Invariants of the singularities of secant varieties of curves
[Invariants des singularities des variétés sécantes de courbes]
Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 1-39

Consider a smooth projective curve and a given embedding into projective space via a sufficiently positive line bundle. We can form the secant variety of $k$-planes through the curve. These are singular varieties, with each secant variety being singular along the previous one. We study invariants of the singularities for these varieties. In the case of an arbitrary curve, we compute the intersection cohomology in terms of the cohomology of the curve. We then turn our attention to rational normal curves of even degree. In this setting, we prove that all of the secant varieties are rational homology manifolds, meaning their singular cohomology satisfies Poincaré duality. We then compute the nearby and vanishing cycles for the largest nontrivial secant variety, which is a projective hypersurface.

Étant donnés une courbe projective lisse et un plongement donné dans l’espace projectif via un fibré en droites suffisamment positif, nous pouvons former la variété sécante des $k$-plans passant par la courbe. Ce sont des variétés singulières, chaque variété sécante étant singulière le long de la précédente. Nous étudions les invariants des singularités de ces variétés. Dans le cas d’une courbe arbitraire, nous calculons la cohomologie d’intersection en termes de cohomologie de la courbe. Nous nous intéressons ensuite aux courbes rationnelles normales de degré pair. Dans ce cadre, nous prouvons que toutes les variétés sécantes sont des variétés d’homologie rationnelle, ce qui signifie que leur cohomologie singulière satisfait à la dualité de Poincaré. Nous calculons ensuite les cycles proches et les cycles évanescents pour la plus grande variété sécante non triviale, qui est une hypersurface projective.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.321
Classification : 14C30
Keywords: Perverse sheaves, Hodge theory, nearby and vanishing cycles, secant varieties
Mots-clés : Faisceaux pervers, théorie de Hodge, cycles proches et évanescents, variété des sécantes

Daniel Brogan 1

1 The University of Michigan, Department of Mathematics, 530 Church St, Ann Arbor, MI, USA 48109
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2026__13__1_0,
     author = {Daniel Brogan},
     title = {Invariants of the singularities of secant~varieties of curves},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1--39},
     year = {2026},
     publisher = {\'Ecole polytechnique},
     volume = {13},
     doi = {10.5802/jep.321},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.321/}
}
TY  - JOUR
AU  - Daniel Brogan
TI  - Invariants of the singularities of secant varieties of curves
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2026
SP  - 1
EP  - 39
VL  - 13
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.321/
DO  - 10.5802/jep.321
LA  - en
ID  - JEP_2026__13__1_0
ER  - 
%0 Journal Article
%A Daniel Brogan
%T Invariants of the singularities of secant varieties of curves
%J Journal de l’École polytechnique — Mathématiques
%D 2026
%P 1-39
%V 13
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.321/
%R 10.5802/jep.321
%G en
%F JEP_2026__13__1_0
Daniel Brogan. Invariants of the singularities of secant varieties of curves. Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 1-39. doi: 10.5802/jep.321

[1] A. Bertram - “Moduli of rank-2 vector bundles, theta divisors, and the geometry of curves in projective space”, J. Differential Geom. 35 (1992) no. 2, p. 429-469 | Zbl | MR

[2] D. Brogan - Hodge theory of hyperplane sections and secant varieties of curves, Ph. D. Thesis, Stony Brook University, 2025

[3] J.-L. Brylinski - “Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques”, in Géométrie et analyse microlocales, Astérisque, vol. 140-141, Société Mathématique de France, Paris, 1986, p. 3-134 | Numdam | Zbl

[4] M. A. A. de Cataldo & L. Migliorini - “The hard Lefschetz theorem and the topology of semismall maps”, Ann. Sci. École Norm. Sup. (4) 35 (2002) no. 5, p. 759-772 | DOI | Numdam | Zbl | MR

[5] M. A. A. de Cataldo & L. Migliorini - “The decomposition theorem, perverse sheaves and the topology of algebraic maps”, Bull. Amer. Math. Soc. (N.S.) 46 (2009) no. 4, p. 535-633 | DOI | MR

[6] Q. Chen - Limits of Hodge structures via D-modules, Ph. D. Thesis, State University of New York at Stony Brook, 2022

[7] A. Dimca - Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992 | DOI | MR | Zbl

[8] P. Du Bois - “Complexe de de Rham filtré d’une variété singulière”, Bull. Soc. math. France 109 (1981) no. 1, p. 41-81 | DOI | Numdam | MR | Zbl

[9] D. Eisenbud - “Linear sections of determinantal varieties”, Amer. J. Math. 110 (1988) no. 3, p. 541-575 | DOI | MR | Zbl

[10] D. V. Gugnin - “On integral cohomology ring of symmetric products”, 2017 | arXiv | Zbl

[11] M. Kashiwara & P. Schapira - Sheaves on manifolds, Grundlehren Math. Wissen., vol. 292, Springer-Verlag, Berlin, 1994 | MR

[12] M. A. Khadam, M. Michałek & P. Zwiernik - “Secant varieties of toric varieties arising from simplicial complexes”, Linear Algebra Appl. 588 (2020), p. 428-457 | DOI | Zbl | MR

[13] A. Lőrincz & R. Yang - “Filtrations of D-modules along semi-invariant functions”, 2025 | arXiv | Zbl

[14] I. G. Macdonald - “Symmetric products of an algebraic curve”, Topology 1 (1962), p. 319-343 | DOI | MR | Zbl

[15] L. G. Maxim - Intersection homology & perverse sheaves—with applications to singularities, Graduate Texts in Math., vol. 281, Springer, Cham, 2019 | DOI | MR | Zbl

[16] M. Mustaţă & M. Popa - “Hodge ideals for -divisors, V-filtration, and minimal exponent”, Forum Math. Sigma 8 (2020), article ID e19, 41 pages | DOI | MR | Zbl

[17] S. Olano, D. Raychaudhury & L. Song - “Singularities of secant varieties from a Hodge theoretic perspective”, 2023 | arXiv

[18] C. A. M. Peters & J. H. M. Steenbrink - Mixed Hodge structures, Ergeb. Math. Grenzgeb. (3), vol. 52, Springer-Verlag, Berlin, 2008 | MR | Zbl

[19] M. Saito - “Modules de Hodge polarisables”, Publ. RIMS, Kyoto Univ. 24 (1988) no. 6, p. 849-995 | DOI | Zbl

[20] W. Schmid - “Variation of Hodge structure: the singularities of the period mapping”, Invent. Math. 22 (1973), p. 211-319 | DOI | MR | Zbl

[21] C. Schnell & R. Yang - “A log resolution for the theta divisor of a hyperelliptic curve”, 2022 | arXiv | Zbl

[22] C. Schnell & R. Yang - “Higher multiplier ideals”, 2023 | arXiv | Zbl

[23] J. Steenbrink - “Limits of Hodge structures”, Invent. Math. 31 (1975/76) no. 3, p. 229-257 | DOI | MR | Zbl

Cité par Sources :