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P-ADIC SPLITTINGS OF THE QUANTUM CONNECTION

BY PAaurL SEIDEL

Asstract. — We introduce operations with p-adic integer coefficients, associated to idempotents
in the quantum cohomology of a monotone symplectic manifold, and apply them to the structure
of the quantum connection.

Résumit (Scissions p-adiques de la connexion quantique). — Nous introduisons des opérations &
coefficients entiers p-adiques, associées a des idempotents dans la cohomologie quantique d’une
variété symplectique monotone, et les appliquons & la structure de la connexion quantique.
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1. OvVERVIEW

1.1. THE SPLITTING PROBLEM. Let M be a closed monotone symplectic manifold (for
algebraic geometers, complex projective Fano variety). Throughout, we will use coho-
mology with coefficients in an integral domain R. Quantum cohomology is H*(M)[q],
where ¢ is a formal variable of degree 2, equipped with the small quantum prod-
uct *,. Suppose that after inverting ¢, the unit in quantum cohomology can be writ-
ten as a sum of mutually orthogonal idempotents. This means we have eq,... e, €
H*(M)[q*"] (of degree zero) satisfying

1.1 1= _Jé =7,
(1.1) =e1+--tem, e *ge;= -
0 i#j.
MATHEMATICAL SUBJECT CLASSIFICATION (2020). — 53D45, 12H25, 55505.
KEyworbps. Quantum cohomology, p-adic differential equations, cohomology operations.
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112 P. SeipEL

Quantum product with the e; yields a splitting of H*(M)[g*!] into graded R[g*]-
modules. For reasons having to do with Fukaya categories [13, 3], one expects that
there should be induced splittings of other algebraic structures; specifically, we're
thinking of the (completed) quantum connection. Namely, introduce another formal
variable t of degree 2, and define the S'-equivariant version of quantum cohomology
to be H*(M)|g, t]. The quantum connection is the degree 2 endomorphism

Vigo,x = 1q0qx + c1(M) x4 .

We formulate the expectation mentioned above explicitly as:

Conxsecture 1.1, Given idempotents (1.1), the space H*(M)[qg™!][t] carries a
canonical splitting into graded R[q*'][t]-modules, which is invariant under Vi,
and whose t = 0 reduction agrees with the splitting of H*(M)[qT"] given by quantum
product with the idempotents.

It is worth while explaining the notation a little. H*(M)[g*!][t] is the (graded)
t-completion of H*(M)[g*!,t], so degree d elements are power series

r=Y at", wp € H (M)[g™"], |ux| = d - 2k.
k=0

As one sees, increasing powers of ¢ are necessarily accompanied by increasingly nega-
tive powers of ¢, because of the grading. The use of t-completion is natural in terms
of the Fukaya-categorical motivation, where it is part of the definition of negative
cyclic homology. For an alternative perspective, let’s introduce the degree zero vari-
able T = t/q, writing our space as H*(M)[¢*!][7]. We now focus on a single degree d,
and write elements as

o0 Ld/2]
x = Z Z i, xp € H7H (M),
k=0 j=[d/2]—dimc(M)

One has
, , 1 —d .
t0q (2’ ) = 2 (j — k)g? T = <—T237 -7 LMQ )xjquTk-
Therefore, the quantum connection Vs, = q_lvtqaq (dividing by ¢ so that it acts on
the degree d part) can be equivalently written as
Gr—d
2 b)

(1.2) Vorzg, = =120 + (¢ er(M) g ) = 7

where Gr multiplies each class in H*(M) by its degree, and is extended (¢, ¢)-linearly.
When thinking like this, in a single degree d, one can set ¢ = 1 and view our space as
Hever(M)[7] (d even) respectively H°dd(M)[r] (d odd). The connection (1.2) has a
quadratic pole at 7 = 0, corresponding to ¢/t = oo. The structure of that singularity
is involved in some of the major open conjectures in the field [6, 15, 10].
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P-ADIC SPLITTINGS OF THE QUANTUM CONNECTION n3

Remark 1.2 The word “canonical” in Conjecture 1.1 is somewhat vague. An infor-
mal interpretation would be “given by a geometric construction that does not require
further choices”, and this is how we will interpret it in Theorem 1.9. If one wanted
a rigorous approach, here are some properties one might want the decomposition to
have (further discussion of these properties is beyond the scope of this paper).

(i) The splittings should be compatible with products of symplectic manifolds.
This means, given idempotents (e;) on M, and (f;) on N, the splitting associated to
the collection (e; x f;) on M x N should be the tensor product of the original two
splittings; here, we assume that the R-cohomology of at least one of the manifolds
involved is free, to avoid Kiinneth formula complications.

(ii) Take a monotone and Spin Lagrangian submanifold L C M. The images of
the e; under the closed-open map H*(M)[g*!] — HF*(L, L) give idempotents ey, ; in
Floer cohomology. Each idempotent describes an object of the Fukaya category, and
the cyclic open-closed map [12] associates to this a class

leL,ilst € H*(M)[q*"][t].

One would then require that these elements should lie in the i-th summand of the
splitting.

The requirement (i) seems fairly harmless, and (ii) comes from the Fukaya-theore-
tical motivation we already mentioned. In combination, the two can be applied to
Lagrangian correspondences, thereby relating the splittings for different symplectic
manifolds.

1.2. STATE OF THE ART. There are some situations where Conjecture 1.1 is known
to hold, for essentially elementary reasons.

Backerounnp 1.3. Let’s require that H*(M) is a free graded R-module, and that
the endomorphism ¢~ tey (M), : H*(M)[gT!] — H*(M)[gT!] satisfies the following
(which can always be achieved by enlarging R appropriately):

(1.3) all eigenvalues lie in R; and the difference of any two distinct eigenvalues
is invertible.

In this situation, for each eigenvalue A there is an idempotent ey € H*(M)[g*!]
(a polynomial in g~ le;(M) with respect to the quantum ring structure), which
projects to the corresponding generalized eigenspace. The associated splitting of
the quantum connection exists and is unique; moreover, any covariantly constant
endomorphism must preserve the pieces (Lemma A.1). This splitting also has a par-
ticularly straightforward categorical interpretation [13], since the “Fukaya category
of M” is best thought of as a collection of categories indexed by A.

Backcrounp 1.4 (Communicated to the author by Hugtenburg). — Suppose the
quantum cohomology ring is semisimple: there are (1.1) which form an R-basis, so that

(1.4) H*(M)[¢F) = @R[qﬂ}ei as a graded ring.

JILP — M., 2026, tome 13



14 P. SeipEL

Then, there is a unique splitting of the quantum connection that extends this decom-
position. To see that, start with the coarser splitting by eigenvalues from Back-
ground 1.3. Assumption (1.4) implies that the A-summand of the quantum connection
is isomorphic to one of the form

dim¢(M) — d

7‘5(2 =4, o),

This is due to Dubrovin [7, Lect. 3] (see [10, §2.4], [13, §6.1], or [19, Lem. 2.1.16] for
expositions), and uses the five-point WDVV equation. At this point, assume that R
is a field of characteristic 0. Then (1.5) has the property that every covariantly con-

(1.5) 120, + A -7

stant endomorphism is determined by its 7 = 0 part, which can be arbitrary (Lem-
ma A.2). One applies that to the projection matrices given by those e; that lie in each
A-eigenspace, and obtains the desired unique splitting.

In spite of these encouraging partial results, Conjecture 1.1 in general appears
to resist an elementary approach: both the existence and uniqueness of splittings
with given 7 = 0 part are problematic, even for connections with a simple pole (see
Examples A.3 and A.4; in Background 1.4, Dubrovin’s result put us in a special
situation where those problems does not arise). The Fukaya-categorical approach also
runs into a fundamental problem: it relies on knowing that the open-closed map is
an isomorphism, which seems hard to establish in general (at least with the current
definition of Fukaya category, since it requires one to construct “enough” Lagrangian
submanifolds; see [11]). Instead, we draw inspiration from another partial result, which
points in a different direction.

Backerounp 1.5. — Suppose that R has characteristic p > 0, meaning that p =0 € R
for some prime p. Then, we have quantum Steenrod endomorphisms [9, 25, 20, 21]
associated to any class b € H*(M)[q™]
connection. In the special case b = ¢;, these operations satisfy the same relations as
the e;. The resulting splitting works on H*(M)[g™!, t], without formal completion
(something which one cannot hope to get in characteristic 0).

, which are compatible with the quantum

1.3. p-apic coerricients. — From now on, the standing assumption is:
R is the ring of integers in a p-adic number field K. Here, p is such that the
(1.6) integral cohomology of M has no p-torsion (and hence, the R-cohomology is
free).

Readers unfamiliar with this (as is the author, frankly) may think of the standard
p-adic numbers, R = Z, C K = Q,. The general case shares the basic properties of
Z, C Qp: namely, R is a principal ideal domain; it is complete with respect to the
decreasing filtration by powers of p; and K is obtained from R by inverting p.

Remark 1.6. — Take quantum cohomology with complex coefficients. Any splitting
of this is given by idempotents e; with coefficients in Q, which therefore lie in some
number field. Let K be the p-adic completion of that number field. If p is large, the
coefficients of the e; will lie in the ring of integers R C K. In that sense, our framework

JE.P — M., 2026, tome 13



P-ADIC SPLITTINGS OF THE QUANTUM CONNECTION nb

captures all the splittings that are possible over C. (This is the reason why we don’t
just stick to Zj.)

When looking at power series with R-coefficients, one can take the p-adic filtration
into account. Specifically for our case:

DeriNition 1.7. — Let R{(7)) C R[r] be the ring of those series
(1.7) x = me'k, zr € R,
k=0

with the following property. There are constants «, 8 such that, for all m, the reduction
of (1.7) modulo p™ is a polynomial in 7 of degree < ap™ + S. In other words, for all
k > ap™ + B, the coefficient xj, is divisible by p™.

This is a slightly sharper condition than p-adic convergence on the closed unit
disc (the latter amounts to saying that the reduction mod every p™ is a polynomial,
without degree bounds; or equivalently, that the coefficients of the series are divisible
by higher and higher powers of p).

Remark 1.8, — Let’s normalize the p-adic valuation on R so that it satisfies val(p?) =i.
Then, z € R{(T)) is equivalent to saying that there is a constant v such that

valy(7x) > log, (k) — .

Graphically, this means that the Newton polygon of p lies above some vertically
shifted version of y = log,(x) (see e.g. [5] for an elementary introduction to p-adic
power series). One can call that logarithmic decay of the coefficients (with slope 1);
this notion has come up previously in the theory of p-adic differential equations [8].

We define H*(M)[q1]((t)) by the same condition. The quantum connection is well-
defined on this space, because the operation g0, preserves p-divisibility. Our result is:

Tueorem 1.9. Take R as in (1.6). Let (e;) be a collection of idempotents (1.1). Then
there is a canonical splitting of H*(M)[q*']((t)), which is invariant under V40, , and
whose t = 0 reduction agrees with the splitting given by quantum product with the
idempotents.

Remark 1.10. — Concerning the projection to the i-th piece in this splitting, one can
be explicit about the constants in Definition 1.7: « is the g-pole order of e;, and 3 is
the complex dimension of M.

Arrrication 1.11. — In the situation from Background 1.3, the splitting is unique,
hence Theorem 1.9 provides obtain additional information about it. Let’s look at the
simplest case, where all eigenvalues are integers. Take N € N such that: the differences
of eigenvalues are invertible in Z[1/N], and H*(M;Z[1/N]) is torsion-free. One can

JIP — M., 2026, tome 13



16 P. SeipEL

apply Theorem 1.9 with R = Z,, for any p coprime to N. The outcome is that the
projection matrices giving the splitting,

Ex=Y_ EYr*, E} e End(H"(M;Z[1/N))),
k=0

have the following divisibility property: if £ > ap™ 4+ for some m, then E§ is divisible
by p™ (note that «, § are independent of p, see Remark 1.10).

Apprication 1.12. The previous observation also applies to the semisimple case
from Background 1.4. Again, suppose for simplicity that the e; are defined over some
ring Z[1/N]. The elementary argument which constructed the splitting does not con-
trol denominators, so a priori that might only be defined over Q. Theorem 1.9 shows
that it is defined over Z[1/N], and with the same divisibility property.

Examrre 1.13. Look at M = CP!', working first with Q-coefficients. Take the
degree zero part of H*(M;Q)[¢g*!][t], namely Q[7]-1&Q[r]-(¢~*h), where h = [point].
The idempotents associated to the eigenvalues, namely (1+h)/2, give rise to a splitting
of the connection (1.2). The matrices giving those splittings are (id + H)/2, where
the entries of H are

Hy =1+) 7% (%‘;1)2 (24)!

928j—2"7
j>0

Hyy = 370,(THa1), Hasp = —Hi1, His = Ha — $7°0-(Hu),

The only denominators are powers of 2, so if we think of these formulas as p-adic for
p > 2, then the coefficients are p-adic integers (3 = %(1 +p+pP+-) € Zy).
If we reduce mod p, the expressions coincide with those in [21, Ex. 1.6], which are
polynomials in 7 of degree < p. More interestingly, the series for Hs1, and hence all

the other ones, have p-adic radius of convergence p?/(?=1) > 1, which is stronger than
lying in Z, (7).

Exampere 1.14. — Take M to be the four-torus blown up at a point (this is not
monotone, but it’s spherically monotone, which is sufficient). We look only at the
part of quantum cohomology spanned by: 1; the class e of the exceptional curve; and
that of a point, —e?. The quantum connection (in degree d = 2) is

7 0 O
729, 4+ -1-10
0 1 —7

The splitting for the eigenvalue 1 of quantum multiplication (equivalently, the covari-
antly constant extension of quantum multiplication with e) is given by the idempotent
matrix E with nonzero entries

By =1, Biy=Y (-1)j'77, Byy=—Y jlv/, Ei3= E1aFs.
320 Jj=0

The p-adic radius of convergence is p*/®=1) > 1.

JEP — M., 2026, tome 13



P-ADIC SPLITTINGS OF THE QUANTUM CONNECTION 7y

input of QX

p(= 3) marked points arranged symmetrically

Ficure 1. Picture of (1.8).

We do not know whether the overconvergence phenomenon observed in these exam-
ples applies more generally to quantum connections. Finally, we can give a half-answer
to Conjecture 1.1 in the classical context:

Apprication 1.15. — Take the maximal decomposition of quantum cohomology
over Q (the unique one with the largest number of idempotents e;). Following
Remark 1.6, those idempotents give rise to ones defined over the ring of integers in
some p-adic number field K. Take the splitting provided by Theorem 1.9. Via the
embedding of Q into the algebraic closure of K, the existence of a splitting over
K[7] implies that of one over Q[r] (Proposition A.6). Because of the maximality
assumption, the 7 = 0 reduction of any such Q[r]-splitting must reproduce that
given by (e;). This is a pure existence result for splittings over Q, which fails to
address the “canonical” part of Conjecture 1.1 in any sense.

1.4. Ipea or taE consTRUCTION. — Theorem 1.9 is an extension of Background 1.5.
Let’s recall the definition of the quantum Steenrod endomorphisms, using coefficients
in F,, for the sake of familiarity. Fix a class b € H*(M;F,)[¢gT] of even degree (the
last-mentioned assumption is in principle unnecessary, but all our applications will
satisfy it). The associated operation is a map of degree p|b],

(1.8) QY1 : H*(M;Fy)[q¢™] — H*(M;F,)[q*™",t,04],

where 6; has degree 1 (it is an odd variable, so §? = 0 if p > 2; and 67 = ¢ for
p = 2). The definition is based on pseudo-holomorphic spheres in M, carrying (p + 2)
marked points, which satisfy the intersection constraints from Figure 1. That pic-
ture has an obvious symmetry group I'y = Z/p, and one works equivariantly (in the
sense of the Borel construction) with respect to that symmetry. The operations are
correspondingly indexed by H*(BT'1;F,) = Fp[t, 61].

Let’s increase the number of extra marked points to p?, and the symmetry to
Iy = Z/p?. The coefficient ring is similar, H*(BT'9; F,) = F,[t, 0], and the operations
are correspondingly maps of degree p?|b],

Qs : H*(M;Fy)[¢™] — H*(M;F,) g™, ¢,65).

JILP — M., 2026, tome 13



n8 P. SeipEL

bubbling
R —

Ficure 2. Geometric origin of (1.10).

Restriction to the subgroup I'y C I's gives rise to a map

(1.9) H*(BT'9;F,) — H*(BT'1;F,), tr—t, 02+—0.

What is the relation with the standard quantum Steenrod operations? If one takes the
surface underlying 32 ; and reduces the symmetry to I'y C I'y, there is some freedom
to move the p? points around. In particular one can combine them into groups of p,
which bubble off as in Figure 2. The outcome is the following commutative diagram,
where b*eP is the p-fold quantum power of b:

Q1 (bor)
_

(1.10) H*(M;Fy)[q*!] H*(M;Fy) [, t,01]
Tu.g)
RX2p
H*(M;Fy)[qF ] ——————— H*(M;Fp)[q*, ¢, 0]

Suppose that instead of coefficients in ), we use ones in Z,. For the I';-equivariant
operations, the nontrivial part of the coefficient ring is still annihilated by p:
(1.11) H*(BT1;Z,) = Z, ©1F, @ t*F, @ - - -,
where ¢ maps to the corresponding element under reduction to Fj-coefficients. This
explains why the operations (1.8) rarely (in fact, never under our assumptions (1.6),
because all the cohomology can be lifted to Z,) have a nontrivial ;-component; other
than that, it provides nothing new. On the next level,
(1.12) H*(BY3:Zp) = Ly ®H(L/p*) @ *(Z/p*) @ -+~ ,
with the map from (1.12) to (1.11) being the obvious reduction mod p. The analogue
of (1.10) shows that Q¥ p=«» admits a mod p? lift, which is given by Q. This
in particular applies to idempotent elements b, which are their own p-th powers.
For such idempotents, one can consider a tower of operations @3, ; with symmetry
Iy, = Z/p™ for any m, where the relevant coefficient ring is
(1.13) H*(BT1n;Zy) = Ly & t(Z/p™) ® *(Z/p™) & - - -
In the (inverse) limit, one obtains operations indexed by

H* (BT o3 Zy) = Zyt],

where I', is the union of all 'y C 'y C ---. That is how the splittings in Theorem 1.9
are constructed. As we increase m, the number of incidence conditions with b grows:

JEP — M., 2026, tome 13



P-ADIC SPLITTINGS OF THE QUANTUM CONNECTION 119

hence, so does the inverse power of ¢, at a rate that is at most a constant times p™.
This, and degree considerations, lead to the occurrence of rings Z, ((7)). The geometric
side of the construction is essentially the same as in the m = 1 case from [21], with the
difference being that the resulting information is inserted into a more refined algebraic
setup.

Remarks 1.16

(i) One could think of a more general case where the idempotents are defined over
a p-adic field K (instead of its ring of integers R); but our construction does not adapt
to that situation. Namely, if b is such that p?b has coefficients in R, for some d > 0,
one wants to set “ QX,, , = p—dr” QX,, pap”; but that makes no sense, given that the
nontrivial part of (1.13) is p™-torsion.

(i) The quantum connection belongs to an S*-equivariant world. The idea of using
the discrete group ', = Z/p™ as a replacement for the topological group S! is by
no means new (for an instance on a much deeper level than here, see [17, §II.1]).
Of course, there are many other constructions in symplectic topology where one does
work S'-equivariantly; one that’s close to our situation is the “cap product” action
of the cohomology of the loop space on symplectic cohomology [22, 23].

(iii) More generally, but still by the same means, one could define the operations
from Theorem 1.9 in the “weakly monotone” situation. Beyond monotonicity, this
means requiring that dime (M) < 3, or else that ¢i (M) is divisible by dim¢(M) — 2.
Unfortunately, those other cases do not mesh well with the existence of interesting
idempotents in quantum cohomology: for instance, blowups of complex codimension
two submanifolds would qualify only for dim¢ (M) < 3.

Acknowledgements. The author would like to thank Kai Hugtenburg and Tony Yue
Yu for enlightening conversations.

2. EQUIVARIANT COHOMOLOGY

2.1. Grour conomorocy. — Let I';, = Z/p™ be the finite cyclic group of order p™,
with generator o,,. To compute the cohomology of that group with R-coefficients,
where R is as in (1.6), one can use the following two-periodic free resolution of the
trivial R[T,,]-module:

I+opy, 4 tob !

(2.1)  C.(ED,) = {R[Pm] &=L RN, RIT,] <=l }

From that, one gets the group cochain complex
(2.2)  C*(BT,) = Hompr,(Co(ET,),R) = {RSRES RS RS ... ).
The group cohomology is accordingly

R * =0,
H*(BI'),) = ¢ R/p™ % > 0 even,
0 * odd.

JILP — M., 2026, tome 13



120 P. SeipEL

(We are already using topological notation, even if the constructions are set up in
purely algebraic terms.) To get the cup product on group cohomology, one needs a
diagonal map for the resolutions (see e.g. [2, Chap. 5]). We use

C.(ETy,) — C(ETw) @ Cy(EDy),
i Y G Rt > o) @ op(ary),

j+ k=i j+k=i—1
(2:3) T 057 <ocp™
CiY Z ¢j ® cry + 7Y ® Om(ck)-
k=i

Here, ¢; stands for the obvious generator of (2.1) in degree —2¢ (all our complexes are
cohomologically graded), and ¢;y for the same in degree —2¢ — 1. The map (2.3) is
R[T',,])-linear, where the action on the right hand side is the diagonal one. From that,
one gets the product

C*(BT,) ® C*(BTy,) — C*(BTy,),
t @ th — Itk
j k j+k
4 @ th0 —s tI1Rg,

0@ k0 s F D) ki,
2

Here, t' is the obvious generator of (2.2) in degree 2i, and 0 that in degree 2i + 1.
On H*(BT,,), this yields a polynomial algebra structure with ¢ = t! as generator.

Remark 2.1. — Temporarily switch to mod p™ coefficients, where H*(BI',,; R/p™) =
R/p™ in each nonnegative degree. Then, the last line of (2.4) reduces to
2m=lt p=2,
0®0+— P
0 p> 2.

This matches what one knows to be true from topology (that 2 has to be 2-torsion).
Multiplication by p yields an inclusion T'y, < Tppyy1, 0 = 0, 1. On the resolu-
tions (2.1), one has corresponding maps

-1 1 ..
R[F"L] <0m— R[Fm] +om +

(2.5) b Jl + Opmy1 + o abh Jl
Om+1 — 1

R[Fm-i-l] <—R[Fm+1] 1+g o T R[Fm+1] — ...

RIDy] e

These are maps of R[[';,]-modules, where the module structure on the bottom row
is that induced by the inclusion of groups. The labels on the vertical arrows indicate
the image of the generator 1. For instance, the middle | is

k pk p—1y _ _pk pk+1 pk+(p—1)
Om O-m-l—l(l + Om+1 + o+ 0m+1) = Om+1 + Om+1 +o 4+ Om+1 .

JE.P — M., 2026, tome 13



P-ADIC SPLITTINGS OF THE QUANTUM CONNECTION 121

The induced map on (2.2) is

r—Y sp- P .p

(2.6) Tl v Tl
m

r—Y% P g

On cohomology, one gets that
H*(BTy41) — H*(BTy,)

is the quotient map R/p™*! — R/p™ in all nontrivial degrees. Let I's, be the union
(direct limit) of the T',,; in other words, the discrete subgroup of S! consisting of
elements whose order is a power of p.

Lemma 2.2, —  Restriction to Ty, induces an isomorphism

R * even,

H*(BTs) = lim,, H*(BT,,) =
(Bleo) = it HY(BL) {0 % odd.

Proof. — The corresponding statement for group homology is standard:

H,.(BT) 2 ligm H,.(BT,,).
Dualizing shows that H*(BT ) is isomorphic to the cohomology of the derived inverse
limit of C*(BT';;,). Now, inverse limits are exact for finitely generated R-modules [14,

Th. 1]. Hence, one can equivalently use the naive inverse limit of the C*(BT,) (even
though it violates the Mittag-Leffler condition). That naive limit is

R—0—R—0—R—--
and its cohomology agrees with 1'an H*(BT,,). O
Lemwva 2.3, The inclusion T'so — St (considering Ty as a discrete group, and S*
as a topological group) induces an isomorphism H*(BS') & H*(Bl ).
Proof. — This is best seen topologically: BT',, is a circle bundle over BS!, so one has
a Gysin sequence
(2.7) ... — H*(BS') — H*(BT,,) — H* Y(BS') — ---

This shows that H*(BS') — H*(BT,,) is onto (the identity in degree 0, and reduction
mod p™ in positive even degrees). Passing to the inverse limit yields the desired result.
O

2.2. EQUIVARIANT COHOMOLOGY WITH COEFFICIENTS. — Let V be a chain complex of
R-modules, with an action of I';,,. Define
(2.8) C*(BTp; V)= Hompyr, ) (C4(ET), V)= {V o=ty y ZHomEry gy Izl

Here, the notation stands for collapsing a bicomplex (with the standard Koszul signs),
but taking the direct product of the copies of V' involved. Write H*(BT,,; V') for the
cohomology. This construction is obviously functorial under (homotopy classes of)
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I'),-equivariant chain maps. The relevant generalization of (2.6), derived as before
from (2.5), is

C*(BTp41; V) — C* (BT, V),
(2.9) t'o — thy,

t'0v — t'O(v + OV + -+ 0';:“__,'_11’()).
There is also a generalization of the cup product,
H*(BT,,;V)® H*(BT,,,; W) — H*(BT,,,;V @ W),
where V@ W carries the diagonal action. One can use (2.3) to derive an explicit chain
level formula for this product, generalizing (2.4):
C*(BT,,; V) ® C*(BT ;W) — C*(BT,; V @ W),
th @ thw — 7 (v @ w),
100 @ thw — VHFO(v @ o (w)),

(2.10) | |
0 @ t*w — RO (v ® w),

t10v @ tFOw — Z L (67 (v) ® 0%, (w)).
o<r<s<pm

For any chain complex B, we can consider V = B®P" with the I',,-action which
cyclically permutes the factors (with signs). If b € B is a cocycle of even degree, then
beP" € CO(BT,,; B®"™) is an equivariant cocycle. This construction satisfies (see
e.g. [21, Lem. 2.5]):

Levvia 2.4. — The class of [b®P"] € H*(BT,,; B®*") depends only on [b] € H*(B).

In the special case where V = C*(X) is the (R-coefficient, cellular or singular)
chain complex of a space with a G-action, H*(BT,,; C*(X)) = Hf (X) is (Borel)
equivariant cohomology. We will need to look at one instance of this, where the space
is the two-sphere

S=C=Cu{c},
with the rotational action of I';,,. We have integration over the equivariant fundamen-
tal cycle, as well as restriction to the fixed points:
s+ Hy(S) — Hy ?(point),
Po, Poo : HY, (S) — HY (point).

Levmva 2.5, The following diagram commutes:

fs t

Hp (S) ————— H} *(point) ————— Hy: (point)
m &//) m

PO — Poo

Proof. — Generalizing (2.7), one has that X xp, ET,, is a circle bundle over
X xr  ES! leading to a Gysin sequence

o — Hi(X) — Hp (X)) — Hi7H(X) — -
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Take X = S. Since HY, (S) is concentrated in even degrees, the map to I',,-equivariant
cohomology is onto, hence it suffices to prove the statement for Hg, instead, but that
is an instance of the standard localization theorem. ]

3. THE p-ADIC OPERATION

3.1. CONSTRUCTION FOR FIXED M. The geometric construction generalizes [21, §4]
in a straightforward way. We will summarize the strategy and outcome, with just
enough details so that one check that the generalization goes through, and then
explain the algebraic formalism into which the outcome is inserted. Choose m > 1
and A€ Hy(M;Z). Everything is based on parametrized moduli spaces of pseudo-
holomorphic maps, with Morse-theoretic adjacency conditions. These are spaces of
pairs (w,u) of the following kind:

w e S,

u:S=C— M, [u]=A,

Hdu+Joduoj). = vy, ue) : TS: — TMy(,

u(0) € W"(zp), u(c0) € W*(2s),

W(Cm,j) € W (zj) for j =1,...,p™, where (,, ; = exp(2mi(j — 1/2)/p™).

(3.1)

Here, S°° C C* is our model for ET,,, with the action rotating all complex coordi-
nates. J is a compatible almost complex structure on M. The inhomogeneous term v
is parametrized by w € S°°, and satisfies a I';;,-equivariance condition with respect to
the action on S x S [21, Eq. (4.1)]. We fix a Morse function f and Riemannian met-
ric on M, forming a Morse-Smale pair. (xo, z1,. .., Zpm, Too) are critical points of f,
and W* /W™ their stable/unstable manifolds for the gradient flow (one can picture
the incidence conditions as a pseudo-holomorphic sphere with Morse half-trajectories
attached, as in Figure 3). We use the cell decomposition of S from [21, §2a], where
the cells of each dimension form a free I',,-orbit

m

Am’d, O’m(Am,d), RN oP _1(Am,d) C 5.

m

Explicitly, in coordinates (wg,ws,...) € S C C*, the defining equations for A,, 4
are

wqy2 2 0, Wy = wgaq2=--=0 if d is even,
67271'1'0

Wq/2-1/2 >0 for 6 e [0,27T/pm], Wq/241/2 = Wd/243/2 =+ = 0 if d is odd.

With suitable orientations, the cellular chain complex reproduces (2.1) [21, Egs. (2.7),

(2.8)]:

A d—1] +om[Ama—1] +--+ Uf’nm_l[Am,d_l] d > 0 even,

(3.2)  OlAmad = {am[Am,d_l] [Ama] d odd.
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Ficure 3. Schematic picture of the constraints on marked points from (3.1).

One restricts (3.1) to w € Ayyq ~ 0A,, 4. Counting points in the resulting zero-

dimensional moduli spaces yields numbers
(3.3) na(Am d, 0, T15 -, Tpm, Too) € L
' for |zoo| — |2o| — 21| — -+ — |2pm | +2 [, c1 (M) 4+ d = 0.

Write n(x_, x4 ) € Z for the count of gradient flow lines connecting orbits with |z, | =
|2_|+1, which defines the Morse cohomology differential. An analysis of the ends of the
one-dimensional spaces [21, Lem. 4.1] shows that (3.3) satisfy the following relations:

Z tn(zo, 2)na(Apm g, T, &1, ..., Tpm, Too)
T

+ g En(xg, 2)na(Am,d, Tos T1, - -+, The1, T, Tht1s - - - Too)
x,k
+ g Ena(Am,d; To, 1, - - - Tpm, T)N(T, Too)
(3.4) -
Ena(Am,d—1,%0,T1,- -, Tpm, Too)
+cyclic permutations of (z1,...,2,m) d even,
FNA(Am,d—1,T0, Tpm, T1,y -+« oy Tpm 1, Too)
EnA(Am,d—1,T0, &1, -, Tpm, Too) d odd.

We have omitted the signs, among which are the Koszul signs that occur when cycli-
cally permuting entries; but have indicated one extra degree-independent sign differ-
ence in the last case, which comes from (3.2).

The algebraic encapsulation of this goes as follows. Take the Morse homology and
cohomology chain complexes, C,(f) and C*(f) (with R-coefficients; both cohomolog-
ically graded, so C.(f) is concentrated in nonpositive degrees). For any d, define a
map of degree —d —2 [, ¢1 (M),

m

C*(f) — Cu(f)®7 @ C*(f),
(35) Zo —> Z nA(Ad7$07x1a"'axpmaxoo)(xl®"'®xpm)®$oo~

Consider the cyclic permutation action of T'), on Ci( f)®pm. Here, the convention
is that the generator o, should move factors to the left, o (1 @ -+ ® zpm) =
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+(x2 ® - ® xpm ® x1). The relations (3.4) say that if we add up over all d, thinking
of (3.5) as the component of C%(BT,,;-), the outcome is a chain map of degree

_2 fA Cl(M)7
(3.6) C*(f) — C*(BL.; C(/)®P") @ C*(f).

Lemma 3.1
(i) Up to chain homotopy, (3.6) is independent of all choices.
(ii) It is nullhomotopic unless A =0 or [, c1(M) > 0.
(iii) There are only finitely many A for which (3.6) is nonzero.

Proof

(i) This is a standard argument using an extra parameter r € [0, 1].

(ii) Assume that A does not satisfy our conditions. Adapt the previous parametri-
zed setup so that for » = 0 the inhomogeneous terms v are zero, in which case we’re
looking at straight pseudo-holomorphic maps; for energy reasons, this means that the
r = 0 stratum is empty, giving a nullhomotopy.

(iii) Gromov compactness tells us that, given upper bounds on d and on [, ¢1(A),
there are only finitely many A for which the numbers (3.3) can be nonzero. On the
other hand, for degree reasons, these numbers must be zero if d or ¢ (A) are large. O

All other forms of the quantum Steenrod operations are derived from (3.6) by
purely algebraic manipulations. Take p™ tensor copies of the canonical pairing
between Morse chains and cochains, C*(f)®?" @ C,(f)®*" — R. From that, the
product (2.10), and the functoriality of C*(BT,,;), one gets a map

(3.7) C* (BT C*(f)®P™) @ C* (BT y; Co (f)®P") — C* (B ).
Take
C*(BLym; C*()®") @ C*(f)
id ® (3.6)
(3.8) C* (BT ; C*(£)#P") @ C*(BTy; Cu(f)®P") @ C*(f)

%

(3.7) @ id
C*(BLy) @ C*(f).

Explicit formulas for (3.8) can be derived from (2.10). On C®V**(BT,,; C*(f)®P"),
one gets

ti(xl ® ...®xpm) X xog — Z( Z it”d/QnA(Am)d,xo,...,xoo)

Too d even

i Z iti+(d—1)/29nA(Am,d,g;0, .. ,xoo))xoo.
d odd

The formula for the other half of (3.8), which we will not need here, generalizes
[21, Eq.(4.15)] (introduced there without its motivation through cup products).
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On cohomology, writing things topologically, we get an Hy, (point)-module map

. N 3.8
QSa  HE (MP") @ H*(M) =5 H (MP" % M) _38) H (M),

where the I',,-action on the right hand side is trivial. Let’s add up over all A, with

Cl(M)

the usual ¢/a weights, to get a single map

(3.9) Q  Hp (MP") @ H* (M) — Hf (M)[q];

this uses Lemma 3.1(ii) to exclude negative powers of q.

Suppose we have an even degree cocycle in C*(f)[g]. One can insert its p™-fold
tensor product into the g-linearly extended version of (3.8), and get a chain map
C*(f)lg) = C*(BT'},) ® C*(f)[g]- By Lemma 2.4, the chain homotopy class of this
map depends only on the cohomology class of our original cocycle. As a final step,
we use the no-torsion assumption from (1.6) and Kinneth-split the right hand side.
The outcome, for each b € H®V*"(M)[q|, is a map of degree p™|b|,

(3.10) QEmp : H*(M)[q] — Hr., (point) ® H*(M)]q].

As already mentioned in the introduction, one usually extends that further to an
Hy (point)-linear endomorphism. We will need some basic properties of these oper-
ations. The first two are straightforward from the definition:

Levwva 3.2 — Q% 0 = " QYm0

Lemma 3.3. Forgetting the equivariant structure yields a diagram

QEm,b .
H*(M)q] ——— Hp, (point) @ H*(M)[q]

N Jrestrict to HY.
b*aP ) %, -
H*(M)[q] o) H*(M)[q]

where the bottom — is quantum multiplication with the p™-fold quantum power of b.

Remark 3.4. — From Lemma 3.3, it is clear that (3.9) is not additive in b for m > 1
(not even modulo p™, so multiplying with powers of ¢ won’t help).

The analogue of [21, Prop. 4.8], with exactly the same proof, is the following:
Levmma 3.5 — For by, be € H®V(M)[q],
sz,bl o sz,bg = QEbl*qb2‘

In particular, because %, 1 is an idempotent endomorphism whose ¢ = 0 reduc-
tion is the identity, it follows that:

Lemwva 3.6. QY1 =1d.
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Remark 3.7. — Another obvious question is to determine the classical (A = 0) contri-
bution to QX . In the m = 1 case, this classical part is the cup product with the total
Steenrod power of b, which we write here as St;(b) ([21, Lem. 4.6]; see [20] for sign con-
ventions). For general m, the same argument shows that the classical contribution is
again the cup product with some, as yet undetermined, class Sty (b) = b*" +O(t, 6,,).
In Example 1.14 one finds that for m > 1,

2 (p,m) =(2,2),

Stm(e) = emt? “te, R/ 3¢, =M —1) =
0 p>2orm>2.

3.2. Covariant constancy. — The version of [21, Th. 1.4] in our circumstances is:

Prorosirion 3.8. — For anym > 1 and b € H*(M)[q], the (Hf (point)-linear exten-
sion of the) operation (3.10) satisfies

(3.11) thaq 0 QYmp — QYmp 0 thaq =0.

There are two contributions to the left hand side of (3.11). The first one is obtained
by differentiating b®P" (this was unnecessary in [21], where one could start with a
g-independent b and then obtain the general case by additivity; which we cannot do
for m > 1, see Remark 3.4). At the chain level, this contribution is obtained from

Rp™ ;
MO B U g (D) © O (F)

(3.8)

(3.12)  C*(f)

C*(Bl'm) @ C*(f)[q]-

Since b is a cocycle in C*(f)[g], so is q04b. By definition of the differential (2.8), one
has

m

tq0y(b®P") = 1(gOgb ® b ® - - - @ b+ cyclic permutations) = df(qgdb @b ® - - @ b),

which shows that (3.12) is nullhomotopic.
The second contribution comes from differentiating @, and then inserting [b®pm]
into that derivative. This strictly follows the corresponding part of [21]. By definition,

905(Q%m) = ([ 4 1 (M))gJa Q3 4.
A

One interprets this weighted sum geometrically, as coming from a modified version
of our operations (this is a form of the divisor axiom for Gromov-Witten invariants).
For that, we introduce an additional marked point z, € S which can move around
freely, with incidence condition

(3.13) u(zs) € D,

where D C M is a submanifold Poincaré dual to ¢ (M) . The outcome is an analogue
of (3.6), taking the form of a chain map of degree 2 —2 [, ¢ (M),

(3.14) C*(f) — C* (BT1; C*(S) @ C. (/)" @ C*(f).
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Here, one uses a I'y,-invariant cell decomposition of S [21, §2¢] to define C,(S) and
its dual C*(S). This decomposition contains the fixed points 0, co as invariant 0-cells,
and also a I'y,-invariant fundamental chain [S] € C_2(S). To define (3.14), one counts
solutions of (3.1) satisfying (3.13), where z, is constrained to lie in one of the cells
(if z, = 0 that means bubbling off of an extra sphere with two marked points; and
similarly for z, = 00); see [21, §§4c & 5a]. The properties relating this to quantum
Steenrod operations are the following direct analogues of [21, Lem. 5.2-Lem. 5.4]:

Prorosition 3.9. Up to chain homotopy, the following holds.

(i) Pairing (3.14) with [S] € C_5(S)'™ recovers [, c1(M) times (3.6).

(ii) Pairing (3.14) with [0] € Co(S)'™ yields the sum, over all A = Ay + A, of the
compositions

c1(M) 4, - (3.6) for As

C*(f) C*(f) C* (BT CL(£)®P") @ C*(f).

Here, c1(M)x 4, stands for the chain map underlying the A;-component of the quan-
tum product.
(iii) Similarly, pairing with [0o] € Co(S)F'™ yields the sum of

BOLTA, c(Br o ()P 0 € ()

id @ (er(M) *a, -)

(/)

C*(BL; C(£)®P") @ C*(f).

The rest of the argument is algebraic manipulation. As in (3.8), one can use cup
products and pairings to rearrange (3.14) into the form

C*(f) ® C*(BLyn; C*(f)®P") — C*(BT'; C*(S)) @ C*(f).
On cohomology, this yields an Hy. (point)-linear map
(3.15) H*(M)® Hf (MP") — Hf (S)® H*(M),

where on the target, we use the no-torsion assumption from (1.6) for simplicity. Propo-
sition 3.9 translates into:

Cororrary 3.10
(i) The composition

(3.15) [ ®id

H*(M)® Hf: (MP") Hf (S)® H*(M) —2—— H} (point) @ H*(M)

equals ([, c1(M)) Q% A.
(ii) The composition
(3.15) po ® id
- =

H*(M)® Hp. (MP™) Hf (S)® H*(M) H} (point) ® H*(M)

equals the sum over all A= Ay + As of

(c1(M) %4, ) ®1id QYm, A,
LT,

H*(M)®H} (MP") H*(M)®H;}, (MP") Hi (M).
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(iii) The composition

m 3.15
a0 e B (™) B e (§) @ B0
equals the sum over all A = A1 + As of
sz,Al
=

o @ id .
& Hyf (point) @ H*(M)

H* (M) © By, (M*") H;,, (point)  H* (M)

id ® (1 (M) %4, +)

Hy. (point) @ H*(M).
Applying Lemma 2.5, and adding over all homology classes A, yields
tq0q(Q%m) + (id @ c1(M) g ) 0 QX — QX 0 ((1(M) x4 ) @ id) = 0.

After inserting the class [b®P"] € Hy (MP"), this is just the relation needed to
complete the proof of Proposition 3.8.

3.3. IncreasiNg m. — The missing piece is the following statement, which general-
izes (1.9):
Prorosition 3.11. — Form > 1, the operations (3.9) fit into a commutative diagram
(3.16) Hy  _ (M)]q]
H*(M) restrict to I',,,—1 C Ty,
m
Hy, (M)l[g]

In fact, this statements also holds for m = 1 and restriction to the trivial group Iy,
where it turns into the m = 1 case of Lemma 3.3. The m > 1 situation is not
conceptually different, but requires a bit more setup. Take (3.6) followed by restricting
the symmetry to I',,_1,

311 () B, o (Bros . (nF) & ()

—Qfﬁ+CV<Brm,u(LLﬂ®”Ué@C%f»

Our cell decompositions (3.1) of S have the property that

R - A if d is even,
" T A Uom(Apa) U- - Uok (Apg) if d is odd.

(In the second case, the only overlaps happen at the boundary, where two faces with
opposite orientation meet.) Hence, (3.17) amounts to considering spaces of pseudo-
holomorphic maps parametrized by A,,_; 4 rather than A,, 4.

Next, in the definition from @3,,;, the geometric data are required to be
I',,-symmetric; but relaxing the requirement to I',,_1-symmetry allows a wider range
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of choices. Concretely, let’s count solutions of a modified version of (3.1) where
the p™ marked points are in positions symmetric for I';;,_1, in the sense that

i ™M m,jJ ] + < m7
(318) CotserrsCmgm € S~ {0,00}, e2mi/e" e, o Jomate T EPSP
Cm,j+p—pm Otherwise;

and similarly, the inhomogeneous term v is invariant with respect to the I',, _1-action
on S*° x S. Any setup with those properties yields a chain map C*(f) —
C*(BTy_1; C(f)®P™) ® C*(f) homotopic to the original (3.17).

We want to produce a specific chain homotopy, so let’s introduce an additional
parameter r € (0, 1]. The position of the marked points will depend on that parameter:
for concreteness, let’s say that

(3.19) Conkp—t = exp(27ri(1 —r)(k—1/2)/p™ ! + 2mir(kp — £ — 1/2)/pm)
. fork=1,....,p™ Y ¢=0,...,p—1,

which satisfies (3.18) for any r. For = 1, this reduces to the original choice of marked
points from (3.1). On the other hand, lim,_,¢ G kp—e = Gm—1,k, SO that the p™ points
come together in groups of p (one for each k). A more appropriate view of the r — 0
limit is that we have a nodal surface with one principal component S, and bubble
components §k ~ S for k = 1,...,p™ '. The nodes are the points (yn_1% € S
attached to co € Sy. In this picture, the r — 0 limits of (3.19) lie in those bubble

components; we write them as
(320) CS’L,kp—Z S Sk AN {OO}

Because of the I';, _1-symmetry, which permutes the bubbles cyclically, the location of
(3.20) is the same on each bubble; there is a certain freedom in the parametrization,
but one possibility is to write

(3.21) Conkp—t = L.

Conversely, one thinks of the situation for small » > 0 as being obtained by gluing
all those bubble components back into the principal one, at a scale proportional to r
(see Figure 2, where p = 3 and m = 2). The choice of inhomogeneous terms should
be carried out accordingly: for » = 1 it reproduces that entering into the definition
of (3.17); for small r, the inhomogeneous term is glued together from ones on the
principal component and the bubbles. Again for symmetry reasons, all bubbles will
carry the same inhomogeneous term, which we additionally choose to be independent
of w e 5.

For the moduli spaces of pseudo-holomorphic maps with the additional param-
eter r, this means that the compactification obtained by adding the r = 0 limits
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involves maps on our nodal surface, of the following kind:

u:S — M,
Up: S — M fork=1,...,p" ",
(3.22) u(0) € W*(zo), u(o0) € W*(2s),

U(Cm—l,k) - ak(oo)7
ﬂk(gm,kp_e) € W*(Zkp—s).

As a consequence, the parametrized moduli space yields a chain homotopy relating
(3.17) to a version defined using (3.22): here, u still satisfies a Cauchy-Riemann equa-

tion whose inhomogeneous term varies in dependence of w € S°°, while the u; obey
a fixed such equation.

At this point, we adopt a standard technique, going back to [18], which is to mod-
ify the coincidence condition at the nodes from the fourth line of (3.22), by inserting
a finite length gradient flow line between the two points. More precisely, we define
another parametrized moduli space depending on r € [0,00), where the new condi-
tion is
(3.23) u(Gm—1,k) = ¢" (uk(0)),

¢" being the gradient flow of f. In the limit r — oo, the equation on the gk—cornpo—
nents completely decouples from that on S (having its own W* and W* intersection
conditions). Since that equation is set up using marked points (3.21) in fixed position,
it defines the p-fold quantum product. On the principal component, the r» — oo limit
recovers the equation underlying (3.6) with m replaced by m — 1 (see Figure 4).

Finally, the entire construction (the sum of the two chain homotopies) yields a
homotopy commutative diagram

C* (BT p_1; Co ()%™ ") @ C*(f) —— C*(BTp_1; C (£)®P") @ C*(f)

(3.24)  (3.6) for m — q T(2.9)

c(f) 3.6) C*(BTy; Cu()?P) @ C*()

Here, the unlabeled — is the tensor product of p™~! copies of the map C.(f) —
C.(f)®P dual to the p-fold quantum product. We have omitted considerations of
homology classes of pseudo-holomorphic curves, which would have complicated the
diagram somewhat, but they are easy to see: if the bottom — of (3.24) counts con-
tributions in class A, we should really consider a sum: the top — involves the tensor

product of components corresponding to classes Ay, ..., Aym-1, while the left 1 is the
contribution of A— Ay —---—A,m-1. From here, pairing with b®P" immediately leads
to (3.16).

3.4. Proor or Trreorewm 1.9. — For b € H®V*(M)[g*!] define a map
QS+ H*(M)[g™'] — H, (point) @ H*(M)[q*"].
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@, _ _ critical
point
|

’
/
L !
@, _ _ critical 1
point I
|
Cg%)_y _ critical
point

Ficure 4. The parametrized moduli space with incidence conditions (3.23).

If b has no negative powers of ¢, this is obtained from (3.10) by extending coeffi-
cients; and one generalizes it by setting Q%,, ;-1 = q_meEm,b, compatibly with
Lemma 3.2. Proposition 3.8 remains true, because tqaq(q‘pm) = —p"tg P =0 ¢
Hi, (point)[g*"].

Specialize to the case where b = b*eP is (a degree 0 class and) equals its p-th power.
Then, Proposition 3.11 relates Q41,5 and @3, 5, allowing us to define an operation
QY .b, which fits into a diagram

hI.
(D)) —Z™ s e (point) @ H* (M) (g
(3.25) T
N +1 Q@00 * +1
H*(M)[g™"] H*(M)[g™[t]

Here we have considered each power of ¢ separately, taken the inverse limit (compare
Lemma 2.2), and then assembled those into H*(M)[g™!][t], which is the completion
of H}_(point) ® H*(M)[g*!]. This is somewhat coarser than what is actually the
case:

Levva 3.12. — The operation QYoo takes values in H*(M)[g™1]((t)).

—Q

Proof. — Suppose that the nontrivial terms in b come with powers ¢~ and higher.
Then, by definition, QX,,;, contains only powers ¢ P"® or higher. Since QY is
of degree 0, this means that any term with a power of ¢ higher than p™a + 3, 8 =
dim¢ (M), has to be zero. By construction, the same is true for the mod p™ reduction
of Q¥ p- O

Now suppose we have a collection (1.1). Extend QX ., to endomorphisms of
H*(M)[qF']{(t)), which are covariantly constant by Proposition 3.8. From Lemma 3.5,
it follows that

Yooer =17,
ono,ei © ono,ej = Q e ! J
0 i # j.
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From Lemma 3.3 and (3.25), the ¢ = 0 reduction of QX ., is the quantum product
with e;. Finally, >, Q¥ ¢, is the identity, because it is an idempotent endomorphism
whose t = 0 reduction is the identity.

,AI’I’E\JI)IX. ELEMm ENTARY CONSIDERATIONS

We collect here some properties of formal power series connections, which are
relevant for the discussion in Section 1. The general context is that of an integral
domain R, but we will impose additional conditions as needed. We consider connec-

tions
(A1) Vg, =720, + A + Alr + -+ A™ € Mat,».(R).
Lemma A1, — Assume that the leading term A° of our conmection satisfies (1.3).

Then there is a unique splitting of R"[7], compatible with the connection and which,
for T =0, reduces to the generalized eigenspace decomposition for AY. Moreover, any
covariantly constant endomorphism preserves this decomposition.

A classical reference is [24, Chap.IV, Th.11.1]. For expositions, see [13, §6.1] or
(in our context) [4, Cor. 2.4].

Lemma A2, — Take R to be a field of characteristic 0. Take a connection (A.1) with a
simple pole, meaning A° = 0. In addition we assume that A' is non-resonant (no two
eigenvalues differ by a nonzero integer).

(i) Any covariantly constant endomorphism of the connection over R((1)) is in fact

defined over R[T].

(i) The constant term E° of such an endomorphism satisfies [A', E] = 0.

(iii) Conversely, given any E° with [A', E°] =0, it can be uniquely extended to an
endomorphism of the connection.

This is a straightforward order-by-order computation. The following two examples
show that the non-resonance condition is necessary both for existence and uniqueness;
with a view to our application, we focus on idempotent endomorphisms.

2
9 -7 T
T@T—i—(o 0).

Then, E° = diag(1,0) commutes with A! = diag(—1,0), but does not admit a covari-
antly constant extension. This can be checked by hand; more conceptually, it is a

ExamrrLe A.3. Take

consequence of the fact that our connection has non-semisimple monodromy.

Exavere A4, Take 720, + diag(0,0,0, —7) (this is the trivial connection after a
monomial base-change). Then,

1
diag(1,1,0,0) and ( Ly )
0

T
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are both covariantly constant endomorphisms; idempotent; and have the same con-
stant term.

Lemva A5, — Let R be an algebraically closed field of characteristic 0. For any
connection V over R((T)), the covariantly constant endomorphisms form a finite-
dimensional R-vector space.

The case of a connection with a regular singularity follows from Lemma A.2. The
general case can be reduced to this using the Hukuhara-Turrittin-Levelt decomposi-
tion (see e.g. [1]).

Prorosition A.G6. — Let R be an algebraically closed field of characteristic 0. Take a

connection (A.1) and projections EY € Mat,.(R),

EY =y,

B0, A°) =0, I=E9+-+E EE)={" """/
0 i#j.

Suppose that, over E[[T]] for some larger field R > R, there is a splitting of our

connection which for 7 = 0 reduces to that given by the projections. Then, such a

splitting already exists over R.

Proof. We are looking for covariantly constant endomorphisms
0 Ez 1= j7
EiZEi+O(T), I=E1—|—"'+Em, EZEJZ i .
0 i#j.

Within the finite-dimensional vector space of all endomorphisms over R((7)), this is a
variety defined by equations that are linear (vanishing of the coefficients with negative
powers of 7, and the first two parts of the equation above) and quadratic (last part).
Generally, if an affine variety defined over R has an f%—point, it also has an R-point

(Lefschetz principle, see e.g. [16, Cor. 2.2.10]). O
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