we can see that
(5.15) My (B7'A)E + (BT A)i0e&; — ¢~ (AB™Y)E) € I N My

Let (A, B!, £, ) denote the coordinates of Spec (Miv),—; = Mand (X,Y,4, j) denote
the coordinates for another copy of 9. Upon setting ¢ = 1, the containments (5.15)
imply that

(X,Y,4,5) — (A, B™1, B7149,¢,)

induces the desired homomorphism . a
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Tueorem 5.12. For k > n, the radial parts map vady gives an isomorphism
Ak = 85, (q, ).

Proof. — By Lemma 2.5, equations (4.13), and Corollary 5.8, it suffices to show that
tady restricts to an isomorphism

Aty 22 85, (¢, ¢")rv,

because localization is exact. To that end, we just need to provide the opposite bound
to (5.12). Applying Propositions 5.3 and 5.6 and Lemma 5.5, we have

dimc(q) A v [CI,, b] = dimc(q) D%LV [a, b] — dimc(q) T N D}ﬁ,[a, b]

= dimg (Drv[a, blg=1)"" — dime (T N Dyya, blg—1) ="
. GL,
(5.16) = dime [(Drv) =y /(Tx N DIV)q=1]a,b )
where in the final line, the subscript denotes the bidegree (a,b) piece. Finally, we can
combine Corollary 5.10 and Lemma 5.11 to bound (5.16) above by dim¢ C[x,,, yn}az,g.
a

5.3. GeNERric PARAMETERS. — Now we introduce the variable ¢ and establish the iso-
morphism over K = C(q,t). Let U; := K ® U. We will base change U and all its
modules to U; but still denote them by the same symbols to avoid notational clutter.
Let « be a parameter such that ¢t = ¢®; we introduce it for stylistic/notational reasons
so as to neatly replace the integer k. All constructions below can be described fully
in terms of ¢ rather than a.

5.3.1. Eungof-Kirillov theory at t. — In order to extend 3.5, we need a suitable gen-
eralization of Sng, and moreover it should be a representation of Wg. Recall the
notation from 4.3.3, wherein we translated the actions of U and W on S,V to ones on
the polynomial ring C(q)[z,] := C(g)[z1,- - ., 2»]. From this we constructed an algebra
homomorphism

qQiff : W x U — Dy(24,),

where D,(z,) is a ring of difference operators. Using Corollary 4.11 and the U-equi-
variance of pw, we can extend goiff to W° x U by setting

qRiff (v (detq(M)) ™) = (qiff o k) (detq (M) 1) = qiff(q*").

We will abuse notation and use ¢diff to also denote its base change to K.
Let W, be the K-vector space spanned by “monomials” of the form

{aprtorihetort phatasl (kL k) € Z7).

We emphasize that the k; are now allowed to be negative. D,(z,) naturally acts on
this space by

2 (lec1+<x—1 . Zf;ﬁafl) — leﬁ-&-a—l o pRitla=1 ZanJrOC*l

1 )

Tq,zi (Z{cl—&-oz—l o Zﬁn-m—l) _ qki_ltzfl"'a_l . Zﬁn-i-a—l.
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Therefore, we obtain an action of W° x U; on W,. In particular, the W°-action is
Uz-equivariant. From the formulas (4.9) for qoiff, it is clear that W§ x U preserves the
subspace

Eidoa—1_kota— ta—t | (K1, ky) €27

W2 will be our replacement for Sf;(k_l)V.
Next, we will need a t-version of the determinant representation. Let xy** : U, — K
be the characters given by

X(Ez) = X(Fl) = 0, X(qh) — ti<h7w”>.

We denote by 1_, = K the dimension 1 representation defined using x ~¢. It is natural
to interpret integer shifts of « as tensoring by 1. The zero weight space W, ® 11_4[0]
is of dimension 1, spanned by z‘f‘_l <2971 @ 1; we thus identify it with K.

Finally, V\y (_1)s is replaced with the Verma module

My == Myi(a—1)s

which is simple when ¢ is left as a parameter. With this set, the case of general ¢ is in
many ways quite similar to that of ¢t = ¢*.

Tueorem 5.13 ([EK94]). — We have the following:

(1) For X € P, there is a nonzero, unique up to constant intertwiner
Y MY — MY W2 @1, _,.

(2) For A € P*, upon picking consistent normalizations for {5?\‘}, the weighted
trace ©$ satisfies

P(g,t) = $5/%5-

We note in passing that ¢$ is no longer a polynomial but rather a power series.

5.3.2. Admissible diagrams. — Since MY is infinite-dimensional, we can no longer
convert the intertwiner Efﬁ into an invariant vector as we we did in 3.5. More generally,
the graphical calculus covered in 3.3 still applies to M) except that it no longer has
classical and quantum coevaluations. This leads to some awkwardness in defining the
action of non-invariant elements of M. Our goal here is to be able to turn elements of
M “upside-down”.

We have already made use of diagrammatic calculus for D—Ilet us give a similar con-
struction for W°. The inclusion of the generators {9;} and {&;} come from morphisms
V* — W and V — W, respectively, and likewise the inclusion of p(dety(M))~?
comes from a morphism 1 — W°. Since the product my of W° is a U-morphism,
we can write any element of W° as a linear combination of images of morphisms
0: X — W° for some U-module X.
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Altogether, we have a way to present elements of M = O ® k(0) ® W° as a linear
combination of morphisms of the form

vV v we

(5.17) (\ T

evaluated at various inputs. We can define a product * of two such morphisms by

Vi Wi we Va Vo we

: |

Vi VioWi Wi Xy Ve Va W W Xy

This yields the product in M upon evaluation.
More generally, the diagram of a morphism ® : W7 ® Wy — M is called admissible
if it is of the form

(5.18)

where the ghost strand only undergoes braidings. For such a ©, we define
D:0—W WU W,
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to be the morphism given by

Vv v

where every morphism inside ® is replaced with its adjoint and the orientation of
the ghost strand is reversed. While W° is infinite-dimensional, it is locally finite and
thus the coevaluation is done on a finite-dimensional subrepresentation. Specializing
U to act on a finite-dimensional module U, D is obtained from ® in terms of partial
adjoints. Thus, this is an operation on morphisms, not just diagrams.

Finally, for a diagram © like (5.17) and a general admissible diagram Do, we define
the product ©; * 5 by:

i W\

w o wp wp X Wa 1 » Wa2
Observe that D1 * D5 is also admissible.

5.3.3. Action on linear maps. — Let

(5.19) tHomg = D Homy (M, M @ Wa @ U*) /
M highest weight
U finite-dimensional

Y € Homy (M',M @ W, @ U*),
(ferenop—yoy f € Homy (M, M") )
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The relations (5.19) are analogous to the coend relations (3.16)—the “t” stands for
homomorphisms identified if they have the same trace. One should view the extra
tensorand U* as something we will contract away to yield an K-linear map M —
M © W,. Since the Verma module M is simple, the intertwiners {®$} are linearly
independent in tHom,.

Let aw : W° ® W, — W, be the action map. For an admissible diagram 2 :
W1 ® Wy — M as in (5.18) and

¢ € Homy (M, M @ W, @ U*) C tHom,,

we define
Dxp:VOM —VIM) W, (W, WaU)*
to be the class of the morphism:
VM Wo U Wy W

(5.20)

Ve M

Such a morphism is well-defined for infinite-dimensional M because M only undergoes
braidings. Moreover, any f as in the relations (5.19) can pass through such braidings.
This implies that © x ¢ is independent of the representative of the class of ¢. We leave
it as a drawing exercise to see that for a diagram ®; of the form (5.17) and an
admissible diagram %5, we have

(521) @1*(@2*(25) = (@1 *@2)*(25.

Consider now the space of K-linear maps:
(5.22) tHom, := D Homp, (M, M @ W, ® ]11_a)/

M is highest weight
Y € Homp, (M',M @ Wo ® 11_4) ,>

f € Homy (M, M) '
For the class of ¢ : M — M ® W, ® 1;_, in tHom,, we define an operation by each
of the three tensor components of M = O ® 0,(0) @ W°:

cforv* uveV* @V CcO®1C D, define

WRU)xd: VM —-VIMOIW, R 1i_,
(v* @) x ) (x @m) = v*(qra) [S(;r)v @ d(ryr,m)];

(fo1ov—yof

(5.23)
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. for kK(v* ®v) € 1 ® 0,(0) C D, define

KU @u)*kdp: M — MW, 1;_,
(r(v* ®v) % §)(m) = v" (S(;rr)v) P(r, srm);
« for w € W° define

(5.24)

wkd: M — MW, ®1;_q
(wx¢)(m) = (r, @ (;rS(;r) @ w) @ 1) B p(rym),

where the » means acting on the output of ¢ via the U- and W°-actions.

(5.25)

Because the input of ¢ and M-tensorand of the output of ¢ is only acted on by
elements of U, these operations are well-defined on the quotient (5.22). A priori,
we do not know that they piece together to form an action of M. To that end, let:

. tHomf be the subspace of tHom,, generated by these operations from the inter-
twiners {®§}acp (the D is for “diagram”);

. Int,, C tHom?% be the span of {&)f}Aep;

. Int} C Int, be the span of {5§}A€p+.

Finally, we set
My = C(q)tF] @M,
Mg =K M =C(q,t) @ M.

Levva 5.14. — The operations (5.23)~(5.25) define actions of My and Mg on
tHomf. Under this action, MY preserves Int,,.

Remark 5.15. — The formulas (5.23)—(5.25) should define an action of M on the
entire space tHom,. We leave the proof to a more skillful scholar of the Yang-Baxter
equation.

Proof. — On tHom?, the operations (5.23)-(5.25) are obtained by contracting the
diagram actions on tHom, with ¢ set equal to an intertwiner 5‘3\‘ Equation (5.21)
implies that the diagram actions yield an M-action upon contraction. From the di-
agram action (5.20) with Wy = W, = 1, it is evident that MY sends ®¢ to some
other intertwiner. As pointed out in the proof of Lemma 5.7, M* C D® W3, and thus
acting with an element of MY sends Eﬁ to some intertwiner

VoMY — VoMWl li_,

for some finite-dimensional V. Using the modified coend relation (5.22), this can be
rewritten as a linear combination of {®$ }acp. O

5.3.4. Radial parts at generic parameters. — Let us now discuss quantum Hamiltonian
reduction. Consider the left ideal J, C My given by

Jo == M[t] (/LM(M) — q2t_2I) C M[t].

Lemwva 5.16. The Mﬁ] action on Int,, factors through the subspace JU.
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Proof. We approach this similarly to how we proved Proposition 4.16. Namely,
we prove that the action map

My ® Inty, — tHom?

factors through J,. To that end, we compute the action of py (M) on 5? Using
(4.12), we get:

o
M)\

For the first equality, we applied the modified coend relation (5.22). From (3.6), one
can see that the final diagram is equal to the action of the diagram for ¢t 2evy,
which yields the entries of ¢>¢~2I upon contraction. O

We define
Al = My /1), Aa = K ® Aa.

Like in Proposition 4.15, Ag] and A, are in fact algebras. Let us also define
My = C@)["™] ® Miv.
Ay = (M /My 1 7a))
Prorosition 5.17. — A, is generated by
{qcoequw(IL81>qcoeVNq~w(1)}:21 U {detq(A)~1, dety(B)}.
Proof. — Because tensoring is right exact, there is a surjective map

Ak — [C@)[F/(t — ¢")] ®‘A[ot],IV‘
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For k > n, the analogous generation statement for Ay, is true due to Theorem 5.12 and
Lemma 2.5. The result follows from applying Nakayama’s Lemma to each (finitely
generated) bigraded piece and then localizing. O

Lemma 5.18. — The actions ong] and Ay on Int, preserve the subspace Int) .

Proof. — Tt suffices to prove the statement for A,. We then consider each of the

generators given in Proposition 5.17. The elements 0,qcoev -y~ (1) and dety (B) act by
q

inserting central elements of U into ®¢, and thus they act diagonally. For gcoev AIZ-V(l)

and det,(A)~!, note that the action of either on ZI:K‘ yields the intertwiner
idy 9% : VoMY — VoMW

for some finite-dimensional U-module V. By [BGGT71, Lem. 5], V ® MY decomposes
into a direct sum of {M} for finitely many p € P, and thus

idy ® % = exulq, )0
12

for some {cxu(g,t)} C K. We will show that we can set ¢y, (q,t) = 0 for any p ¢ P+
and for o € PT, ¢, (q,t) is a Pieri coefficient [Macl5, VI.6].

To do so, let us review some details from the proof of Theorem 2 of [EK94]. Let
Uy(n2) C U be the subalgebra generated by the {F;} and let {3,} be a weight basis of
Uq(n_). Picking a highest weight vector v$ for M, we obtain a weight basis {8,v5 }

for M. We will also make use of the natural monomial basis {m.} of VVQO , which is

also a weight basis. An intertwiner is determined by the coefficients {, bc(q, HycCc K
such that:

o2 (Bavs Z Ry (q,)Bpvs @ me.
Given k > 0 and v € P, the subset of {Ba} such that
v—wt(8,) = Z NGE;

with 0 < n; < k likewise provides a basis for the finite-dimensional module Vl,k.
Likewise, an appropriate subset of the monomials {m.} give a basis of Uy. The inter-
twiner ®* is determined by the coefficients {¥RZ (¢)} C C(q):

@5 (Bavy ZkR a)Byvy @ me.

In loc. cit., the authors showed that given (v,a,b,c), we have

be (Qa ) ka('( )

for all k sufficiently large for the right-hand-side to make sense.
Now, let v € V be a weight vector and consider v ® B,,v$. We can write this

tensor as
(0 BaAU,O\C = Z Z dafl (Qa t)ﬂaﬁvﬁ
I l
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for some coefficients {d,¢ (¢,t)} C K. Consider any k large enough that:

« AR (g,¢%) = R () for the bc indices appearing in ®% (84, v$);

1’
. for p € PT, MR (q,¢%) = kac (¢) for the be-indices appearing in the evaluations
(I)ﬁ (6aﬂ vfj);
. daﬁ(q, q") is well-defined for all af;.

The Pieri rules for Py(q, ¢*) yield the equality

v & (D)\ (Baxv)\ ‘ = Zc)\u qv Zdaé qv 6(1‘3 Up,)

t—qk

Here, by t — ¢*, we mean specialize the coefficients of the output basis {Bbvﬁ ®me}.
Since this equality holds at t = ¢* for infinitely many values of k, it also holds for
general t. O

The action on Int} yields an algebra homomorphism
tad, Al — Endg (AF(g,1))
that we also call the radial parts map. Through analysis similar to what was done in

Section 3.5.3, the analogue of Proposition 4.18 and its proof holds in this case as well:

Prorosition 5.19. — Upon base change to K, the image of tad, contains the image
of 8H,(q,t) under t:

rady (Aq) D t(Sf}"{n(q,t)).
This inclusion respects the bigradings and
) =t(se (X n)s),
g b (seT(Y,_Ll)s),

tad, (qcoev/\rv(l)
tad, (qucoev/\rw 1) =
tad, (dety(A)71) =
) =

tad, (dety (B _”(" D (sYns).

Taeorem 5.20. Upon base change to K, the radial parts map is an isomorphism

onto t(Sj'{n(q, t)).

Proof. On the generators from Proposition 5.17, one can see that specializing tad,,
to t = ¢* yields tady, and thus this is true for the entirety of A, 1v. Therefore,
a torsion-free element of a bigraded piece AE],IV [a, b] in the kernel of tad, must vanish
E],IV [a,b] is finitely generated and
C(q)[tT] is a PID, this implies that the kernel is torsion and hence disappears upon
base change to K. O

at infinitely many specializations ¢t = ¢*. Since A
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APPENDIX. MODULAR TRANSFORMATIONS

Here, we investigate the relationship between the quantum radial parts map and
the SLy(Z)-action on the DAHA. The main result is that our isomorphism sends a
slope subalgebra of SH,, (g,t) to a subalgebra of A, generated by quantum traces of
monodromy matrices over a suitable cycle on the torus.

A1, SLy(Z)-action ox DAHA. — W begin by reviewing the SLg(Z)-action on the
DAHA, as presented in [Che05, §3.7]. Recall that SLo(Z) has a presentation with

generators
o= 0 1 (10
S \-10/7 " \11

ot =1, (o1)® =0
It acts on K, (g,t) by R-algebra automorphisms given by
o(T;) =T, o(X;) =Y, o(Yi) = Tt Xr—it1 T,
(L) =T, 7(X1X)=¢M V)X X5), 7(Yi) =Y,

and relations

where wy € %, is the longest element. Since the generators fix {T;}, it follows that
SL2(Z) acts on 8H,,(g,1).

It will be easier to work with a generating set smaller than the one we used previ-
ously in 2.2.2:
Lemvia A1 ([FFJ*11, Lem. 5.2)). — 8H,(q,t) is generated by the four elements:

{se1(Xn)s, se (X Y)s, sei(Y,)s, sel(Y,_Ll)s}.

Prorosirion A.2. — We have:
o(se (X ,)s) = se (Y, s, o(se1(Y,)s) = se1(X,)s,
o(se (X, 1)s) = se1(Y,)s, o(se (Y, 1)s) = sei (X )s.
{Z Gaussian, — The following element can be defined in a suitable completion of
Hon(g,t):

_ 24t"log(t) log(Y;
~ n(n? —1)log(q <Z log(q )

=1
Recall from 2.3 the polynomial representation t of H,, (g,t), which is faithful. We can
view 8H,, (g, t) via its image t(8H,(¢,t)) C End(AE(g,t)). Thus, rather than go into
detail about the completion, we will just confirm that () is a well-defined operator.
Prorosition A.3 ([DFK19]). The following hold:
(1) The action of v on Af(q,t) is well-defined:

(A1) () Palg, t Hq 2Ny (g, t).

i=1

(2) The action of T € SLa(Z) on 8H,(q,t) is equal to ad,.
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A.3. FOURIER TRANSFORM. Lemma 5.7 can also be adapted to the case of generic .
It implies that we can define an algebra automorphism on A, by defining it on D
provided that it preserves invariants as well as the image of the moment map. The
analogue of the automorphism o is given by Definition-Proposition 6.11 of [Jor14]:
Prorosition A4, — The following defines an algebra automorphism § of D:
(1eF)(A™) =B,
(1®F)(B*) = ¢T"BATIB~ L.

Observe that the moment map pp (4.11) is left unchanged by §. It is also clear
that § sends quantum trace elements to other quantum trace elements. A corollary
of Proposition 5.4 is that DU is generated by quantum trace elements, so this implies
that § preserves DU. Therefore, § descends to an automorphism of Ay.

Lemva AS. We have the following equalities in D:
5 (trq(Aﬂ)) = tr,(B*),
3 (tr,(BE) = tr, (A7),

Proof. — Only the identities in the second row are nontrivial. Notice we have:
\% \%

try (BA'B) =

_ antrq (A—l)

The constant ¢*" comes from using Proposition 3.3 to compute v? on V =V, . For

try(BAB™') = ¢=?"tr,(A), the calculations are similar. O

Cororrary A.6. — Under the isomorphism tady, § induces the automorphism o on
t(8%H,(q,4")).

A.4. B-Den~ twist. — Here, we will view the ribbon element v as 1Qr®1 € O x uz.
In this manner, we can make sense of tad, (v) by having it act on intertwiners, whereby
it acts by insertion into the input. Combining Proposition 3.3 and Theorem 3.11
gives us:

tada (V) Pr(g, 1) = qf</\«\>fa</\’2p>f(a71)(a+1)<p’p>pA(q, t)

(A.2) ~(a- IR
=gq (v 1)(a+1)<p7p>Hq Aft Ai(n 2Z)Px\(q7t)'

i=1

JE.P — M., 2026, tome 13



Quantum Harisu-Cranora 1somorerism ror GLy, DAHA 251

Comparing the A-dependent parts of the eigenvalue with (A.1) gives us:

Prorosition A.7. — We have
g~V e gy, (1) = t(y).

From (A.2), it is clear that conjugation by v preserves the ker(rad,) and thus
defines an algebra automorphism of A,. Moreover, by Propositions A.3 and A.7, this
action coincides with 7=% on v(8H,(g,t)). An analogue of the following lemma was
proved in [Fail9] in the setting of finite-dimensional Hopf algebras, although we note
that our proof is quite different:

Lemva A.8. — Conjugation by v yields the algebra automorphism on D induced by:
(1®ad,)(A) =¢"B~'A, (1®ad,)(B)=B.

Proof. — Only the first equation is nontrivial. We use (3.13) to commute v past an

A-matrix element:

lerA(lev!) =

On the other hand, we have:

\% \% \%
The ¢" compensates for the extra loop. O
A.5. SLOPE VERSUS CYCLES. Let
8Hn(q,t)o := (se(Xn)s, se (X Y)s |1<r<n),
Sj'{n(q,t)oo = <86T(Yn)8, ser(Y:Ll)s | 1<r< n>

For b/a € Q with a and b relatively prime, define

for any g € SLy(Z) such that ¢g(1,0) = (a,b). Such a g can always be constructed

using the Euclidean algorithm. On the other hand, the definition does not depend
on g since the stabilizer of (1,0) is generated by

= L1 =oro !
=\ 1)~

and 7 acts trivially on Sj-.fn(q, t)o. We call Sj{n(q, t)p/a the slope b/a subalgebra.
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Analogously, we consider the following subalgebras of A,:
AL = (tr,(A™) | m € Z)= OV,
ALY = (tr,(B™) | m € Z) = 0,(O"M).
If we view A, as a quantized character variety for the torus (cf. [AS96, BZBJ18a,

BZBJ18b]), then these subalgebras are generated by quantized traces of monodromy
matrices over the a- and b-cycles, respectively. Our analysis in 3.5 shows that:

tad, (Agl’o)) = t(S}“(n(q, t)o),
tad, (ALY = t(SU:Cn(q, t)oc)-
For b/a € Q with a and b relatively prime, we define
AED = ca0; ({856, 0, h).

By Corollary A.6 and Proposition A.7, we can obtain .A&a’b) by applying the appro-
priate combinations of § and ad, to AS"”. Since ¢ and 7 generate SLo(Z), we can
make sense of the action of any g € SL2(Z) on Ay, in this manner.

We end with an observation relating b/a and the (a,b)-cycle on the torus. For a
product II of A- and B-matrices, we define its support

supp(IT) := (a,b) € Z2,
where:

« a is the sum of all exponents of A-matrices appearing in IT;
« b is the sum of all exponents of B-matrices appearing in II.

Thus, if IT can be viewed as a monodromy over the (a,b)-cycle. The following is an
easy consequence of the definition of § and Lemma A.8:

Cororrary A9. — For g € SLo(Z), we have
g (trg(A™)) = ctrg(II™)
for some ¢ € K and product II of A- and B-matrices such that supp(Il) = g(1,0).

Thus, Agl’b) is generated by certain quantum traces of monodromy matrices sup-
ported on the (a,b)-cycle.

REFERENCES

[AS96] A. Y. ALekseev & V. Scnomerus — “Representation theory of Chern-Simons observables”,
Duke Math. J. 85 (1996), no. 2, p. 447-510.

[BKO1] B. Bakarov & A. KiriLrov, Jr. — Lectures on temsor categories and modular functors,
University Lect. Series, vol. 21, American Mathematical Society, Providence, RI, 2001.

[BJ18] M. Bavracovic & D. Jorpan — “The Harish-Chandra isomorphism for quantum GL2”,
J. Noncommut. Geom. 12 (2018), no. 3, p. 1161-1197.

[BZBJ18a] D. Ben-Zvi, A. Brocuier & D. Jorpan — “Integrating quantum groups over surfaces”,

J. Topology 11 (2018), no. 4, p. 874-917.
, “Quantum character varieties and braided module categories”, Selecta Math.
(N.S.) 24 (2018), no. 5, p. 4711-4748.

[BZBJ18b]

JEP — M., 2026, tome 13



[BGGT1]

[BFGO06]
[BCMN23]
[Che95]
[Che05]

[DFK19]

[DMO3]
[Dri89a]
[Drig9b)
[EGGO07]
[EG02]

[ELO5]

[EK94]

[Fail9]

[FFJ*+11]

[FG10]

[GGO6]

[GJS25]

[GZ95]
[GS06)
[GIV23]
[Hai01]
[HC49]

[HC64]

Juantum Harisi-Cranpra 1somoreiism ror GL, DAHA 253
n

I. N. Berngtein, I. M. Ger/ranp & S. 1. GeL/ranp — “Structure of representations that are
generated by vectors of highest weight”, Funkcional. Anal. i PriloZen. 5 (1971), no. 1,
p. 1-9.

R. Bezrukavnikov, M. FinkeLBERG & V. Ginzurc — “Cherednik algebras and Hilbert schemes
in characteristic p”, Represent. Theory 10 (2006), p. 254-298.

L. Brrrmany, A. Cuanorer, A. Mecuir & C. Novarint — “Type A DAHA and doubly periodic
tableaux”, Adv. Math. 416 (2023), article no. 108919 (58 pages).

I. CuerebpNik — “Double affine Hecke algebras and Macdonald’s conjectures”, Ann. of
Math. (2) 141 (1995), no. 1, p. 191-216.

, Double affine Hecke algebras, London Math. Soc. Lect. Note Series, vol. 319,
Cambridge University Press, Cambridge, 2005.

P. D1 Francesco & R. Kepem — “(t, ¢)-deformed Q-systems, DAHA and quantum toroidal
algebras via generalized Macdonald operators”, Comm. Math. Phys. 369 (2019), no. 3,
p- 867-928.

J. Donin & A. Mubrov — “Reflection equation, twist, and equivariant quantization”, Israel
J. Math. 136 (2003), p. 11-28.

V. G. Drinver’p — “Almost cocommutative Hopf algebras”, Algebra i Analiz 1 (1989),
no. 2, p. 30-46.

_, “Quasi-Hopf algebras”, Algebra i Analiz 1 (1989), no. 6, p. 114-148.

P. Erincor, W. L. Gan, V. Ginzeure & A. OsrLovkov — “Harish-Chandra homomorphisms and
symplectic reflection algebras for wreath-products”, Publ. Math. Inst. Hautes FEtudes Sci.
105 (2007), p. 91-155.

P. Erincor & V. Ginzeure — “Symplectic reflection algebras, Calogero-Moser space, and
deformed Harish-Chandra homomorphism”, Invent. Math. 147 (2002), no. 2, p. 243-348.
P. Erincor & F. Latour — The dynamical Yang-Baxter equation, representation theory,
and quantum integrable systems, Oxford Lect. Series in Math. and its Applications,
vol. 29, Oxford University Press, Oxford, 2005.

P. 1. Etincor & A. A. KiriLrov, Jr. — “Macdonald’s polynomials and representations of
quantum groups”, Math. Res. Lett. 1 (1994), no. 3, p. 279-296.
M. Farre — “Modular group representations in combinatorial quantization with non-

semisimple Hopf algebras”, SIGMA Symmetry Integrability Geom. Methods Appl. 15
(2019), article no. 077 (39 pages).
B. Ferain, E. Ferain, M. Jivso, T. Miwa & E. Muknin — “Quantum continuous gl : semiin-
finite construction of representations”, Kyoto J. Math. 51 (2011), no. 2, p. 337-364.
M. Finkerserc & V. Ginzsure — “Cherednik algebras for algebraic curves”, in Represen-
tation theory of algebraic groups and quantum groups, Progress in Math., vol. 284,
Birkh&user/Springer, New York, 2010, p. 121-153.
W. L. Gax & V. Ginzeure — “Almost-commuting variety, D-modules, and Cherednik alge-
bras”, Internat. Math. Res. Papers (2006), article no. 26439 (54 pages).
[. Gangv, D. Jorpanx & P. Sarronov — “The quantum Frobenius for character varieties and
multiplicative quiver varieties”, J. Eur. Math. Soc. (JEMS) 27 (2025), no. 7, p. 3023
3084.
A. GiaQuinto & J. J. Znane — “Quantum Weyl algebras”, J. Algebra 176 (1995), no. 3,
p- 861-881.
I. Gorpbonx & J. T. Starrorp — “Rational Cherednik algebras and Hilbert schemes. II.
Representations and sheaves”, Duke Math. J. 132 (2006), no. 1, p. 73-135.
S. Gunninguam, D. Jorpan & M. Vazirant — “Quantum character theory”, 2023, arXiv:
2309.03117.
M. Hamvman — “Hilbert schemes, polygraphs and the Macdonald positivity conjecture”,
J. Amer. Math. Soc. 14 (2001), no. 4, p. 941-1006.
Harisu-Cuaanpra — “On representations of Lie algebras”, Ann. of Math. (2) 50 (1949),
p- 900-915.

, “Invariant differential operators and distributions on a semisimple Lie algebra”,
Amer. J. Math. 86 (1964), p. 534-564.

JILP — M., 2026, tome 13


http://arxiv.org/abs/2309.03117
http://arxiv.org/abs/2309.03117

254

[HK84]
[Jor09]
[Jor14]
[Jvai]
[TW20]
[JL92]
[KROS]
[Kir97]
[LS95]
[LS96]
[Mac15]
[Maj93]
[MS21]
[Ob104]
[RT90]
[SV11]
[VV10]
[Wal93]

[Wey39]

J. J. Wen

R. Horra & M. Kasuiwara — “The invariant holonomic system on a semisimple Lie alge-
bra”, Invent. Math. 75 (1984), no. 2, p. 327-358.
D. Jorban — “Quantum D-modules, elliptic braid groups, and double affine Hecke alge-
bras”, Internat. Math. Res. Notices (2009), no. 11, p. 2081-2105.

, “Quantized multiplicative quiver varieties”, Adv. Math. 250 (2014), p. 420-466.

D. Jorpan & M. Vazirant — “The rectangular representation of the double affine Hecke
algebra via elliptic Schur-Weyl duality”, Internat. Math. Res. Notices (2021), no. 8,
p- 5968-6019.

D. Jorban & N. Wuire — “The center of the reflection equation algebra via quantum

minors”, J. Algebra 542 (2020), p. 308-342.

A. Josern & G. Lerzrer — “Local finiteness of the adjoint action for quantized enveloping
algebras”, J. Algebra 153 (1992), no. 2, p. 289-318.

M. Kasuiwara & R. Rouquier — “Microlocalization of rational Cherednik algebras”, Duke
Math. J. 144 (2008), no. 3, p. 525-573.

A. A. KiriLrov, Jr. — “Lectures on affine Hecke algebras and Macdonald’s conjectures”,
Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 3, p. 251-292.

T. Levasseur & J. T. Starrorp — “Invariant differential operators and an homomorphism
of Harish-Chandra”, J. Amer. Math. Soc. 8 (1995), no. 2, p. 365-372.

, “The kernel of an homomorphism of Harish-Chandra”, Ann. Sci. Ecole Norm.
Sup. (4) 29 (1996), no. 3, p. 385-397.

I. G. MacponaLp — Symmetric functions and Hall polynomials, second ed., Oxford Classic
Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York,
2015.

S. Manp — “Braided groups”, J. Pure Appl. Algebra 86 (1993), no. 2, p. 187-221.

H. R. Morton & P. SamueLson — “DAHAs and skein theory”, Comm. Math. Phys. 385
(2021), no. 3, p. 1655-1693.

A. OBrLomkov — “Double affine Hecke algebras and Calogero-Moser spaces”, Represent.
Theory 8 (2004), p. 243-266.
N. Y. Resuerikaiy & V. G, Turaev — “Ribbon graphs and their invariants derived from

quantum groups”, Comm. Math. Phys. 127 (1990), no. 1, p. 1-26.

O. Scuarrrmany & E. Vasseror — “The elliptic Hall algebra, Cherednik Hecke algebras and
Macdonald polynomials”, Compositio Math. 147 (2011), no. 1, p. 188—-234.

M. Varacnoro & E. Vasseror — “Double affine Hecke algebras at roots of unity”, Represent.
Theory 14 (2010), p. 510-600.

N. R. Warracu — “Invariant differential operators on a reductive Lie algebra and Weyl
group representations”, J. Amer. Math. Soc. 6 (1993), no. 4, p. 779-816.

H. WeyL — The classical groups. Their invariants and representations, Princeton Univer-
sity Press, Princeton, NJ, 1939.

Manuscript received 21st October 2024
accepted 12th January 2026

Josnua Jeisning Wen, Fakultat fiir Mathematik, Universitat Wien,
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

E-mail : joshua. jeishing.wen®@univie.ac.at

Url : https://sites.google.com/view/joshuajeishingwen

JEP — M., 2026, tome 13


mailto:joshua.jeishing.wen@univie.ac.at
https://sites.google.com/view/joshuajeishingwen

	1. Introduction
	2. Double affine Hecke algebras
	3. Quantum groups
	4. Quantum differential operators
	5. Isomorphism
	Appendix. Modular transformations
	References

