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INVARIANTS OF THE SINGULARITIES OF

SECANT VARIETIES OF CURVES

by Daniel Brogan

Abstract. — Consider a smooth projective curve and a given embedding into projective space
via a sufficiently positive line bundle. We can form the secant variety of k-planes through the
curve. These are singular varieties, with each secant variety being singular along the previous
one. We study invariants of the singularities for these varieties. In the case of an arbitrary curve,
we compute the intersection cohomology in terms of the cohomology of the curve. We then turn
our attention to rational normal curves of even degree. In this setting, we prove that all of the
secant varieties are rational homology manifolds, meaning their singular cohomology satisfies
Poincaré duality. We then compute the nearby and vanishing cycles for the largest nontrivial
secant variety, which is a projective hypersurface.

Résumé (Invariants des singularities des variétés sécantes de courbes). — Étant donnés une
courbe projective lisse et un plongement donné dans l’espace projectif via un fibré en droites
suffisamment positif, nous pouvons former la variété sécante des k-plans passant par la courbe.
Ce sont des variétés singulières, chaque variété sécante étant singulière le long de la précédente.
Nous étudions les invariants des singularités de ces variétés. Dans le cas d’une courbe arbitraire,
nous calculons la cohomologie d’intersection en termes de cohomologie de la courbe. Nous
nous intéressons ensuite aux courbes rationnelles normales de degré pair. Dans ce cadre, nous
prouvons que toutes les variétés sécantes sont des variétés d’homologie rationnelle, ce qui signifie
que leur cohomologie singulière satisfait à la dualité de Poincaré. Nous calculons ensuite les
cycles proches et les cycles évanescents pour la plus grande variété sécante non triviale, qui est
une hypersurface projective.
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2 D. Brogan

1. Introduction

For a smooth projective curve embedded into projective space one can form the
secant variety of k-planes. If the embedding is sufficiently positive, each secant vari-
ety will be a proper subvariety of projective space which is singular exactly along the
next smallest secant variety. In this paper we study invariants of the singularities of
these secant varieties. In particular we compute their intersection cohomology and,
in the case of a rational normal curve of even degree, in which case the largest non-
trivial secant variety is a hypersurface, we compute the nearby and vanishing cycle
sheaves. We also study the question of which secant varieties for which curves are
rational homology manifolds. Throughout the paper we mostly work in the language
of perverse sheaves, however almost all results in this paper automatically lift to the
category of pure or mixed Hodge modules.

For a variety X of dimension n, the intersection complex ICX is in general smaller
than the shifted constant sheaf QX [n]. In the language of Hodge theory, ICX is pure
of weight n and is the the top graded piece of QX [n]. There is a natural map QX [n] →
ICX and X is called a rational homology manifold if this map is an isomorphism. This
is true, for example, when X has finite quotient singularities. In general, the difference
between QX [n] and ICX can be understood as a measure of the singularities of X.

Now suppose f : X → C is a holomorphic function. The nearby and vanishing
cycle sheaves ψfQX [n] and φfQX [n] are intimately related to the topology of the
hypersurface X0 = f−1(0). They give a refined kind of measure of the singularities
of X0 and they contain the information of the monodromy of the nearby fibers of
the function f around the origin in C. However, explicitly applying these sheaves is
notoriously difficult to do except in certain circumstances. To give some examples, this
is done in the cases of a normal crossings divisor in [23], [19], and more recently in [6],
as well as for a generic determinant, see [13]. Despite secant varieties not even being
local complete intersections and their defining functions being rather complicated
determinants, we are still able to get a complete description of ψfQX [n] and φfQX [n].

Another motivation for studying secant varieties of rational normal curves, and
indeed the original motivation for this project, is their relationship to theta divisors on
Jacobians of hyperelliptic curves. This relationship can be seen in two ways. Consider
a hyperelliptic curve C of genus g and the theta divisor Θ on the Jacobian J(C). The
first relation is that for a point x ∈ Θ of multiplicity m, the tangent cone TCxΘ ⊆ Cg

is isomorphic to the cone over the topmost secant variety of a rational normal curve of
degree 2m [21, App. A]. Thus the study of secant varieties is in a sense a local study
of theta divisors on hyperelliptic Jacobians. The second relation is via resolutions of
singularities. In [1] a log resolution is constructed for the pair (PN , X), where X is a
secant variety of a curve. In [21] a log resolution of the pair (J(C),Θ) is constructed
in a similar fashion, and it turns out that the fibers of this resolution are exactly the
analogous resolutions for secant varieties of rational normal curves.

Let X be a complex manifold of dimension n, K a perverse sheaf on X, and
f : X → C a holomorphic function on X which has an isolated critical value at 0.
Then one can form ψfK and φfK, the nearby and vanishing cycles of K with respect
J.É.P. — M., 2026, tome 13



Invariants of the singularities of secant varieties of curves 3

to f . Roughly speaking these are perverse sheaves on the singular fiber X0 = f−1(0)

which measure the behavior of K near X0 in a way that is more refined than just
taking the restriction K|X0 .

When K = QX [n], the nearby and vanishing cycles give subtle information about
the singularities of X0. This idea is used, in particular, in Saito’s definition of mixed
Hodge modules. Given a candidate Hodge module M on X one needs to check certain
regularity conditions along all holomorphic functions f on X, and this is done via the
functors ψf and φf . More recently, the Hodge theoretic nearby and vanishing cycles
have found applications in the study of singularities via Hodge ideals [16] and higher
multiplier ideals [22]. Having explicit descriptions of ψfK and φfK more easily allows
one to understand exactly what information it contains regarding the singularities
of X.

The paper is in two main sections. The first deals with secant varieties of arbitrary
curves, and the second focuses on the case of rational normal curves.

1.1. Secant varieties of arbitrary curves. — We begin in Section 2 by construct-
ing secant varieties Seck and secant bundles Bk for an arbitrary smooth projective
curve C. After developing these preliminaries we move on to studying the intersection
complex of each Seck. Sections 2.2 to 2.6 are devoted to computing the intersection
cohomology of the secant varieties Seck. This is the main result of this section.

Theorem 1.1. — Let C be a smooth projective curve, M a line bundle on C which
separates 2k points, and ζ the class of the tautological line bundle on the k-th secant
bundle Bk → C(k). Then the intersection cohomology of Seck is given by the formula

IH j(Seck) =
⊕

max{j−k,0}⩽2i

∧j−2iH1(C)ζi,

where 0 ⩽ j ⩽ 2k − 1. The degrees above the middle are obtained by duality.

In particular, the intersection cohomology is entirely determined by the cohomology
of the curve C. We end with Section 2.7 in which we compare more explicitly the
constant sheaf and the intersection complex for Sec2.

1.2. Secant varieties of rational normal curves. — The bulk of the paper is con-
tained in Section 3. This section is dedicated to the study of secant varieties of rational
normal curves. Here we switch to the simpler notation Sk for Seck in order to distin-
guish this setting from the case of an arbitrary curve. For a rational normal curve of
degree d and any fixed j ∈ {k − 1, . . . , d − k + 1}, the ideal defining Sk is generated
by the (k + 1)× (k + 1) minors of the generic Hankel matrix

Hd,j =



x0 x1 x2 · · · xj

x1 x2
. . . . . . xj+1

x2
. . . . . . . . . xj+2

...
. . . . . . . . .

...
xd−j xd−j+1 xd−j+2 · · · xd


.

J.É.P. — M., 2026, tome 13



4 D. Brogan

It is known that the ideal generated by these minors is independent of j. Since we
will primarily be interested in rational normal curves of even degree d = 2n, it will be
convenient to take j = n and work with the square matrix H2n,n which we will simply
denote by Hn. Note that the zero locus of f = detHn is the projective hypersurface Sn

for the rational normal curve of degree 2n.
We begin with a key lemma about Hankel matrices in Section 3.1, which allows

us to conclude that Sk is locally isomorphic to a product of an affine space and the
cone over a smaller secant variety for a rational normal curve of smaller degree. This
“inductive structure” on the Sk’s will be the most important point in the calculation
of the nearby cycle sheaves. In Sections 3.2 to 3.6 we review the groundwork necessary
to prove Theorem 1.3 below, the main result of the paper. In working toward this goal,
in Section 3.7 we can prove the following.

Theorem 1.2. — Let C be a rational normal curve of even degree. Then each non-
trivial secant variety Sk satisfies

QSk
[2k − 1] ∼= ICSk

.

Thus Sk is a rational homology manifold (compare with [17, Cor. G]), so its singu-
lar cohomology satisfies Poincaré duality. It is already known that these varieties are
rational and have rational singularities, so in some sense the Sk are “close” to pro-
jective space. In fact, Theorem 1.2 is true for rational normal curves of any degree.
However, limiting ourselves to the case of even degree will simplify the presentation
greatly and will suffice for the purposes of this paper. A proof for arbitrary degrees
appears in the author’s dissertation [2]. Sections 3.8 to 3.10 contain the meat of the
proof of Theorem 1.3, with Section 3.10 describing the final result.

To state the main theorem we consider a rational normal curve of degree 2n.

Theorem 1.3. — For each k = 1, . . . , n let Xk be the affine cone over Sk. Then we
have the following:

(1) All eigenvalues of the monodromy T : ψfQC2n+1 [2n + 1] → ψfQC2n+1 [2n + 1]

are of the form λ = e2πip/q where q ∈ {1, . . . , n+ 1} and gcd(p, q) = 1.
(2) For each eigenvalue λ of T , the nearby cycle sheaf ψf,λQC2n+1 [2n + 1] is pure

of weight 2n.
(3) If λ = e2πip/q is an eigenvalue of T with q ̸= 1, then

ψf,λQC2n+1 [2n+ 1] = IC (Lλ),

where Lλ is a rank 1 local system on Xn−q+1.
(4) φf,1QC2n+1 [2n+ 1] = 0, so ψf,1QC2n+1 [2n+ 1] = QXn [2n].

So the nearby and vanishing cycles decompose into a direct sum of intersection
complexes of rank 1 local systems, each of which is supported on some Xk. This
is perhaps the simplest nontrivial result that one could hope for. An application of
Theorem 1.3 will appear in an upcoming work of Schnell and Yang in which they show
that a similar result holds for theta divisors on hyperelliptic Jacobians. We end in

J.É.P. — M., 2026, tome 13



Invariants of the singularities of secant varieties of curves 5

Section 3.11 with a way to explicitly compute eigenvectors of the monodromy operator
on the nearby cycles.

Acknowledgements. — I am very grateful to my advisor Christian Schnell for intro-
ducing me to this topic and his guidance throughout. I thank Ruijie Yang for helpful
comments on an earlier draft of this work. I would also like to express gratitude
to Mark de Cataldo for helpful conversations which helped get this project started.
Finally, I thank Matthew Huynh, Brad Dirks, Yilong Zhang, and the many PhD stu-
dents at Stony Brook for the various helpful conversations over the course of this
project.

2. Secant varieties of curves

2.1. Secant bundles and secant varieties. — In this section we construct secant
varieties as in [1]. We only review the main points needed for this paper. We use
the convention that Pk(V ) denotes the projective space of hyperplanes in the vector
space V . Let C be a smooth projective algebraic curve over C. The k-fold symmetric
product C(k) is the quotient of Ck by the natural action of the symmetric group Σk.
The variety C(k) is smooth projective of dimension k and its points are the effective
divisors of degree k on C.

Definition 2.1. — We say that a line bundle M ∈ PicC separates k points if

h0(C,M(−D)) = h0(M,C)− k

for all D ∈ C(k).

Example 2.2. — A line bundle M separates one point if and only if it is basepoint
free and M separates two points if and only if it is very ample.

Example 2.3. — The line bundle OP1(n) separates n+ 1 points for n ⩾ 0.

The universal divisor Dk of C × C(k) is defined as the image of the embedding

C × C(k−1) −→ C × C(k)

(p,D) 7−→ (p, p+D).

Let π1, π2 denote the projections to the first and second factors of C ×C(k). Then we
have the following exact sequence

0 −→ π∗
1M ⊗ O(−Dk) −→ π∗

1M −→ π∗
1M ⊗ ODk

−→ 0

and when M separates k points this sequence remains exact when pushed down
to C(k). Let us set the notation

Ek = (π2)∗(π
∗
1M ⊗ ODk

).

This is a vector bundle of rank k over C(k). We then define the k-th secant bundle of C
(with respect to M) to be the projective bundle Bk(M) = P(Ek) over C(k). We may
also denote this as Bk(C) when the line bundle M is clear from context, and when

J.É.P. — M., 2026, tome 13



6 D. Brogan

there is no danger of confusion we will omit M and C from the notation entirely and
simply write Bk. There is a natural map

βk : Bk(M) −→ P((π2)∗(π∗
1M)) = PH0(C,M)× C(k) −→ PH0(C,M).

If the original line bundle M separates 2k points, then the image of βk is the variety
of secant (k − 1)-planes or the k-th secant variety of C and is denoted by Seck(M).
Again, we will write Seck(C) or simply Seck depending on the context. The notation is
such that a particular fiber of Bk, or a particular (k− 1)-plane in Seck, is determined
by choosing k (not necessarily distinct) points on the curve C. If Bk

D denotes the fiber
of the map Bk → C(k) over D = p1+ · · ·+pk, then βk(Bk

D) is the (k−1)-plane secant
to C at the points in the support of D with the appropriate multiplicities.

For m < k there are also natural maps αm,k induced by the addition map

a = am,k : C(m) × C(k−m) −→ C(k),

Bm × C(k−m) Bk

C(m) × C(k−m) C(k)

αm,k

pm × idC(k−m) pk

a

In the diagram above, pm is the structure map of the projective bundle. The bundle
Bm × C(k−m) over C(m) × C(k−m) is called the m-th relative secant bundle. One can
show that these maps satisfy the following compatibility lemma.

Lemma 2.4. — For m < ℓ < k, the following diagrams commute:

Bm × C(k−m) Bk PH0(C,M)

Bm

π1

αm,k βk

βm

Bm × C(ℓ−m) × C(k−ℓ) Bℓ × C(k−ℓ) Bk

Bm × C(k−m)
(1, a)

(αm,ℓ, 1) αℓ,k

αm,k

What we need from [1] is an understanding of when Seck is the classical k-th
secant variety, and what structure the maps βk and αm,k have for varying k and m.
We summarize the results in the following proposition.

Proposition 2.5. — Let C be a smooth curve in PN embedded via a line bundle M
which separates 2k points. For each m ⩽ k, let Zk

m = αm,k(B
m × C(k−m)) and write

Uk = Bk ∖ Zk
k−1.

(1) B1 is isomorphic to the curve C, the secant bundle map β1 : B1 → C is an
isomorphism, and with this identification, β1 : B1 → PN is the embedding into PN

induced by M . In particular, Sec1(C) = C.

J.É.P. — M., 2026, tome 13



Invariants of the singularities of secant varieties of curves 7

(2) For each m = 2, . . . , k, Secm is a proper subvariety of PN singular along
Secm−1. Furthermore, the map βm : Bm → Secm is an isomorphism on Um. In partic-
ular, it is a resolution of singularities with exceptional divisor β−1

m (Secm−1) = Zm
m−1.

(3) For each m ∈ {2, . . . , k}, the singular locus of Zk
m is Zk

m−1. Furthermore, the
map αm,k : Bm × C(k−m) → Zk

m is an isomorphism on Um × C(k−m). This map is
similarly a resolution of singularities with exceptional divisor Zm

m−1 × C(k−m).

From this point on we will always make the assumption that M separates 2k points
so that the above proposition applies, unless otherwise stated.

2.2. Intersection cohomology. — The majority of this section will be devoted to
finding a general formula for the intersection cohomology of Seck(C) for any smooth
curve C embedded by a sufficiently positive line bundle. Section 2.3 covers some
homological preliminaries about perverse sheaves and semismall maps. In Sections 2.4
and 2.5 we study the relevant maps on the cohomology of the secant bundles Bk. The
final computation takes place in Section 2.6. For the rest of the section, we work with
cohomology with Q-coefficients unless otherwise stated, and we omit the coefficient
field from our notation in this case.

Notation 2.6. — Many of the Hodge structures floating around in this section are
Tate twisted, sometimes many times. Usually these twists are induced by explicit
differential forms, and so to keep track of this while avoiding notation that is too
unwieldy, we will write the forms explicitly. For example, if Bk is the k-th secant
bundle for a curve C, we have the projection map

Hj(Bk × C) ∼=
2⊕

i=0

Hj−i(Bk)⊗Hi(C) −→ Hj−2(Bk)⊗H2(C) ∼= Hj−2(Bk)(−1).

We will instead write the right hand side as Hj−2(Bk)ω where ω ∈ H2(C) is a gen-
erator. This will have the advantage of making the effect of certain maps completely
clear.

2.3. Semismall maps and the decomposition theorem. — Let f : X → Y be a proper
morphism of irreducible complex varieties and define

Ym = {y ∈ Y | dim f−1(y) = m}.

We say that f is semismall if

(2.1) 2m+ dimYm ⩽ dimX

for each m. The Ym for which equality holds in (2.1) are called the relevant strata for f .
De Cataldo and Migliorini prove an especially useful form of the BBDG decomposition
theorem when X is smooth and the morphism in question is semismall [4, Th. 3.4.1].
We state a simplified version which will suffice for our purposes.

J.É.P. — M., 2026, tome 13



8 D. Brogan

Theorem 2.7. — Let f : X → Y be a proper semismall morphism between irreducible
complex varieties. Furthermore, assume that X is smooth and the fibers of f are irre-
ducible. Then in the bounded derived category Db

c(Y ) there is a canonical isomorphism

Rf∗QX [n] ∼=
⊕
m

IC Ym
,

where the sum runs over all relevant strata for f .

2.4. Finding the intersection complex. — Now let C be a curve embedded in pro-
jective space by a line bundle which separates 2k points. We stratify the secant variety
Seck by open subsets Um of the smaller secant varieties:

Um = Secm ∖ Secm−1 ⊆ Seck

for m ⩽ k. By Proposition 2.5 we have that the fiber over x ∈ Um is

β−1
k (x) ∼= C(k−m).

It follows that for x ∈ Um

2 dimβ−1
k (x) + dimUm = 2(k −m) + 2m− 1 = 2k − 1 = dimBk.

Thus βk is a semismall morphism for each k and each stratum is a relevant stratum
for βk. Furthermore, the fibers of the maps βk are just symmetric powers of C and
hence are irreducible. Thus we can apply Theorem 2.7 to get a canonical decomposi-
tion in the bounded derived category Db

c(Sec
k):

R(βk)∗QBk [2k − 1] ≃
k⊕

m=1
IC Secm .

It is natural to pass through the above isomorphism and try to find a map realizing the
projection away from IC Seck . Theorem 2.8 does just that. First, consider the Gysin
morphism π∗ induced by the projection π : Bk × C → Bk.

π∗ : QBk×C [2k] −→ π∗QBk [2k − 2].

If we pull back this map by α = αk,k+1, we can precompose with the pullback map α∗.

QBk+1 [2k + 1]
α∗

−−−→ Rα∗QBk×C [2k + 1]
π∗−−−→ Rα∗π

∗QBk [2k − 1].

Pushing forward via βk+1 gives us a map

π∗α
∗ : R(βk+1)∗QBk+1 [2k + 1] −→ R(βk)∗QBk [2k − 1],

which we continue to denote by π∗α∗. This is the map of interest.

Theorem 2.8. — Let C be a curve embedded in projective space by a line bundle
separating 2k + 2 points. The map of perverse sheaves on Seck+1

π∗α
∗ : R(βk+1)∗QBk+1 [2k + 1] −→ R(βk)∗QBk [2k − 1]

has kerπ∗α
∗ = IC Seck+1 , where π : Bk ×C → Bk is the projection and α = αk,k+1 is

the map on relative secant bundles.

J.É.P. — M., 2026, tome 13



Invariants of the singularities of secant varieties of curves 9

Thus if we compute the kernel of π∗α∗ on the level of cohomology, then we can
compute the intersection cohomology of the secant varieties. The main part of the
proof of Theorem 2.8 is contained in the following proposition.

Proposition 2.9. — The map π∗α∗ : Hj(Bk+1) → Hj−2(Bk)ω is surjective for each
j ⩾ 0.

Proof of Theorem 2.8. — The IC Secm for 1 ⩽ m ⩽ k + 1 have distinct supports in
Seck+1, so by irreducibility and strict supports, the map π∗α

∗ decomposes into a
sum of maps IC Secm → IC Secm which are either isomorphisms or zero. In particular,
IC Seck+1 is in the kernel. To see that no other IC Secm is in the kernel, note that the
map induced on cohomology

H2k−2m+2(Bk+1,Q) −→ H2k−2m(Bk,Q)

is surjective by Proposition 2.9. Since Q = IH 0(Secm) ⊆ H2k−2m(Bk,Q) the map
IC Secm → IC Secm cannot be zero. Thus ker(π∗α

∗) = IC Seck+1 . □

It now suffices to prove Proposition 2.9. To do this we will thoroughly study the
maps π∗α∗ on cohomology.

2.5. The maps π∗α∗. — On cohomology the map π∗α
∗ is the composite

(2.2) Hj(Bk+1) Hj(Bk × C) Hj−2(Bk)ω,α∗ π∗

where ω ∈ H2(C) is a generator, the map α = αk,k+1 is induced by the addition map
a : C(k) × C → C(k+1), and the map π∗ is induced by the projection coming from
the Künneth formula. Since each Bk is a Pk−1-bundle over C(k), its cohomology ring
H∗(Bk) is generated as an algebra over H∗(C(k)) by the class ζ of the tautological
line bundle. In any given degree this just means

(2.3) Hj(Bk) ∼=
k−1⊕
i=0

Hj−2i(C(k))ζi,

where by convention we take cohomology in negative degrees to be 0. The map α∗ is
induced via the above algebra structure by the addition map

a : C(k) × C −→ C(k+1).

The idea is that it should suffice to understand π∗α
∗ζ and the effect of π∗a∗ on the

level of C(k+1).
We will start with understanding α∗ζ. We will need the following lemma:

Lemma 2.10. — Let ζk+1 and ζk be the tautological classes for Bk+1 and Bk respec-
tively. Then α∗(ζk+1) = π∗(ζk).

The proof of Lemma 2.10 uses two elementary lemmas. Recall that for a vector
bundle p : E → S, the tautological class ζ on the projective bundle, which we will

J.É.P. — M., 2026, tome 13



10 D. Brogan

denote p̃ : P(E) → S, comes from the tautological line bundle OP(E)(1) which is
defined by the exact sequence

0 −→ N −→ p̃∗E −→ OP(E)(1) −→ 0,

where N is the vector bundle whose fiber over x ∈ P(E) is the corresponding hyper-
plane in Ep(x).

Lemma 2.11. — Let p : E → S and p′ : E′ → S be two vector bundles over a common
base S. Suppose that E′ is a quotient of E, i.e. we have a commutative diagram

E E′

S
p

q

p′

Abusing notation, let q̃ : P(E′) → P(E) denote the map on the projective bundles.
Then q̃∗OP(E)(1) ∼= OP(E′)(1).

Lemma 2.12. — Let

f∗E E

S′ S

p′

f ′

p

f

be a map of vector bundles over bases S and S′ induced by the map f : S′ → S. Let
f̃ : P(f∗E) → P(E) denote the induced map on projective bundles. Then f̃∗OP(E)(1) ∼=
OP(f∗E)(1).

Proof of Lemma 2.10. — For each m < k + 1 we have the following commutative
diagram.

Bm × C(k+1−m) Bk+1

P(π∗
C(m)E

m) P(a∗Ek+1) P(Ek+1)

C(m) × C(k+1−m) C(k+1)

αm,k+1

ã

a

Note that the map a∗Ek+1 → π∗
C(m)E

m is a surjection, so we can apply Lemmas 2.11
and 2.12 and get that α∗

m,k+1OBk+1(1) ∼= OP(π∗
C(m)

Em)(1) = π∗
C(m)OBm(1). The con-

clusion follows in the case m = k. □

Now we turn our attention to the map

(2.4) π∗a
∗ : Hj(C(k+1)) −→ Hj−2(C(k))ω.
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Proposition 2.13. — The map in (2.4) is surjective for each j, and the kernel is
given by

(2.5) ker(π∗a
∗) ∼=

{
∧jH1(C) 0 ⩽ j ⩽ k + 1,

0 otherwise.

Proof. — In [14] Macdonald computes the cohomology of the symmetric product
C(k+1) in terms of the cohomology of C. In fact, he gives explicit generators.
If pi : Ck → C for i = 1, . . . , k denote projection onto the various factors, then define

ξi = p∗1γi + · · ·+ p∗k+1γi for i = 1, . . . , 2g,

η = p∗1ω + · · ·+ p∗k+1ω,

where g is the genus of C, the γi generate H1(C), and ω generates H2(C). The
cohomology classes ξi and η are invariant under the action of the symmetric group.
They therefore descend to cohomology classes on C(k+1) which we denote by ξi and η
respectively. Macdonald shows that these classes generate the cohomology of C(k+1).
He also gives relations between the ξi and η (see also [10]). In degrees j ⩽ k+1 the ξi
anticommute and η is central. Hence for j ⩽ k + 1 we arrive at the isomorphism

(2.6) Hj(C(k+1)) ∼=
⊕
i⩾0

(
∧j−2iH1(C)

)
ηi.

If ξ′i and η′ denote the classes in H∗(C(k)) analogous to ξi and η respectively, then
we obviously have (up to perhaps a multiplicative constant) that

a∗ξi = ξ′i ⊗ p∗k+1γi,

a∗η = η′ ⊗ p∗k+1ω.

It follows that, under the the isomorphism in (2.6), the map π∗a∗, which is induced by
the projection in the Künneth formula and the addition map, is just the projection
map formally sending ηi to (η′)i−1ω when i ⩾ 1 and sending η0 to 0. Explicitly,
in degrees j = 0, . . . , k + 1 we have a diagram as below.

Hj(C(k+1)) Hj−2(C(k))ω

⊕
i⩾0

(
∧j−2iH1(C)

)
ηi

⊕
i⩾1

(
∧j−2iH1(C)

)
(η′)i−1ω

π∗a
∗

The bottom map is the projection away from the i = 0 factor. Therefore it is surjective
and its kernel is ∧jH1(C). We can similarly find the kernel in higher degrees using
the hard Lefschetz isomorphisms, which we denote by Li. When j = k + 2 we have
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12 D. Brogan

the diagram

Hk+2(C(k+1)) Hk(C(k))ω

Hk(C(k+1))η

⊕
i⩾0

(
∧k−2iH1(C)

)
ηi+1

⊕
i⩾0

(
∧k−2iH1(C)

)
(η′)iω

π∗a
∗

L

and the bottom arrow is an isomorphism. Finally in the case j > k + 2 we have the
diagram

Hj(C(k+1)) Hj−2(C(k))ω

H2k+2−j(C(k+1))ηℓ H2k+2−j(C(k))(η′)ℓ−1ω

⊕
i⩾0

(
∧2k+2−j−2iH1(C)

)
ηℓ+i

⊕
i⩾0

(
∧2k+2−j−2iH1(C)

)
(η′)ℓ−1+iω

π∗a
∗

Lj−k−1 Lj−k−2

and once again the bottom arrow is an isomorphism. To summarize, we have calculated
that the map π∗a

∗ : Hj(C(k+1)) → Hj−2(C(k))ω is always surjective and the kernel
is given by the isomorphism in (2.5). □

We now have enough information to prove the surjectivity in Proposition 2.9, which
will complete the proof of Theorem 2.8.

Proof of Proposition 2.9. — Observe that we have the isomorphism of Hodge struc-
tures

Hj−2(Bk)ω ∼=
k−2⊕
i=0

Hj−2−2i(C(k))ζikω.

For any β ⊗ ζik ⊗ ω∈Hj−2−2i(C(k))ζikω, let γ ∈Hj−2i(C(k+1)) be in(π∗a∗)−1(β⊗ω).
Recalling that π∗ is just the Künneth projection

Hj(Bk × C) −→ Hj−2(Bk)ω,

it then follows that

π∗α
∗(γ ⊗ ζik+1) = π∗(a

∗γ ⊗ π∗ζik) = β ⊗ ζik ⊗ ω. □

Because each QBk [2k + 1] and each IC Seck underlie Hodge modules and all of the
maps above underlie morphisms of Hodge modules, we automatically get the following
corollary.
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Corollary 2.14. — Let C be a smooth curve embedded in projective space by a line
bundle which separates 2k points. Then we have an isomorphism of Hodge modules

R(βk)∗QBk [2k − 1] ≃
k⊕

m=1
IC Secm(−(k −m)).

2.6. Computing the intersection cohomology. — We can now compute the inter-
section cohomology of Seck.

Theorem 2.15. — Let C be a smooth projective curve, M a line bundle on C which
separates 2k points, and ζ the class of the tautological line bundle on the k-th secant
bundle Bk → C(k). Then the intersection cohomology of Seck is given by the formula

IH j(Seck) =
⊕

max{j−k,0}⩽2i

∧j−2iH1(C)ζi,

where 0 ⩽ j ⩽ 2k − 1.

The degrees above the middle are obtained by duality. In particular, for j ⩽ k we
have

(2.7) IH j(Seck) =
⊕
i⩾0

(
∧j−2iH1(C)

)
ζi ∼= Hj(C(k)).

Proof of Theorem 2.15. — By Theorem 2.8 we get a long exact sequence in cohomol-
ogy.

· · · −→ IH j(Seck) −→ Hj(Bk)
π∗α

∗
−−−−−→ Hj−2(Bk−1)ω −→ · · ·

By Proposition 2.9 the connecting maps are zero, so IH j(Seck) is the kernel of the
map π∗α∗ : Hj(Bk) → Hj−2(Bk−1)ω. Decomposing this map according to the direct
sum decompositions in (2.3), this takes the form of a map

π∗α
∗ :

k−1⊕
i=0

Hj−2i(C(k))ζik −→
k−2⊕
i=0

Hj−2−2i(C(k−1))ζik−1ω.

Again we emphasize the distinction between ζk and ζk−1. Because α is induced by
the addition map a : C × C(k−1) → C(k), it can be seen that the components of this
map are of the form

π∗a
∗ : Hj−2i(C(k+1))ζik −→ Hj−2−2i(C(k))ζik−1ω,

where π here also denotes the projection C(k) ×C → C(k). Then by Proposition 2.13
the kernel of this map is

ker(π∗a
∗) =

{
∧j−2iH1(C)ζik 0 ⩽ j − 2i ⩽ k,

0 otherwise.

It follows that IH j(Seck) is the sum of the above groups for i = 0, . . . , k − 1. This is
exactly the desired result. □

The formula is worth specifying for the case C ∼= P1.
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Corollary 2.16. — If C ∼= P1, then the intersection cohomology of Seck is

IH j(Seck) =

{
C j even and 0 ⩽ j ⩽ 4k − 2,

0 otherwise.

2.7. The constant sheaf of Sec2. — Now we give a strategy for more precisely com-
puting the intersection complex IC Seck , carrying out this computation in the case
k = 2. We make use of a theorem belonging to the study of Du Bois complexes, orig-
inally studied in [8]. An introduction can be found in [18, §7.3]. Specifically, we need
the following result (see [18, Ex. 7.25]).

Theorem 2.17. — Let X and Y be complex algebraic varieties with X singular along
the subvariety Z. Let p : Y → X be a map which is an isomorphism away from
E = p−1(Z).

E Y

Z X

j

p

i
Then we have a distinguished triangle

QX

(p∗,−i∗)
−−−−−−−−→ p∗QY ⊕ i∗QZ

j∗ + p∗−−−−−−−→ p∗QE
+1−−−→ · · ·

in the bounded derived category Db
c(X).

Theorem 2.18. — Let C be a smooth projective curve embedded by a line bundle which
separates 4 points. Then QSec2 [3] is perverse and there is an exact sequence of perverse
sheaves

(2.8) 0 −→ QC [1]⊗H1(C) −→ QSec2 [3] −→ IC Sec2 −→ 0.

Proof. — By Proposition 2.5 the diagram

B1 × C B2

C Sec2

π1 β2

α∗

satisfies the hypotheses of Theorem 2.17, where π1 denotes the projection onto the
first factor B1 ∼= C. Hence we get an exact triangle in the derived category.

QSec2 [3] −→ (β2)∗QB2 [3]⊕QC [1] −→ (β2)∗QC×C [3]
+1−−−→ · · ·

After applying Theorem 2.7, the long exact sequence in perverse cohomology sheaves
reduces to the exact sequences

0 → pH
−2 QSec2 [3] −→ QC [1] −→ QC [1]⊗H0(C,Q) −→ pH

−1 QSec2 [3] → 0,

0 → QC [1]⊗H1(C,Q) → pH
0 QSec2 [3] → IC Sec2 ⊕QC [1] → QC [1]⊗H2(C,Q) → 0.

Clearly the middle map in the top sequence is an isomorphism, so QSec2 [3] is per-
verse. In the second sequence, IC Sec2 has strict support, hence its image is zero.
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It must therefore be that QC [1] maps isomorphically onto QC [1] ⊗ H2(C,Q). Thus
this sequence contains the exact sequence of perverse sheaves in (2.8) as a direct
summand. □

Corollary 2.19. — The singular cohomology of Sec2 is given by

H0(Sec2) ∼= H0(C(2)),

H1(Sec2) = 0,

H2(Sec2) ∼= H0(C(2))ζ,

H3(Sec2) = Sym2(H1(C)),

H4(Sec2) = H2(C(2))ζ,

H5(Sec2) = H3(C(2))ζ,

H6(Sec2) = H4(C(2))ζ,

where ζ is the tautological class for the secant bundle B2 → C(2). In particular,
H3(Sec2) is pure of weight 2. The other Hi are pure of weight i.

Proof. — This follows Theorem 2.18 after taking the long exact sequence in coho-
mology. Alternatively, one can use long exact sequence coming from the triangle
in (2.8). □

In particular Sec2(C) is never a rational homology manifold unless C ∼= P1. We will
see later that in fact all secant nontrivial varieties of rational normal curves are
rational homology manifolds.

3. Secant varieties of rational normal curves

3.1. Hankel matrices. — We now restrict our attention to the case C ∼= P1 is a
rational normal curve of degree 2n in P2n. We will use the more compact notation
Sk = Sk(2n) = Seck(OC(2n)) to denote the secant varieties of C and we write Xk =

Xk(2n) to denote the cone of Sk(2n) in C2n+1.
It is well known (see [9, Prop. 4.3]) that the ideal of Sk is generated by the

(k + 1)× (k + 1) minors of any matrix of the form

x0 x1 x2 · · · xm

x1 x2
. . . . . . xm+1

x2
. . . . . . . . . xm+2

...
. . . . . . . . .

...
xn xn+1 xn+2 · · · xn+m


,

where k ⩽ m ⩽ n. For example, the curve C = S1 is the zero locus of the ideal
generated by all of the 2 × 2 minors of the above matrix, S2 is cut out by the 3 × 3

minors, and so on. Matrices of this form are known as Hankel matrices or catalecticant
matrices. To be precise, a Hankel matrix H is a matrix such that Hi,j = Hi′,j′
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16 D. Brogan

if i+ j = i′ + j′. We are primarily interested in square Hankel matrices, i.e. matrices
as above where m = n. We will denote the (n+ 1)× (n+ 1) Hankel matrix by

Hn =


x0 x1 · · · xn

x1 x2
. . . xn+1

...
. . . . . .

...
xn xn+1 · · · x2n

.
The hypersurface Sn of P2n is the largest nontrivial secant variety of C and its defining
equation is f = detHn. The following fact about Hankel matrices is elementary, but
it will be extremely useful for understanding the local geometry of the Sk. It also,
to my knowledge, does not appear anywhere in the literature.

Lemma 3.1. — Let Hn be as above and let f = detHn, considered as a function on
C2n+1. Fix k ∈ {0, . . . , n− 1} and let

Yk = {x ∈ C2n+1 | xj = 0 for j ⩽ k − 1 and xk ̸= 0}.

Then there are coordinates y0, . . . , y2n−k on Yk such that

f |Yk
(y) = yk+1

0 detHn−k−1(yk+2, . . . , y2n−k).

The proof below shows that we can transform the matrix Hn into a block matrix
of the form

(3.1)



0 · · · y0
... . . .

...
y0 · · · yk

yk+2 yk+3 · · · yn+1

yk+3 yk+4
. . . yn+2

...
. . . . . .

...
yn+1 yn+2 · · · y2n−k

0

0


while keeping the determinant unchanged. In the matrix above, both nonzero blocks
are Hankel matrices. In the top left block A we have Ai,j = 0 for i+ j < k.

Proof. — For the proof we will let H = Hn. Inductively define functions p0, . . . , p2n−k

on Y by the identities p0xk = 1 and

p0xk+ℓ + p1xk+ℓ−1 + · · ·+ pℓxk = 0

for ℓ = 1, . . . , 2n− k. Now consider the (n+ 1)× (n+ 1) upper triangular matrix

P =


p0 p1 · · · pn
0 p0 · · · pn−1

...
...

. . .
...

0 0 · · · p0

.
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If we start indexing our matrices from 0 then we have the formulas Hij = xi+j and
Pij = pj−i, where we take the convention pi = 0 for i < 0. Consider the product
N = PTHP . Then we have

(3.2) Nij =

n∑
a,b=0

(PT )iaHabPbj =

n∑
a,b=0

pi−axa+bpj−b =

i∑
a=0

j∑
b=0

pi−axa+bpj−b.

We aim to show that N is a block diagonal matrix of the form in (3.1). We break this
up into three cases.

Case 1: The top left block. — This is a (k+1)× (k+1) matrix, so in this case we have
i, j ∈ {0, . . . , k}. We want to show that this is a Hankel matrix whose terms above
the main anti-diagonal are zero. More precisely, we want to show that

Ni,j =

{
0 if i+ j = 0, . . . , k − 1,

pi+j−k if i+ j = k, . . . , 2k.

If i + j ∈ {0, . . . , k − 1} then each xa+b in (3.2) is zero by assumption, so Ni,j = 0.
Now suppose i+ j = k, . . . , 2k. Then

Ni,j =

i∑
a=0

pi−a

j∑
b=0

xa+bpj−b

=

i∑
a=0

pi−a

(k−1−a∑
b=0

xa+bpj−b +

j∑
b=k−a

xa+bpj−b

)
.

The left b-indexed sum contains only xa+b with a + b ⩽ k − 1, which all vanish by
assumption. The right b-indexed sum is exactly the expression defining pj−k+a, which
vanishes except when j − k + a = 0. In that case we have a = k − j, so this term is
the only nonzero term of the sum. Therefore

Ni,j = pi+j−kxkp0 = pi+j−k,

as desired.

Case 2: The bottom left block. — In this case we have i = 0, . . . , k and j = k+1, . . . , n.
As in Case 1 we can write

Ni,j =

i∑
a=0

pi−a

j∑
b=0

xa+bpj−b

=

i∑
a=0

pi−a

(k−1−a∑
b=0

xa+bpj−b +

j∑
b=k−a

xa+bpj−b

)
and the only possibly nonzero term occurs when j−k+a = 0. However, now we have
j > k so that that j−k+a > 0, Therefore the sum on the right is zero as well and all
entries of the the bottom left block vanish. By symmetry the top right block vanishes
as well.
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18 D. Brogan

Case 3: The bottom right block. — This is a (n− k)× (n− k) matrix with entries Nij

where i, j = k+1, . . . , n. First we will show that this is a Hankel matrix, then we will
compute the entries. To show that this is a Hankel matrix, it is enough to show that
Ni+1,j = Ni,j+1 whenever i, j = k+1, . . . , n− 1. Separating the a = 0 terms from the
expression in (3.2), we find that

Ni+1,j = pi+1

j∑
b=0

xbpj−b +

i+1∑
a=1

j∑
b=0

pi+1−axa+bpj−b

= pi+1

j∑
b=k

xbpj−b +

i+1∑
a=1

j∑
b=0

pi+1−axa+bpj−b,

where we have removed the first k terms in the first sum using the fact that xb = 0

for b < k. But now the first sum is the expression defining pj−k, which is zero. So we
have

Ni+1,j =

i+1∑
a=1

j∑
b=0

pi+1−axa+bpj−b.

Similarly, by separating the b = 0 terms from Ni,j+1 we will find that

Ni,j+1 =

i∑
a=0

j+1∑
b=1

pi−axa+bpj+1−b.

These two expressions are the same by re-indexing, so Ni+1,j = Ni,j+1. Therefore this
block is a Hankel matrix.

To compute the entries, it suffices to check the first and last rows. The entries in
the first row of this block are of the form Nk+1,j for j = k + 1, . . . , n. We have

Nk+1,j =

k+1∑
a=0

j∑
b=0

pk+1−axa+bpj−b

=

k∑
a=0

pk+1−a

j∑
b=0

xa+bpj−b + p0

j∑
b=0

xk+1+bpj−b

=

k∑
a=0

pk+1−a

(k−a−1∑
b=0

xa+bpj−b +

j∑
b=k−a

xa+bpj−b

)
+ p0

j∑
b=0

xk+1+bpj−b.

The first and second b-indexed sums are zero by the same argument as in Case 2.
Thus

Nk+1,j = p0

j∑
b=0

xk+1+bpj−b = −p0xkpj+1 = −pj+1

by the definitions of p0 and pj+1. The computation for the last row is similar and
yields

Nn,j = −pj+n−k.
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To conclude, we have shown that

N =



0 · · · p0
... . . .

...
p0 · · · pk

−pk+2 −pk+3 · · · −pn+1

−pk+3 −pk+4
. . . −pn+2

...
. . . . . .

...
−pn+1 −pn+2 · · · −p2n−k

0

0


.

Let N ′ = p−2
0 N . By the definition of N we have

detN ′ = p−2n−2
0 (detP )2 detHn = detHn = f.

On the other hand, by the explicit description for N above, we have

detN ′ = p−k−1
0 detHn−k−1

(
−p−2

0 pk+2, . . . ,−p−2
0 p2n−k

)
.

Thus, in the coordinates

yi =


p−1
0 i = 0,

p−2
0 pi i = 1, . . . , k,

−p−2
0 pi i = k + 1, . . . , 2n− k,

we have f = yk+1
0 detHn−k−1(yk+2, . . . , y2n−k) as desired. □

Lemma 3.1 has the following consequence for the local geometry of Sn. Compare
with [12, Th. 2.8].

Corollary 3.2. — If C is a rational normal curve in P2n, then any point x ∈ Sn(2n)

has a Zariski open neighborhood U ⊆ Sn(2n) such that U ∼= C×Xn−1(2n− 2).

Proof. — When x0 ̸= 0, Lemma 3.1 states that the function f = detHn takes the
form y0 detHn−1 in some coordinates y0, . . . y2n. We can dehomogenize by setting
y0 = 1, so f = detHn−1 on the affine open with coordinates y1, . . . , y2n. Since y1 does
not appear in Hn−1, the zero locus of f in this affine open is C×Xn−1(2n− 2). Thus
the theorem is true for any x ∈ Sn(2n) with x0 ̸= 0.

Now we want to show that this works for any x ∈ Sn(2n). Observe that the
coordinates (x0, . . . , x2n) on P2n = PH0(C,OC(2n))

∨ are induced by the coordinates
(z, w) on C ∼= P1, namely xk is the coefficient of the form z2n−kwk. The hyperplane
H = {x0 = 0} is the osculating hyperplane of C at the point p = (0, 1), i.e. H is the
hyperplane such that H ∩ C = 2np. Suppose x ∈ Sn(2n) is in the complement of a
hyperplane H ′ such that H ′ ∩ C = 2np′ for some p′ ∈ C. Let T ∈ SL2(C) be such
that T (H ′) = H. Then we can apply the result for p and transform by T−1 to get the
result for p′.
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Now it just suffices to show that any point x ∈ P2n is in the complement of some
osculating hyperplane H of C. This amounts to showing that the sections correspond-
ing to the osculating hyperplanes span H0(C,O(2n)). These sections are the 2n-th
powers of linear forms. It is an elementary fact that any polynomial in one variable
of degree d can be written as a sum of d-th powers of linear forms. Homogenizing this
fact allows us to conclude. □

3.2. Review of nearby and vanishing cycles. — Now we take some time to review
the basics of the nearby and vanishing cycle functors. These functors act on Db

c(X),
the derived category of constructible sheaves on X, in a way which generalizes the
vanishing cycles in Picard-Lefschetz theory. A comprehensive introduction on the
topology of vanishing cycles and their connection to perverse sheaves can be found
in [15, Chap. 10]. For a quick introduction in the case of perverse sheaves, see [5,
§5.6-5.6].

Let X be a complex manifold, let f : X → C be a holomorphic function on X with
an isolated critical value at 0. By Ehresmann’s theorem, f is a locally trivial fibration
away from the origin. Let X0 = f−1(0) be the singular fiber of f . The nearby cycle
functor ψf : Db

c(X) → Db
c(X0) is defined as follows. Let i : X0 → X be the inclusion

and let j : X∗ = X ∖X0 → X be the inclusion of the complement. The exponential
map exp : C → C∗ is the universal cover. Let X̃ be the total space of the pullback of
the fibration f |X∗ : X∗ → C∗ via the map exp. We have a diagram

X0 X X∗ X̃

0 C C∗ C

i

f

j p

exp

For K ∈ Db
c(X), the nearby cycles ψfK ∈ Db

c(X0) are defined as

ψfK = i∗(j ◦ p)∗(j ◦ p)∗K[−1]

Evidently ψfK depends only on the restriction of K to X∗. By adjunction there is
a natural map K[−1] → (j ◦ p)∗(j ◦ p)∗K[−1], so applying i∗ to this we get a map
i∗K[−1] → ψfK. The vanishing cycles φfK are the cone over this morphism, so that
there is a distinguished triangle.

i∗K[−1] −→ ψfK
can−−−−→ φfK

+1−−−→ · · ·

Note that this is not a definition of φf as a functor since the cone over morphism
in the derived category is not a functorial construction, however this description will
suffice for our purposes. The full construction of φf can be found in [11, §8.6]. It is
also possible to construct a morphism

φfK
var−−−−→ ψfK.

Theorem 3.3 ([3, Cor. 1.6–1.7]). — If K is a perverse sheaf on X, then ψfK and φfK

are perverse sheaves on X0.
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Now let K be a perverse sheaf, so that the above theorem applies. The group of
deck transformations of the covering exp : C → C∗ is generated by the map z → z+1.
This induces a map on X̃ above, and hence also induces a map T : ψfK → ψfK called
the monodromy. Since the category of perverse sheaves is an abelian category, we can
take the generalized eigenspaces

ψf,λK = ker(T − λ id)N ,

where λ ∈ C∗ and N is sufficiently large. We then have a direct sum decomposition

ψfK =
⊕

λ∈C∗
ψf,λK.

Similarly, we get a monodromy operator on φfK which we also denote by T , along
with a decomposition into generalized eigenspaces. The generalized eigenspaces ψf,1K

and φf,1K are called the unipotent parts of the nearby and vanishing cycles respec-
tively. Since T fixes i∗K, the distinguished triangle above along with the generalized
eigenspace decompositions yield an exact sequence of perverse sheaves.

0 −→ i∗K[−1] −→ ψf,1K
can−−−−→ φf,1K −→ 0.

Moreover, for all λ ̸= 1 the morphism can induces an isomorphism ψf,λK ∼= φf,λK.
On the unipotent part ψf,1K, the nilpotent operator N = (2πi)−1 log T is equal

to the composition var ◦ can. Similarly, on φf,1K we have N = can ◦ var. If we think
of N as an operator on ψf,1K, then φf,1K ∼= imN in the category of perverse sheaves.
The nilpotent operator N induces a filtration W• on ψf,1K in the following way, see
[20, Lem. 6.4].

Proposition 3.4. — Let N be a nilpotent endomorphism on a finite-dimensional com-
plex vector space V . Then there is a unique filtration W• on V such that

(1) for each k ∈ Z we have N(WkV ) ⊆Wk−2V ,
(2) for each k ⩾ 1 the map

Nk : grWk V −→ grW−k V

is an isomorphism.

The filtration W• is called the monodromy weight filtration, or simply the weight
filtration.

Example 3.5. — If N ̸= 0 but N2 = 0 then the weight filtration on V is W1V = V ,
W0V = kerN , W−1V = imN , W−2V = 0.

Corollary 3.6. — Let N is a nilpotent operator on V . Then N2 = 0 if and only
if the filtration induced on imN as a quotient of V , or equivalently via the induced
action of N , is trivial.

Proposition 3.4 hold in any abelian category, so we can apply it to complexes
of constructible sheaves. Hence the nilpotent operator N induces a weight filtration
on both ψf,1K and φf,1K. The perverse sheaf i∗K[−1] also gets endowed with a
weight filtration by virtue of being a subobject of ψf,1K. When K underlies a mixed
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Hodge module, the weight filtration from N and the weight filtration from the MHM
structure on i∗K[−1] coincide.

3.3. The affine Milnor fibration. — We keep the notation of the previous section,
however we now let X = Cn and f : X → C a homogeneous polynomial on X of
degree d. For any k ∈ N let µk denote the group of k-th roots of unity. In our setting,
the only possibly singular fiber is X0 = f−1(0). The fibration fX∗ : X∗ → C∗ is called
the (affine) Milnor fibration associated to f and we call F = f−1(1) the (affine)
Milnor fiber. It can be shown that F is homotopy equivalent to the usual locally
defined Milnor fiber at 0, for example see [7, §3.1]. Acting by a generator of π1(C∗),
we get the monodromy transformation which we also denote by T : F → F . If λ ∈ µd

is a d-th root of unity, then f(x1, . . . , xn) = 1 yields

f(λx1, . . . , λxn) = λdf(x1, . . . , xn) = 1,

so µd acts on F as well. In fact these actions are the same. Indeed, if γ(t) = exp(2πit)

is a path which generates π1(C∗), then for a point x ∈ F , the path γ̃(t) = γ(t/d)x

lifts γ, and we have γ̃(0) = x and γ̃(1) = exp(2πi/d)x.
We have the following relationship between F and the the nearby cycles ψf .

Proposition 3.7. — Let X = Cn and let f : X → Cn be a homogeneous polynomial.
Then the cohomology of the stalk of ψfQX [n] at 0 is given by the singular cohomol-
ogy of F with rational coefficients. Furthermore, the isomorphism commutes with the
monodromy.

Hk(ψfQX [n])0 Hk+n−1(F,Q)

Hk(ψfQX [n])0 Hk+n−1(F,Q)

∼=

T T

∼=

Proof. — Hk(ψfQX [n])0 is obtained by taking an appropriate complex representing
ψfQX [n], restricting to 0, and taking cohomology of this complex of vector spaces.
But by the definition of ψf , restricting to 0 is the same as taking a representative I
of K[−1] and computing

colim
0∈U

Γ
(
I, ((j ◦ p)−1(X∗ ∩ U))

)
,

where U ranges over all neighborhoods of 0. But for small neighborhoods U of 0, the
open set

(j ◦ p)−1(X∗ ∩ U)

is homeomorphic to X̃, which deformation retracts to F . Hence this colimit is just
Γ(F, I|F ). The cohomology of this is then

Hk(F,QF [n− 1]) = Hk+n−1(F,QF ).

The statement about the monodromy follows since in both cases it is induced by the
deck transformations of exp : C → C∗. □
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In the following sections, Fn will denote the affine Milnor fiber associated to the
homogeneous function f = fn = detHn, where Hn is the n × n Hankel matrix as in
Section 3.1.

3.4. Ordered partitions. — Our computation of the cohomology of Fn relies on
stratifying C2n+1 in a particular way which we will describe in Section 3.5. However,
we first need some elementary preliminaries. For the moment, let n be an arbitrary
positive integer. An ordered partition P of n is a tuple of positive integers

P = (p1, . . . , pℓ)

such that p1 + · · · + pℓ = n. We call ℓ the length of P and denote it by |P | = ℓ.
We write gcd(P ) in place of gcd(p1, . . . , pℓ). We collect some facts about ordered
partitions here.

Facts 3.8
(1) The set of ordered partitions of n is in bijection with the powerset of the set

{1, . . . , n − 1}. It follows that the ordered partitions of n of length ℓ are in bijection
with the subsets of {1, . . . , n− 1} of size n− ℓ. In particular, there are 2n−1 ordered
partitions of n and

(
n−1
n−ℓ

)
=

(
n−1
ℓ−1

)
ordered partitions of n with length ℓ.

(2) If gcd(P ) = d ̸= 1 then d divides n and P = d ·Q where Q = (p0/d, . . . , pℓ−1/d)

is an ordered partition of n/d with gcd(Q) = 1.
(3) Let g(n) be the number of ordered partitions P of n with gcd(P ) = 1. Then

by the previous two facts we have∑
d|n

g(d) = 2n−1.

Therefore, by Möbius inversion, we have

g(n) =
∑
d|n

µ (n/d) 2d−1,

where µ denotes the classical Möbius function. If gℓ(n) denotes the number of ordered
partitions P of n with |P | = ℓ and gcd(P ) = 1 then we similarly have

gℓ(n) =
∑
d|n

µ (n/d)

(
d− 1

ℓ− 1

)
.

3.5. Stratifying affine space. — Now fix a positive integer n. Recall that f = detHn

is the general Hankel determinant on C2n+1 whose zero locus is Xn and whose affine
Milnor fiber is Fn. We will use the local structure of Fn to compute its cohomology,
but it will be convenient to stratify the whole of C2n+1. The strata will be denoted
by YP and YP,0 where P ranges over ordered partitions of n+ 1.

We construct this stratification inductively. In the base case n = 0 we need to
stratify C. Call the coordinate x0. There is only a single partition of 1 and we set

Y(1) = {x0 ̸= 0} = C∗,

Y(1),0 = {x0 = 0} = {0}.
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For arbitrary n ⩾ 1, we first set

Yk = {x ∈ C2n+1 | xj = 0 for j ⩽ k − 1 and xk ̸= 0}

for k = 0, . . . , n. The coordinates y0, . . . , y2n−k from Lemma 3.1 give us an isomor-
phism

(3.3) Yk ∼= C∗ × Ck+1 × C2n−2k−1,

where y0 is the coordinate on the first factor, y1, . . . , yk+1 are the coordinates on the
second factor, and yk+2, . . . , y2n−k are the coordinates on the third factor. By induc-
tion, for each k we have a stratification of the third factor C2n−2k−1 whose strata we
denote by ZQ and ZQ,0, indexed by the ordered partitions Q of n − k. This induces
strata C∗ × Ck+1 × ZQ and C∗ × Ck+1 × ZQ,0 on Yk. If P = (k + 1, p2, . . . , pℓ) is an
ordered partition of n+ 1, then Q = (p2, . . . , pℓ) is an ordered partition of n− k and
we set

YP = C∗ × Ck+1 × ZQ,

YP,0 = C∗ × Ck+1 × ZQ,0.

This constructs strata YP and YP,0 of C2n+1 for each ordered partition P of n+ 1.
The reason for introducing this stratification is contained in the following.

Proposition 3.9. — Let P = (p1, . . . , pℓ) be an ordered partition of n+ 1 and let YP
and YP,0 be the corresponding strata of C2n+1. Then the function f vanishes identically
on YP,0 and is nonvanishing on YP . In particular, Xn =

⋃
P YP,0. Furthermore, there

are coordinates yi on YP which induce an isomorphism YP ∼= (C∗)ℓ×Cn and in these
coordinates we have

f |YP
= yp1

0 · · · ypℓ

ℓ−1.

Remark 3.10. — By an abuse of notation we are using the symbols yi for coordinates
on YP , but these are not the same as the coordinates on any Yk in Lemma 3.1 or in
the construction of the stratification above.

Proof. — We go by induction. The claim is clear in the case n = 0 by the construction
of the stratification, since in this case f = x0. If n ⩾ 1, write Q = (p2, . . . , pℓ).
By Lemma 3.1 there are coordinates yi on Yp1−1 which induce the isomorphism in (3.3)
and in these coordinates we have

f |Yp1−1
= yp1

0 detHn−k−1(yk+2, . . . , y2n−k).

By induction, detHn−k−1 vanishes identically on ZQ,0, so f vanishes identically on
YP,0. Furthermore, by induction there are coordinates zi on ZQ ⊆ C2n−2k−1 which
induce an isomorphism ZQ

∼= (C∗)ℓ−1 × Cn−k−1 such that in these coordinates

detHn−k−1 = zp2
q2 · · · zpℓ

qℓ

for some q2, . . . , qℓ. It follows after relabeling the coordinates (y0, . . . , yk, z0, z1, . . . )

we have the desired expression for f and we get an isomorphism

YP = C∗ × Ck+1 × ZP
∼= (C∗)ℓ × Cn.
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□

Corollary 3.11. — In the setting of Proposition 3.9, let d = gcd(P ). Then we can
change coordinates on YP ∼= (C∗)ℓ ×Cn such that f |YP

= zd, where z is a coordinate
on one of the C∗ factors.

Proof. — Consider the monomial xayb on (C∗)2 where a > b and gcd(a, b) = 1. Write
a = qb + r with q ⩾ 0 and 0 ⩽ r < b so that xayb = xr(xqy)b = xr1y

b
1 where x1 = x

and y1 = xqy form a coordinate system on C∗. Continuing in this way, the Euclidean
algorithm guarantees that we will end up with coordinates xk, yk such that either
xayb = xdk or xayb = ydk. Performing this procedure repeatedly to pairs of factors in
the product

f |YP
= yp1

0 · · · ypℓ

ℓ−1

yields a coordinate system on YP with f = zd for some coordinate z. □

Let P = (p1, . . . , pℓ) be a partition of n + 1. The proof of Lemma 3.1 shows that,
after restricting to Yp1−1, we can think of the Hankel matrix Hn as being the same
(for the purposes of the hypersurface defined by detHn = 0) as the matrix in (3.1).
Repeating this procedure for the lower right block and continuing in this way, we find
that the stratum YP corresponds to a way of “turningHn into a block diagonal matrix”
and the coordinate change functions to make each block a “skew lower triangular”
matrix: 

x0 x1 · · · xn−1

x1 x2 · · · xn
...

...
. . .

...
xn−1 xn · · · x2n

⇝

P1 0 · · · 0

0 P2 · · · 0
...

...
. . .

...
0 0 · · · Pℓ

,(3.4)

where the Pi are Hankel matrices of size pi × pi in which the entries above the main
skew diagonal are all zero.

Pi =


0 · · · 0 yqi
0 · · · yqi yqi+1

... . . .
...

...
yqi · · · yqi+pi−1 yqi+pi

.
This description, while not entirely rigorous, perhaps provides an intuitive picture for
the strata YP and the form that f takes on each one.

Example 3.12 (n = 2). — In this case we work on C5 and our matrix isx0 x1 x2x1 x2 x3
x2 x3 x4

.
We have 4 strata corresponding to the 4 ordered partitions of 3.
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• P = (1, 1, 1) corresponds to the block diagonal matrix 0 0

0 0

0 0

y0
y2
y4


and on YP ∼= (C∗)3 × C2 we have f |YP

= y0y2y4.
• P = (2, 1) corresponds to the block diagonal matrix 0 y1 0

y1 y2 0

0 0 y4


and on YP ∼= (C∗)2 × C2 we have f |YP

= y21y4.
• P = (1, 2) corresponds to the block diagonal matrix 0 0

0 0 y3
0 y3 y4

y0


and on YP ∼= (C∗)2 × C2 we have f |YP
= y0y

2
3 .

• P = (3) corresponds to the block diagonal matrix 0 0 y2
0 y2 y3
y2 y3 y4


and on YP ∼= C∗ × C2 we have f |YP

= y32 .

3.6. The Hodge polynomial. — Here we give a very brief review of the Hodge poly-
nomial. For a more detailed introduction see [18, §2]. The main theorem we need is
the following.

Theorem 3.13. — There is a unique way to assign to each complex algebraic variety X
a polynomial hX(u, v) with integer coefficients such that

(1) if X is smooth and projective, then

hX(u, v) =
∑
p,q⩾0

hp,q(X)upvq

where hp,q(X) = dimHq(X,Ωp
X),

(2) if Z ⊆ X is closed and U = X ∖ Z, then

hX(u, v) = hZ(u, v) + hU (u, v),

(3) if E → X is a Zariski locally trivial fiber bundle with fiber F (in particular if
E = X × F ) then

hE(u, v) = hX(u, v)hF (u, v).

We call hX(u, v) the Hodge polynomial of X.
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Example 3.14. — If X is a union of d points, then hX(u, v) = d. We also have

hPn(u, v) = 1 + uv + · · ·+ unvn,

hCn(u, v) = unvn,

hC∗(u, v) = −1 + uv.

For arbitrary X it is not true that the coefficients of the Hodge polynomial hX are
the dimensions of the cohomology of X. However, there is a general formula in terms
of the compactly supported cohomology of X.

Theorem 3.15. — For each complex algebraic variety X, let

hX(u, v) =
∑

p,q,i⩾0

(−1)p+q+i dimgrpF grWp+qH
i
c(X,C)upvq.

Then this assignment satisfies the properties in Theorem 3.13.

It follows that when the cohomology groups Hi
c(X,C) are all pure, the dimensions

can be recovered from the coefficients of hX(u, v).

Corollary 3.16. — If X is an algebraic variety such that each Hi
c(X,Q) is pure of

weight i, and hp,q are defined so that

hX(u, v) =
∑

p,q,i⩾0

hp,qupvq,

then dimHi
c(X,C) =

∑
p+q=i h

p,q.

3.7. Purity of the constant sheaf. — We now move on to proving the main results.
By the discussion in Section 3.3, in order to compute the nearby and vanishing cycles
we will need to compute the cohomology of the affine Milnor fiber Fn. To do this,
it will be useful to understand the relationship between QSk

[2k−1] and ICSk
in a way

similar to Theorem 2.18 above. In fact we will prove that for rational normal curves
they are the same. We present the proof for even degrees here, since it will suffice for
our purposes and the presence of Lemma 3.1 allows us to simplify the proof greatly.
Nonetheless, the statement holds for rational normal curves of any degree. The proof
of the general case appears in the author’s dissertation [2, Th. 4.2.4].

Theorem 3.17. — Let C = P1 ⊆ P2n be a rational normal curve of degree 2n. For
each k = 1, . . . , n, let Xk be the affine cone over Sk. Then for each k we have ICSk

=

QSk
[2k − 1] and ICXk

= QXk
[2k].

Proof. — The result obviously holds for S1 since S1
∼= C is smooth. Now assume that

the result holds for each m = 1, . . . , k − 1. By Corollary 3.2, Sk is locally isomorphic
to the product of Xk−1 (for a curve of smaller degree) with a smooth variety, hence
the result holds for Sk. By Corollary 2.16, we therefore have

Hj(Sk,Q) = IH j(Sk) =

{
Q j = 0, 2, 4, . . . , 4k − 2,

0 otherwise.
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We similarly have the result at every point of Xk away from the origin as well. Thus
we just need to show that the natural map QXk

[2k] → ICXk
is an isomorphism at

the origin.
For this, we blow up the origin of C2n+1, which yields the total space of the line

bundle O(1) → P2n. We get a diagram like so.

P2n Bl0 C2n+1 P2n

{0} C2n+1

i

id

p
ε

i0

For a pure perverse sheaf K of geometric origin on P2n, the shifted pullback p∗K[1]

is again perverse and pure. This means that we can apply the decomposition theorem
to get

ε∗p
∗K[1] ∼= K̃ ⊕

⊕
j∈Z

Hj [−j],

where K̃ and ε∗p∗K[1] are isomorphic away from the origin and the Hj are supported
at the origin. We also have the relative hard Lefschetz isomorphisms Lj : H−j → Hj

and by base change we have isomorphisms

pH
j
i∗0K̃ ⊕Hj

∼= Hj(P2n, i∗p∗K[1]) ∼= Hj+1(P2n,K).

Combining all of this, we get a diagram.

pH
−j
i∗0K̃ ⊕H−j

pH
j
i∗0K̃ ⊕Hj

H−j+1(P2n,K) Hj+1(P2n,K)

Lj

∼= ∼=

Lj

By hard Lefschetz for H∗(P2n,K) the bottom map is surjective and the kernel
is by definition the primitive cohomology H−j+1

prim (P2n,K). It’s a general fact that
pH

j
i∗0K̃ = 0 for j ⩾ 1, so it follows that pH

−j
i∗0K̃

∼= H−j+1
prim (P2n,K) for j ⩾ 1.

Applying this to K = ICSk
∼= QSk

[2k − 1], we find that K̃ ∼= ICXk
and

pH
−j
i∗0 ICXk

∼= H−j+1
prim (P2n, ICSk

) ∼= H−j+2k
prim (Sk,Q).

Since the cohomology of Sk is isomorphic to the cohomology of P2k−1, it must be
generated in H0 using the hard Lefschetz map. In particular, the only primitive coho-
mology is the one in H0. Similarly, when K = QP2n [2n], we have K̃ ∼= QC2n+1 [2n+1].
Applying the same argument as above and shifting we get

pH
−j
i∗0QC2n+1 [2k − 1] ∼= H−j+2k

prim (P2n,Q).
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We thus have a commutative diagram

pH
−j
i∗0QC2n+1 [2k − 1] pH

−j
i∗0 ICXk

H−j+2k
prim (P2n,Q) H−j+2k

prim (Sk,Q)

where the horizontal maps are the restriction maps. Since Sk has the cohomology of
projective space, this square is nonzero only for j = 2k, in which case the bottom
map is clearly an isomorphism. Thus the top map is an isomorphism as well, meaning
that ICXk

is isomorphic to QXk
at the origin. □

3.8. The cohomology of the Milnor Fiber. — We will compute the cohomology
of Fn in two parts. First, we will compute the Hodge polynomial of Fn, then we will
show that each Hi(Fn,Q) is a pure Hodge structure of weight i.

Proposition 3.18. — If n ⩾ 1 and Fn is the Milnor fiber for f = detHn, then the
Hodge polynomial of Fn is

hFn
(u, v) = (uv)n−1

∑
d|(n+1)

φ (n+ 1/d) (uv)d,

where φ(k) = |Z/kZ×| is the Euler function.

Proof. — To make the formulas a bit nicer, we will prove the proposition for Fn−1.
Stratify C2n−1 as in the discussion in Section 3.5. This induces a stratification of
Fn−1 by Fn−1 ∩ YP . The YP,0 do not appear since Fn−1 ∩ YP,0 = ∅ for each P by
Proposition 3.9.

By the same proposition and Corollary 3.11, for each ordered partition P =

(p1, . . . , pℓ) of n, the closed subset Fn−1 ∩ YP is the set in YP ∼= (C∗)ℓ × (C)n−1 on
which f = zd = 1, where z is a coordinate on one of the C∗ factors and d = gcd(P ).
It follows that Fn−1 ∩ YP is a product of (C∗)ℓ−1 ×Cn−1 with a union of d points, so
by Theorem 3.13 and Example 3.14 we have

hFn−1∩YP
(u, v) = gcd(p1, . . . , pℓ)(uv)

n−1(uv − 1)ℓ−1.

Since these polynomials only depend on the product uv, write t = uv. By (2) in
Theorem 3.13, hFn−1

(t) is the sum of the hFn−1∩YP
(t) over all ordered partitions P

of n.

hFn−1(t) =
∑
P

gcd(P )tn−1(t− 1)|P |−1

Splitting up the sum based on the length and gcd of the partition P yields

hFn−1
(t) =

∑
d|n

∑
|P |=ℓ

∑
gcd(P )=d

dtn−1(t− 1)ℓ−1

Now recall that the number of ordered partitions P of n with |P | = ℓ and gcd(P ) = d

is the same as the number of ordered partitions P of n/d with |P | = ℓ and gcd(P ) = 1,
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which is the number gℓ (n/d). From Facts 3.8 we have

gℓ (n/d) =
∑

m|n/d

µ

(
n/d

m

)(
m− 1

ℓ− 1

)
.

Hence we can write

hFn−1(t) = tn−1
∑
d|n

n∑
ℓ=1

dgℓ (n/d) (t− 1)ℓ−1

= tn−1
∑
d|n

n∑
ℓ=1

∑
m|n/d

dµ

(
n/d

m

)(
m− 1

ℓ− 1

)
(t− 1)ℓ−1

= tn−1
∑
d|n

∑
m|n/d

dµ

(
n/d

m

) m∑
ℓ=1

(
m− 1

ℓ− 1

)
(t− 1)ℓ−1

= tn−1
∑
d|n

∑
m|n/d

dµ

(
n/d

m

)
tm−1.

The third equality is true since the binomial coefficients are zero if ℓ > m and the last
equality is the binomial theorem applied to tm−1 = ((t− 1)+ 1)m−1. Finally, observe
that d | n and m | n/d if and only if m | n and d | n/m. Therefore we can switch the
sums to isolate the coefficient of tm−1 and get

hFn−1
(t) = tn−1

∑
d|n

∑
m|n/d

dµ

(
n/d

m

)
tm−1

= tn−1
∑
m|n

tm−1
∑

d|n/m

dµ

(
n/d

m

)
= tn−1

∑
m|n

φ (n/m) tm−1,

which the desired polynomial. □

Now we just need to show that each Hi
c(Fn) is pure of weight i.

Proposition 3.19. — Each Hi
c(Fn,Q) is a pure Hodge structure of weight i.

Proof. — Let P2n+1 have coordinates x0, . . . , x2n, y and let X ⊆ P2n+1 be the zero
locus of the function g(x, y) = f(x)−yn+1. By setting y = 0 we see that Sn naturally is
a closed subset of X. Write ι : Sn ↪→ X for the inclusion. The complement is obtained
by setting y = 1 and we see that this is the affine Milnor fiber Fn. So X = Fn⊔Sn can
be seen as a disjoint union. We have an exact sequence in the cohomology in which
the restriction map ι∗ : Hi(X,Q) → Hi(Sn,Q) commutes with the restriction map
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from projective space.

· · · Hi
c(Fn,Q) Hi(X,Q) Hi(Sn,Q) · · ·

Hi(P2n+1,Q) Hi(P2n,Q)

ι∗

∼=

By Corollary 2.16 and Theorem 3.17, the restriction map Hi(P2n,Q) → Hi(Sn,Q) is
an isomorphism for each i ⩽ 2n−1. It follows that the map ι∗ must be surjective and
we get a short exact sequence.

0 −→ Hi
c(Fn,Q) −→ Hi(X,Q) −→ Hi(Sn,Q) −→ 0.

Therefore, to get purity of Hi
c(Fn,Q), it suffices to show that Hi(X,Q) is pure.

Recall that g(x, y) = f(x) − yn+1 is the defining equation for X in P2n+1.
By Lemma 3.1, we can cover P2n+1 by affine opens U on which f looks like the
determinant of a smaller Hankel matrix. For such affine opens we have a distinguished
triangle

QX [2n]|U −→ ψg,1QP2n+1 [2n+ 1]|U −→ φg,1QP2n+1 [2n+ 1]|U
+1−−−→ · · · .

By Thom-Sebastiani [15, Th. 10.3.16] we have an isomorphism

φg,1QP2n+1 [2n+ 1]|U ∼=
∑
αβ=1

φf,αQC2n [2n]⊗ φyn+1,βQC[1],

which respects the monodromy. Since f is the determinant of a smaller Hankel matrix
on U , by induction we can say that both factors of each summand on the right hand
side are pure, hence the left hand side is also pure. If N is the nilpotent operator on
the vanishing cycles, then by Corollary 3.6 this means that that N = 0 on the right
hand side, so it is true on the left. Since φg,1QP2n+1 [2n+ 1] = imN , this means that
N2 = 0 on ψg,1QP2n+1 [2n + 1]. It follows that the monodromy weight filtration on
ψg,1QP2n+1 [2n+1] lives in weights 2n+1, 2n, and 2n− 1. Therefore QX [2n] only has
weights 2n and 2n− 1. Explicitly, we have a distinguished triangle

(3.5) K −→ QX [2n] −→ ICX
+1−−−→ · · ·

where K is pure of weight 2n− 1. This yields the diagram

(3.6)
· · · H−i(K) H2n−i(X) IH 2n−i(X) · · ·

· · · Hi(K) H2n+i(X) IH 2n+i(X) · · ·

j

Li

q

Li Li

j q

where the rows are the long exact sequence in cohomology coming from (3.5) and the
vertical maps Li are the hard Lefschetz maps. Note that these maps are isomorphisms
on the left and right terms since K and ICX are pure.

From this we can show that the cohomology of X is pure. To do this, we need to
show that the map j is zero for all i, for which it suffices to show that the map q is
injective for all i. First, by the Lefschetz hyperplane theorem, H2n−i(X) = 0 for odd
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i ⩾ 0, so we consider only the even cohomology for now. For each k = 1, . . . n−1 have
a commutative diagram

H0(P2n+1) H0(X) IH 0(X)

H2k(P2n+1) H2k(X) IH 2k(X)

r

Lk

q

Lk Lk

r q

where r is the isomorphism induced by the inclusion X → P2n+1. Observe that q ◦ r
is an isomorphism in degree 0 and the rightmost Lk is injective by hard Lefschetz.
It follows that Lk ◦ q ◦ r is an isomorphism. We also have that the leftmost Lk is an
isomorphism. It follows that the bottom q must be injective. Therefore

q : H2n−i(X) −→ IH2n−i(X)

is injective for all i ⩾ 1 so that j = 0 in the negative degrees. Since Li is an iso-
morphism on the cohomology of K, it follows that j = 0 in the positive degrees as
well.

To summarize, we have shown that Hi(X) is pure for i ̸= 2n. To get purity of the
middle cohomology, we use the Hodge polynomial. By Proposition 3.18 we have

hX(u, v) = hFn(u, v) + hSn(u, v).

Since both terms on the right hand side only contain even degree monomials of the
form upvp, the same is true of hX . However, H2n(X) only has weights 2n and 2n− 1

and the rest of the cohomology is pure. Applying Theorem 3.15 we find that the
coefficients of the odd degree monomial upv2n−1−p are the numbers

dimgrpF grW2n−1H
2n(X)− dimgrpF H

2n−1(X) = 0.

The odd degree cohomology is zero by the Lefschetz hyperplane theorem, so it follows
that the graded pieces of W2n−1H

2n(X) are zero as well. Therefore W2n−1H
2n(X)=0,

completing the proof. □

It immediately follows from Corollary 3.16 that the dimensions of the Hi
c(Fn) are

given by the coefficients of the Hodge polynomial of Fn. Applying Poincaré duality
gives the following.

Corollary 3.20. — The cohomology of Fn is pure and of Hodge-Tate type, and the
dimensions are given by

dimHi(Fn,C) =

{
φ ((n+ 1)/d) i = n+ 1− d where d | (n+ 1),

0 otherwise.

3.9. Eigenvalues of the monodromy action. — The formula in Corollary 3.20 sug-
gests that the eigenspaces for the monodromy operator T : H∗(Fn,C) → H∗(Fn,C)
correspond to primitive roots of unity, with each (n + 1)/d-th primitive root having
a 1-dimensional eigenspace in Hn+1−d. We now show that this is actually the case.
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Proposition 3.21. — For all divisors d of n+ 1 and all primitive (n+ 1)/d-th roots
of unity λ, the λ-eigenspace of the monodromy operator T is 1-dimensional and lies
in Hn+1−d(Fn,C).

Proof. — Since the action of T on F is given by multiplying by (n + 1)-th roots of
unity, the eigenvalues of the induced action on H∗(Fn,C) can only be roots of unity.
So we only need to find the eigenspaces for these eigenvalues.

Recall that for each k ∈ N the symbol µk denotes the group of k-th roots of
unity, whose action on Fn is the monodromy action T . For each divisor d of n+1 let
Fn,d = Fn/(µd). Since Fn is smooth and the action of µn+1 is free, the cohomology
of Fn,d is the part fixed by µd.

Hk(Fn,d,C) = Hk(Fn,C)µd

Since we have the exact sequence
0 −→ µd −→ µn+1 −→ µ(n+1)/d −→ 0,

this means exactly that the induced action of T on Hk(Fn,d,C) has only eigenvalues
which are (n+ 1)/d-th roots of unity. We now aim to show that

Hn+1−m(Fn,d) ∼=

{
Hn+1−m(Fn) d | m | (n+ 1),

0 otherwise.
(3.7)

The cohomology of Fn,d is pure since it is a sub Hodge structure of Hk(Fn,Q) which
is pure. So by Corollary 3.16, to compute the dimensions it suffices to compute the
Hodge polynomial of Fn,d. In order to do this, we will find a convenient C∗-bundle on
Fn,d whose Hodge polynomial can be computed.

Let C2n+2 be the affine space with coordinates x0, . . . , x2n, y and define

Gn,d = {(x, y) ∈ C2n+2 | y(n+1)/df(x) = 1}.

We have a natural map
p : Gn,d −→ Fn,d

given by p(x, y) = [y1/dx]. Note that y1/dx is well-defined only up to multiplication by
a d-th root of unity, so the class in the quotient is well-defined. Now define a C∗-action
on Gn,d by the formula

s · (x, y) = (s−1x, sdy)

for s ∈ C∗. This action gives Gn,d the structure of a C∗-torsor over Fn,d via the map p.
If we pull p back by the quotient map q : Fn → Fn,d we get a trivial C∗-bundle.
It follows that Gn,d is an étale locally trivial C∗-bundle over Fn,d, hence it is Zariski
locally trivial (because GLn(C) is “special”).

Fn × C∗ Fn

Gn,d Fn,d

p′

q′ q

p

Here p′ is projection onto the first factor and q′(x, t) = (t−1x, td).
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The function defining Gn,d is similar enough to f that computing its Hodge poly-
nomial is doable in the same way. We partition C2n+2 in exactly the same way as
in Section 3.5 so that y(n+1)/df(x) is a product of monomials on each stratum after
some coordinate change. These strata again correspond to ordered partitions of n+1.
If P = (p1, . . . , pℓ) is a partition and ZP is a stratum, then just as in the proof of
Proposition 3.18 we have

hGn,d∩ZP
(u, v) = gcd((n+ 1)/d, p1, . . . , pℓ)(uv)

n(uv − 1)ℓ.

Note that we now have this extra (n + 1)/d appearing in the gcd. Summing over all
ordered partitions and simplifying the sum in the same way yields the formula

hGn,d
(u, v) = (uv)n−1(uv − 1)

∑
d|m|(n+1)

(uv)mφ
(
(n+ 1)/m

)
.

Since Gn,d is a C∗-bundle over Fn,d, applying (3) in Theorem 3.13 and Example 3.14
gives

(3.8) hFn,d
(u, v) = (uv)n−1

∑
d|m|(n+1)

(uv)mφ
(
(n+ 1)/m

)
.

Now we can compare the coefficients of hFn(u, v) and hFn,d
(u, v) to find that

Hn+m−1
c (Fn,d) ∼=

{
Hn+m−1

c (Fn) d | m | (n+ 1),

0 otherwise.

Applying Poincaré duality, we arrive at the claimed isomorphism in (3.7). Hence
Hn+1−d(Fn) is fixed by µd, meaning that the eigenspaces contained in it are associated
with (n + 1)/d-th roots of unity. The same kind of argument shows that if λ ∈ µm

with m | (n+ 1)/d then no λ-eigenspace of T is contained in Hn+1−d(Fn). It follows
that the only eigenspaces in Hn+1−d(Fn) are those whose associated eigenvalues are
primitive (n + 1)/d-th roots of unity. This proves the first half of the proposition.
To find the dimensions of the eigenspaces, observe that each T is induced by an action
on the rational cohomology, hence its minimal polynomial will be rational. It follows
that each primitive eigenspace has dimension at least 1, and by Corollary 3.20 each
eigenspace has dimension at most 1 since there are exactly φ ((n+ 1)/d) primitive
(n + 1)/d-th roots of unity. Thus each of their dimensions must be exactly 1. This
completes the proof. □

3.10. The main theorem. — We now have the results needed to prove the main theo-
rem: the computation of the nearby and vanishing cycles for the function f = detHn.
More precisely, we compute ψfQC2n+1 [2n + 1] and φfQC2n+1 [2n + 1], where we con-
sider f as a function on affine space C2n+1. The theorem is as follows.

Theorem 3.22. — Let f = detHn and let Xn be as above.
(1) All eigenvalues of T : ψfQC2n+1 [2n + 1] → ψfQC2n+1 [2n + 1] are of the form

λ = e2πip/q where q ∈ {1, . . . , n+ 1} and gcd(p, q) = 1.
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(2) For each eigenvalue λ of T , the nearby cycle sheaf ψf,λQC2n+1 [2n + 1] is pure
of weight 2n.

(3) If λ = e2πip/q is an eigenvalue of T with q ̸= 1, then

ψf,λQC2n+1 [2n+ 1] = IC (Lλ),

where Lλ is a rank 1 local system on Xn−q+1.
(4) φf,1QC2n+1 [2n+ 1] = 0, so ψf,1QC2n+1 [2n+ 1] = QX [2n].

By Corollary 3.2, we can prove the theorem by induction. The difficult part is
understanding what happens at the origin. However, this is taken care of by our work
computing H∗(Fn,C).

Proof. — By the same argument as in Corollary 3.2, each point x ∈ Xn ∖ {0} has a
neighborhood U with U ∼= V ×Xm where m < n and V is smooth. Thus, by induction,
(1) is true away from the origin. At the origin, (1) follows from the arguments given
in Section 3.9.

Since QXn
[2n] is pure, ψf,1QC2n+1 [2n+ 1] is as well. The weight filtration induced

by the nilpotent operator N is therefore trivial, which means that N = 0. Thus

φf,1QC2n+1 [2n+ 1] = imN = 0.

This proves (4).
Now we prove (2) and (3). Let i0 : {0} → Xn be the inclusion of the origin. Let

q ∈ {2, . . . , n+ 1} and let λ ∈ µq be a primitive q-th root of unity. Let

Pλ = ψf,λQC2n+1 [2n+ 1].

If q = n+ 1, then Pλ is supported at the origin, and is just the λ-eigenspace of T in
the cohomology of Fn, which has rank 1 by the arguments in Section 3.9. If q < n+1,
then by induction Pλ is pure of weight 2n away from the origin and we can write

Pλ = P ′
λ ⊕ P ′′

λ ,

where P ′
λ is supported on Xn−q+1 and P ′′

λ is supported at 0. But the cohomology
vector spaces Hk(i∗0Pλ) are the λ-eigenspaces of T in Hk(Fn,Q). By Proposition 3.21,
the λ-eigenspaces for T occur in negative degree cohomology, so it cannot have a
component supported at the origin. Thus P ′′

λ = 0 in this case. The purity follows
from the purity of the cohomology of each Fk for k ⩽ n. This completes the proof.

Suppose q ̸= n + 1. Then each nonzero cohomology occurs in negative degree, so
P ′′
λ = 0. Finally, Pλ is pure of rank 1, and since the weight filtration is symmetric

about weight 2n (see Proposition 3.4), it must be of weight 2n. This proves the claims
in (2) and (3) for q ̸= n + 1. When q = n + 1, Pλ is already supported at the origin
and has rank 1. This completes the proof. □

As an immediate corollary of the purity of the nearby and vanishing cycles, we know
the “center of minimal exponent” of the pair (C2n+1, Xn). This is an invariant intro-
duced in [22, §7.4] which is defined as being the support of a subquotient of a certain
“higher multiplier ideal” which is specified by the minimal exponent. We remark that
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in the same paper it is shown that the minimal exponent for the hypersurface Sn

in P2n is α = 3/2.

Corollary 3.23. — The center of minimal exponent for the pair (C2n+1, Xn) is Xn−1.

3.11. Explicit eigenvectors. — By Proposition 3.21 we know the eigenvalues and
eigenspaces of the monodromy action on H∗(Fn,C). However, it is possible to do
even better and give a way to compute a basis for each Hn+1−d(Fn) consisting of
eigenvectors of T . We give an outline of the strategy here and actually carry it out in
the case n = 2.

For the moment, let f be an arbitrary homogeneous polynomial of degree N on
Y = (C∗)ℓ × Cn, and consider the complex (Ω•

Y , Df ) whose terms are just the usual
sheaves of differential forms

(3.9) OY −→ Ω1
Y −→ · · · −→ Ωn

Y

with differential given by Df (ω) = dω+df∧ω. We will call this complex the de Rham-
Koszul complex for f , since the differential is the sum of the usual de Rham and Koszul
differentials. In [7, §6.1–§6.2], Dimca shows that when Y = Cn, the cohomology
of (Ω•

Y , Df ) is the same as the (reduced) cohomology of the Milnor fiber. He also
shows that the eigenvalues of the monodromy operator are easy to read off from the
cohomology of this complex. Here is how it is done. We say a k-form is homogeneous
of degree d+ k if it can be written as a sum of k-forms of the form

h(x1, . . . , xn)dxi1 ∧ · · · ∧ dxik ,

where h(x1, . . . , xn) is a homogeneous polynomial of degree d and dxi1 ∧ · · · ∧ dxik
is a basic k-form in the coordinates x1, . . . xn. For each a ∈ {0, . . . , N − 1} we let
Ω•

Y,a be the subcomplex of Ω•
Y spanned by the homogeneous forms of degree k, where

k ≡ a mod N . It’s easy to see that this is a well defined subcomplex since if ω is
homogeneous of degree a, then

Df (ω) = dω + df ∧ ω,

where dω and df ∧ ω are homogeneous of degree a and N + a respectively. We also
have

(Ω
•
Y , Df ) =

N−1⊕
a=0

(Ω
•
Y,a, Df ).

Dimca proves the following theorem; see [7, Th. 6.2.9].

Theorem 3.24. — Let F be the Milnor fiber of the homogeneous polynomial f .
Then there is a natural isomorphism Hk+1(Ω•

Y , Df ) ∼= Hk(F,C). Furthermore, the
subspaces Hk+1(Ω•

Y,a, Df ) map isomorphically onto the e2πia/N -eigenspace for T in
Hk(F,C).

Before we begin with the computation at hand, we need some lemmas.
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Lemma 3.25. — Let g(z) = zm+1 on C with m ⩾ 1 Then

Hk(Ω
•
C, Dg) =

{
0 k = 0,

C⟨dz, zdz, . . . , zm−1dz⟩ k = 1,

Hk(Ω
•
C(log(∗)), Dg) =

{
0 k = 0,

C⟨ 1zdz, dz, zdz, . . . , z
m−1dz⟩ k = 1.

Proof. — After taking global sections, the complex (Ω•
C, Dg) becomes the two term

complex C[z] → C[z]dz. The differential acts by

Dg(1) = mzm−1dz,

Dg(z
k) = (kzk−1 +mzk−m+1)dz for k ⩾ 1.

From this it is easy to see that Dg is injective, and the cokernel is spanned by the
desired elements. The computation for log forms is similar. □

Lemma 3.26. — Let YP be a stratum as in Section 3.5. Let Z = YP ∖YP . The residue
exact sequences

0 −→ Ωk
YP

−→ Ωk
YP

(log(Z))
Res−−−−→ Ωk−1

Z −→ 0

respect the differential Df , and hence extend to an exact sequence of complexes. More-
over, each map preserves the spaces of homogeneous forms of degree a mod (n + 1)

for each a ∈ {0, . . . , n}.

Proof. — The first map clearly respects the differentials Df along with the degree
of the forms mod (n + 1). To see that the residue map does as well, we can work in
coordinates. If Z is defined by z = 0 on YP then for α and β holomorphic forms on
YP we have

Df

(
Res

(
β + α ∧ dz

z

))
= dα+ df ∧ α = Res

(
Df

(
β + α ∧ dz

z

))
.

The fact that Res preserves the degrees of homogeneous forms mod n + 1 is due to
the fact that dz/z is homogeneous of degree 0. □

These lemmas allows us to come up with an algorithm for computing a basis for
each Hk(Fn,C). The strategy is to simply compute the cohomology of each Ω•

C2n+1,a

by doing the computation for functions of the form in Lemma 3.25, and then using
the above lemmas as well as Corollary 3.11 and the structure of the stratification in
Section 3.5 to assemble the cohomology in the correct way. This is essentially a more
detailed version of the computation of the eigenvalues above where we work with
explicit cohomology groups and exact sequences as opposed to the Hodge polynomial
and its additivity property.
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Example 3.27. — As an example we carry out this strategy in the case n = 2. In this
case we have

f = det

x0 x1 x2x1 x2 x3
x2 x3 x4

 = −x23 + 2x1x2x3 − x0x
2
3 − x21x4 + x0x2x4

is the determinant of the 3× 3 Hankel matrix. Let λ = e2πi/3. It follows from Theo-
rem 3.24 that under the isomorphism

H∗(Fn,C) ∼= Hk(Ω
•
C5 , Df )

the λ-eigenspace of the left hand side corresponds to Hk(Ω•
C5,2, Df ). Now stratify C5

as in Section 3.5 and fix a stratum YP ∼= (C∗)ℓ×Cn, where ℓ = |P |. By Corollary 3.11
we can change coordinates so that f = zd where d = gcd(P ). Since f only involves
the coordinate on one factor, it is easy to see that

(Ω
YP

• , Df ) ∼= (Ω
•
C, Df )⊗ (Ω

•
(C∗)ℓ−1×Cn , d).

Furthermore, the cohomology of the right tensor factor is spanned by homogeneous
forms of degree 0. It follows from Lemma 3.25 that the only P for which forms of
degree 1 appear are the P on which f can be written as zd on YP with d > 1. Since
d = gcd(P ), the only partition satisfying this is P = (3), and by construction, the
coordinate z = −x2; see Example 3.12). By Lemma 3.25, we have

Hk(Ω
•

Y(3),1
, Df ) ∼=

⊕
a+b=1 mod 3

H1(Ω
•
C,a, Df )⊗Hk−1(Ω

•
C2,b, d) =

{
C⟨dx2⟩ k = 1,

0 k ̸= 1.

Let Z = {x0 = 0}. Using the residue exact sequences and Lemma 3.26, we find that
the connecting homomorphisms induce an isomorphism

δ : H1(Ω
•

Y(3),1
, Df ) ∼= H3(Ω

•
Z0,1, Df ) ∼= H5(Ω

•
C5,1, Df ).

The connecting homomorphisms are easily made explicit. We lift dx2 to the log form
(1/x1)dx2 ∧ dx1, then we apply the differential, which gives

d(f |Z0
) ∧ 1

x1
dx2 ∧ dx1 = −2x2dx1 ∧ dx2 ∧ dx3 + x1dx1 ∧ dx2 ∧ dx4,

which is a representative of a class in H3(Ω•
Z0,1

, Df ). Then we do this again to pass
from Z to C5, and we obtain the form

α1 = δ(dx2) = (2x1x3 − 2x22)dx0 ∧ · · · ∧ dx4,

which is homogeneous of degree 7. The computation for λ2 is the same except we
start with x2dx2, so we get

α2 = (2x1x2x3 − 2x32)dx0 ∧ · · · ∧ dx4.

These forms α1 and α2 generate the λ- and λ2-eigenspaces for T in H3(F2,C).
For larger Hankel determinants connecting homomorphisms are just as easy to

compute if one knows df , so this procedure will give the correct representatives in
general. However the exact sequences become much more numerous, and keeping
track of the coordinate changes in a consistent way is the current obstruction to
carrying this out in general.
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