[Estimations a priori pour le problème de l’évolution de la ligne de contact pour les équations de Saint-Venant $2D$ avec un obstacle partiellement immergé]
We consider the initial value problem for the $2D$ nonlinear shallow water model in the presence of a fixed partially immersed solid body. In this problem, we have a contact line where the solid body, the water, and the air meet, and whose projection on the horizontal plane moves freely even if the solid body is fixed. This wave-structure interaction problem reduces to an initial boundary value problem for the nonlinear shallow water equations in an exterior domain with a free boundary, for which we prove a priori energy estimates locally in time for solutions at the quasilinear regularity threshold under irrotationality and subcriticality assumptions. We use the weak dissipativity of the system, second order Alinhac good unknowns associated with a regularizing diffeomorphism, and a new type of hidden boundary regularity.
Nous étudions le problème de Cauchy pour les équations de Saint-Venant $2D$ en présence d’un objet fixe partiellement immergé. Nous sommes en présence d’une ligne de contact où le solide, le liquide et l’air se rencontrent et dont la projection sur le plan horizontal évolue librement même si le solide est immobile. Ce problème d’interaction vague-structure se réduit à un problème mixte pour les équations de Saint-Venant, dans un domaine extérieur avec frontière libre. Nous montrons des estimations d’énergie a priori, localement en temps, pour des solutions au seuil de régularité quasilinéaire, sous les hypothèses que l’écoulement est initialement irrotationnel et sous-critique. Nous utilisons la dissipativité faible du système, des inconnues d’Alinhac d’ordre $2$ associées à un difféomorphisme régularisant, ainsi qu’un nouveau type de régularité cachée au bord.
Accepté le :
Publié le :
Keywords: Wave-structure interactions, nonlinear hyperbolic initial boundary value problems, moving contact lines
Mots-clés : Interactions vague-structure, problème mixte hyperbolique non linéaire, dynamique de la ligne de contact
Tatsuo Iguchi 1 ; David Lannes 2
CC-BY 4.0
@article{JEP_2026__13__137_0,
author = {Tatsuo Iguchi and David Lannes},
title = {A priori estimates for the moving contact line problem for the {2\protect\emph{D}} nonlinear shallow~water equations with a~partially~immersed obstacle},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {137--202},
year = {2026},
publisher = {\'Ecole polytechnique},
volume = {13},
doi = {10.5802/jep.325},
language = {en},
url = {https://jep.centre-mersenne.org/articles/10.5802/jep.325/}
}
TY - JOUR AU - Tatsuo Iguchi AU - David Lannes TI - A priori estimates for the moving contact line problem for the 2D nonlinear shallow water equations with a partially immersed obstacle JO - Journal de l’École polytechnique — Mathématiques PY - 2026 SP - 137 EP - 202 VL - 13 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.325/ DO - 10.5802/jep.325 LA - en ID - JEP_2026__13__137_0 ER -
%0 Journal Article %A Tatsuo Iguchi %A David Lannes %T A priori estimates for the moving contact line problem for the 2D nonlinear shallow water equations with a partially immersed obstacle %J Journal de l’École polytechnique — Mathématiques %D 2026 %P 137-202 %V 13 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.325/ %R 10.5802/jep.325 %G en %F JEP_2026__13__137_0
Tatsuo Iguchi; David Lannes. A priori estimates for the moving contact line problem for the 2D nonlinear shallow water equations with a partially immersed obstacle. Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 137-202. doi: 10.5802/jep.325
[1] - “Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves”, Comm. Partial Differential Equations 34 (2009) no. 10-12, p. 1632-1704 | DOI | Zbl | MR
[2] - “Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels”, Comm. Partial Differential Equations 14 (1989) no. 2, p. 173-230 | DOI | Zbl | MR
[3] - “The zero surface tension limit of three-dimensional water waves”, Indiana Univ. Math. J. 58 (2009) no. 2, p. 479-521 | DOI | Zbl | MR
[4] - “Hard-congestion limit of the -system in the BV setting”, in Fourth Workshop on Compressible Multiphase Flows—derivation, closure laws, thermodynamics, ESAIM Proc. Surveys, vol. 72, EDP Sciences, Les Ulis, 2023, p. 41-63 | Zbl
[5] - “On the sharp regularity of solutions to hyperbolic boundary value problems”, Ann. H. Lebesgue 6 (2023), p. 1349-1369 | DOI | Numdam | MR | Zbl
[6] - “Freely floating objects on a fluid governed by the Boussinesq equations”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 39 (2022) no. 3, p. 575-646 | DOI | Numdam | Zbl | MR
[7] - “A numerical method for wave-structure interactions in the Boussinesq regime”, ESAIM Math. Model. Numer. Anal. 59 (2025) no. 6, p. 2895-2931 | DOI | Zbl | MR
[8] - Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007 | Zbl | MR
[9] - “Floating structures in shallow water: local well-posedness in the axisymmetric case”, SIAM J. Math. Anal. 52 (2020) no. 1, p. 306-339 | DOI | MR | Zbl
[10] - “On the return to equilibrium problem for axisymmetric floating structures in shallow water”, Nonlinearity 33 (2020) no. 7, p. 3594-3619 | DOI | MR | Zbl
[11] - “Well-posedness of a nonlinear shallow water model for an oscillating water column with time-dependent air pressure”, J. Nonlinear Sci. 33 (2023) no. 6, article ID 103, 42 pages | DOI | MR | Zbl
[12] - “Waves interacting with a partially immersed obstacle in the Boussinesq regime”, Anal. PDE 14 (2021) no. 4, p. 1085-1124 | DOI | Zbl | MR
[13] - “Contour dynamics of incompressible 3-D fluids in a porous medium with different densities”, Comm. Math. Phys. 273 (2007) no. 2, p. 445-471 | DOI | Zbl | MR
[14] - “The stability of compressible vortex sheets in two space dimensions”, Indiana Univ. Math. J. 53 (2004) no. 4, p. 941-1012 | DOI | MR | Zbl
[15] - “Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum”, Arch. Rational Mech. Anal. 206 (2012) no. 2, p. 515-616 | DOI | Zbl | MR
[16] - “The impulse response function and ship motions”, Technical report, DTIC Document, 1962
[17] - “Existence and stability of partially congested propagation fronts in a one-dimensional Navier-Stokes model”, Commun. Math. Sci. 18 (2020) no. 7, p. 1775-1813 | DOI | MR | Zbl
[18] - “Local and global well-posedness of one-dimensional free-congested equations”, Ann. H. Lebesgue 7 (2024), p. 1175-1243 | DOI | MR | Zbl
[19] - “Numerical simulations of the Euler system with congestion constraint”, J. Comput. Phys. 230 (2011) no. 22, p. 8057-8088 | DOI | MR | Zbl
[20] - “Congested shallow water model: roof modeling in free surface flow”, ESAIM Math. Model. Numer. Anal. 52 (2018) no. 5, p. 1679-1707 | DOI | Numdam | MR | Zbl
[21] - “Congested shallow water model: on floating body”, SMAI J. Comput. Math. 6 (2020), p. 227-251 | Numdam | DOI | MR | Zbl
[22] - “Problème mixte hyperbolique quasi-linéaire caractéristique”, Comm. Partial Differential Equations 15 (1990) no. 5, p. 595-645 | DOI | MR | Zbl
[23] - “Stability of contact lines in fluids: 2D Navier-Stokes flow”, J. Eur. Math. Soc. (JEMS) 26 (2024) no. 4, p. 1445-1557 | DOI | MR | Zbl
[24] - “Global well-posedness of contact lines: 2D Navier–Stokes flow”, 2024 | arXiv | Zbl
[25] - “Free-boundary problems for wave-structure interactions in shallow-water: DG-ALE description and local subcell correction”, J. Sci. Comput. 98 (2024) no. 2, p. Paper No. 45, 47 | DOI | MR | Zbl
[26] - “Classical solutions of the Stefan problem”, Tohoku Math. J. (2) 33 (1981) no. 3, p. 297-335 | DOI | MR | Zbl
[27] - “The compressible Euler equations in a physical vacuum: a comprehensive Eulerian approach”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 41 (2024) no. 2, p. 405-495 | DOI | MR | Zbl
[28] - “A shallow water approximation for water waves”, J. Math. Kyoto Univ. 49 (2009) no. 1, p. 13-55 | DOI | MR | Zbl
[29] - “Hyperbolic free boundary problems and applications to wave-structure interactions”, Indiana Univ. Math. J. 70 (2021) no. 1, p. 353-464 | DOI | MR | Zbl
[30] - “The 2D nonlinear shallow water equations with a partially immersed obstacle”, 2023, to appear in J. Eur. Math. Soc. | arXiv | Zbl
[31] - “Well-posedness of compressible Euler equations in a physical vacuum”, Comm. Pure Appl. Math. 68 (2015) no. 1, p. 61-111 | DOI | Zbl | MR
[32] - “On the motion of floating bodies. I”, Comm. Pure Appl. Math. 2 (1949), p. 13-57 | DOI | Zbl | MR
[33] - “On the motion of floating bodies. II. Simple harmonic motions”, Comm. Pure Appl. Math. 3 (1950), p. 45-101 | DOI | MR
[34] et al. - “Technical and economic readiness review of cfd-based numerical wave basin for offshore floater design”, in Offshore Technology Conference, 2016
[35] - “Well-posedness of the water-waves equations”, J. Amer. Math. Soc. 18 (2005) no. 3, p. 605-654 | DOI | Zbl | MR
[36] - “On the dynamics of floating structures”, Ann. PDE 3 (2017) no. 1, article ID 11, 81 pages | DOI | Zbl | MR
[37] - “The shoreline problem for the one-dimensional shallow water and Green-Naghdi equations”, J. Éc. polytech. Math. 5 (2018), p. 455-518 | DOI | Numdam | Zbl | MR
[38] - “Well posedness of F. John’s floating body problem for a fixed object”, 2025, published online first in Rev. Mat. Iberoam. | arXiv | Zbl
[39] - “Analysis of a simplified model of rigid structure floating in a viscous fluid”, J. Nonlinear Sci. 29 (2019) no. 5, p. 1975-2020 | DOI | MR | Zbl
[40] - The stability of multidimensional shock fronts, Mem. Amer. Math. Soc., vol. 41, no. 275, American Mathematical Society, Providence, RI, 1983 | DOI | Zbl
[41] - “Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary”, Comm. Pure Appl. Math. 28 (1975) no. 5, p. 607-675 | DOI | Zbl | MR
[42] - “Handling congestion in crowd motion modeling”, Netw. Heterog. Media 6 (2011) no. 3, p. 485-519 | DOI | Zbl | MR
[43] - “Stability of multidimensional shocks”, in Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser Boston, Boston, MA, 2001, p. 25-103 | DOI | Zbl
[44] - “Local well-posedness of the capillary-gravity water waves with acute contact angles”, Arch. Rational Mech. Anal. 248 (2024) no. 5, article ID 72, 71 pages | DOI | MR | Zbl
[45] - “An overview on congestion phenomena in fluid equations”, in Journées équations aux dérivées partielles, Groupement de recherche 2434 du CNRS, 2018, p. 1-34, Exp. 6 | DOI | Numdam
[46] - “The Hele-Shaw asymptotics for mechanical models of tumor growth”, Arch. Rational Mech. Anal. 212 (2014) no. 1, p. 93-127 | DOI | Zbl | MR
[47] - “A priori estimates for water waves with emerging bottom”, Arch. Rational Mech. Anal. 232 (2019) no. 2, p. 763-812 | DOI | Zbl | MR
[48] - “Well-posedness of characteristic symmetric hyperbolic systems”, Arch. Rational Mech. Anal. 134 (1996) no. 2, p. 155-197 | DOI | Zbl | MR
[49] - “Shallow water waves generated by a floating object: a control theoretical perspective”, Math. Control Relat. Fields 13 (2023) no. 4, p. 1529-1555 | DOI | Zbl | MR
[50] - “On the regularity of boundary traces for the wave equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998) no. 1, p. 185-206 | Numdam | Zbl | MR
Cité par Sources :