P-adic splittings of the quantum connection
[Scissions $p$-adiques de la connexion quantique]
Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 111-135

We introduce operations with $p$-adic integer coefficients, associated to idempotents in the quantum cohomology of a monotone symplectic manifold, and apply them to the structure of the quantum connection.

Nous introduisons des opérations à coefficients entiers $p$-adiques, associées à des idempotents dans la cohomologie quantique d’une variété symplectique monotone, et les appliquons à la structure de la connexion quantique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.324
Classification : 53D45, 12H25, 55S05
Keywords: Quantum cohomology, $p$-adic differential equations, cohomology operations
Mots-clés : Cohomologie quantique, équations différentielles $p$-adiques, opérations de Steenrod

Paul Seidel 1

1 MIT 2-276, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2026__13__111_0,
     author = {Paul Seidel},
     title = {\protect\emph{P}-adic splittings of the quantum connection},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {111--135},
     year = {2026},
     publisher = {\'Ecole polytechnique},
     volume = {13},
     doi = {10.5802/jep.324},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.324/}
}
TY  - JOUR
AU  - Paul Seidel
TI  - P-adic splittings of the quantum connection
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2026
SP  - 111
EP  - 135
VL  - 13
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.324/
DO  - 10.5802/jep.324
LA  - en
ID  - JEP_2026__13__111_0
ER  - 
%0 Journal Article
%A Paul Seidel
%T P-adic splittings of the quantum connection
%J Journal de l’École polytechnique — Mathématiques
%D 2026
%P 111-135
%V 13
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.324/
%R 10.5802/jep.324
%G en
%F JEP_2026__13__111_0
Paul Seidel. P-adic splittings of the quantum connection. Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 111-135. doi: 10.5802/jep.324

[1] D. Babbitt & V. Varadarajan - “Formal reduction of meromorphic differential equations: a group theoretic view”, Pacific J. Math. 109 (1983), p. 1-80 | DOI | Zbl | MR

[2] K. S. Brown - Cohomology of groups, Graduate Texts in Math., vol. 87, Springer-Verlag, New York, 1994 | MR

[3] Z. Chen - “Quantum Steenrod operations and Fukaya categories”, 2024 | arXiv | Zbl

[4] Z. Chen - “On the exponential type conjecture”, 2024 | arXiv | Zbl

[5] K. Conrad - “Infinite series in p-adic fields”, Unpublished note, available from the author’s homepage

[6] B. Dubrovin - “Geometry and analytic theory of Frobenius manifolds”, in Proc. International Congress of Mathematicians, (Berlin, 1998), Documenta Math. Series, European Mathematical Society, Zürich, 1998, p. 315-326 | DOI | Zbl | MR

[7] B. Dubrovin - “Painlevé transcendents in two-dimensional topological field theory”, in The Painlevé property, CRM Ser. Math. Phys., Springer, New York, 1999, p. 287-412 | DOI | Zbl

[8] B. Dwork & S. Sperber - “Logarithmic decay and overconvergence of the unit root and associated zeta functions”, Ann. Sci. École Norm. Sup. (4) 24 (1991) no. 5, p. 575-604 | DOI | Numdam | Zbl | MR

[9] K. Fukaya - “Morse homotopy and its quantization”, in Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., vol. 2.1, American Mathematical Society, Providence, RI, 1997, p. 409-440 | DOI | Zbl

[10] S. Galkin, V. Golyshev & H. Iritani - “Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures”, Duke Math. J. 165 (2016) no. 11, p. 2005-2077 | DOI | Zbl | MR

[11] S. Ganatra - “Automatically generating Fukaya categories and computing quantum cohomology”, 2016 | arXiv | Zbl

[12] S. Ganatra - “Cyclic homology, S 1 -equivariant Floer cohomology and Calabi-Yau structures”, Geom. Topol. 27 (2023) no. 9, p. 3461-3584 | DOI | Zbl

[13] K. Hugtenburg - “The cyclic open-closed map, u-connections and R-matrices”, Selecta Math. (N.S.) 30 (2024) no. 2, article ID 29, 90 pages | DOI | Zbl | MR

[14] C. U. Jensen - “On the vanishing of lim (i) , J. Algebra 15 (1970), p. 151-166 | DOI | Zbl | MR

[15] L. Katzarkov, M. Kontsevich & T. Pantev - “Hodge theoretic aspects of mirror symmetry”, in From Hodge theory to integrability and TQFT: tt*-geometry (R. Donagi & K. Wendland, eds.), Proc. Symposia in Pure Math., vol. 78, American Mathematical Society, Providence, RI, 2008, p. 87-174 | DOI | Zbl

[16] D. Marker - Model theory. An introduction, Graduate Texts in Math., vol. 217, Springer-Verlag, New York, 2002 | Zbl

[17] T. Nikolaus & P. Scholze - “On topological cyclic homology”, Acta Math. 221 (2018) no. 2, p. 203-409, Correction: Ibid. 222 (2019), no. 1, p. 215–218 | DOI | Zbl | MR

[18] S. Piunikhin, D. Salamon & M. Schwarz - “Symplectic Floer-Donaldson theory and quantum cohomology”, in Contact and symplectic geometry (Cambridge, 1994), Publ. Newton Inst., vol. 8, Cambridge University Press, Cambridge, 1996, p. 171-200 | Zbl | MR

[19] D. Pomerleano & P. Seidel - “The quantum connection, Fourier-Laplace transform, and families of A -categories”, 2023 | arXiv | Zbl

[20] P. Seidel - “Formal groups and quantum cohomology”, Geom. Topol. 27 (2023) no. 8, p. 2937-3060 | DOI | Zbl | MR

[21] P. Seidel & N. Wilkins - “Covariant constancy of quantum Steenrod operations”, J. Fixed Point Theory Appl. 24 (2022) no. 2, article ID 52, 38 pages | DOI | Zbl | MR

[22] C. Viterbo - “The cup-product on the Thom-Smale-Witten complex, and Floer cohomology”, in The Floer memorial volume, Progress in Math., vol. 133, Birkhäuser, Basel, 1995, p. 609-625 | DOI | Zbl

[23] C. Viterbo - “Functors and computations in Floer homology with applications. I”, Geom. Funct. Anal. 9 (1999) no. 5, p. 985-1033 | DOI | Zbl

[24] W. Wasow - Asymptotic expansions for ordinary differential equations, Interscience, New York, 1965 | Zbl | MR

[25] N. Wilkins - “A construction of the quantum Steenrod squares and their algebraic relations”, Geom. Topol. 24 (2020) no. 2, p. 885-970 | DOI | Zbl | MR

Cité par Sources :