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INVARIANTS OF THE SINGULARITIES OF
SECANT VARIETIES OF CURVES
BY DaNIEL BrocaN
AsstracT. — Consider a smooth projective curve and a given embedding into projective space

via a sufficiently positive line bundle. We can form the secant variety of k-planes through the
curve. These are singular varieties, with each secant variety being singular along the previous
one. We study invariants of the singularities for these varieties. In the case of an arbitrary curve,
we compute the intersection cohomology in terms of the cohomology of the curve. We then turn
our attention to rational normal curves of even degree. In this setting, we prove that all of the
secant varieties are rational homology manifolds, meaning their singular cohomology satisfies
Poincaré duality. We then compute the nearby and vanishing cycles for the largest nontrivial
secant variety, which is a projective hypersurface.

Résumi (Invariants des singularities des variétés sécantes de courbes). — Etant donnés une
courbe projective lisse et un plongement donné dans I’espace projectif via un fibré en droites
suffisamment positif, nous pouvons former la variété sécante des k-plans passant par la courbe.
Ce sont des variétés singulieres, chaque variété sécante étant singuliere le long de la précédente.
Nous étudions les invariants des singularités de ces variétés. Dans le cas d’une courbe arbitraire,
nous calculons la cohomologie d’intersection en termes de cohomologie de la courbe. Nous
nous intéressons ensuite aux courbes rationnelles normales de degré pair. Dans ce cadre, nous
prouvons que toutes les variétés sécantes sont des variétés d’homologie rationnelle, ce qui signifie
que leur cohomologie singuliére satisfait a la dualité de Poincaré. Nous calculons ensuite les
cycles proches et les cycles évanescents pour la plus grande variété sécante non triviale, qui est
une hypersurface projective.
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P} D. Brocan

1. INnTRODUCTION

For a smooth projective curve embedded into projective space one can form the
secant variety of k-planes. If the embedding is sufficiently positive, each secant vari-
ety will be a proper subvariety of projective space which is singular exactly along the
next smallest secant variety. In this paper we study invariants of the singularities of
these secant varieties. In particular we compute their intersection cohomology and,
in the case of a rational normal curve of even degree, in which case the largest non-
trivial secant variety is a hypersurface, we compute the nearby and vanishing cycle
sheaves. We also study the question of which secant varieties for which curves are
rational homology manifolds. Throughout the paper we mostly work in the language
of perverse sheaves, however almost all results in this paper automatically lift to the
category of pure or mixed Hodge modules.

For a variety X of dimension n, the intersection complex IC x is in general smaller
than the shifted constant sheaf Qx[n]. In the language of Hodge theory, ICx is pure
of weight n and is the the top graded piece of Qx [n]. There is a natural map Qx[n] —
IC x and X is called a rational homology manifold if this map is an isomorphism. This
is true, for example, when X has finite quotient singularities. In general, the difference
between Qx[n] and ICx can be understood as a measure of the singularities of X.

Now suppose f : X — C is a holomorphic function. The nearby and vanishing
cycle sheaves ¥ ;Qx[n] and ¢;Qx([n] are intimately related to the topology of the
hypersurface Xo = f~1(0). They give a refined kind of measure of the singularities
of Xy and they contain the information of the monodromy of the nearby fibers of
the function f around the origin in C. However, explicitly applying these sheaves is
notoriously difficult to do except in certain circumstances. To give some examples, this
is done in the cases of a normal crossings divisor in [23], [19], and more recently in [6],
as well as for a generic determinant, see [13]. Despite secant varieties not even being
local complete intersections and their defining functions being rather complicated
determinants, we are still able to get a complete description of ¢ ;Qx[n] and ¢ ;Qx [n].

Another motivation for studying secant varieties of rational normal curves, and
indeed the original motivation for this project, is their relationship to theta divisors on
Jacobians of hyperelliptic curves. This relationship can be seen in two ways. Consider
a hyperelliptic curve C of genus g and the theta divisor © on the Jacobian J(C). The
first relation is that for a point x € © of multiplicity m, the tangent cone TC,© C C9
is isomorphic to the cone over the topmost secant variety of a rational normal curve of
degree 2m [21, App. A]. Thus the study of secant varieties is in a sense a local study
of theta divisors on hyperelliptic Jacobians. The second relation is via resolutions of
singularities. In [1] a log resolution is constructed for the pair (PV, X), where X is a
secant variety of a curve. In [21] a log resolution of the pair (J(C),©) is constructed
in a similar fashion, and it turns out that the fibers of this resolution are exactly the
analogous resolutions for secant varieties of rational normal curves.

Let X be a complex manifold of dimension n, K a perverse sheaf on X, and
f + X — C a holomorphic function on X which has an isolated critical value at 0.
Then one can form ¥ K and @K, the nearby and vanishing cycles of K with respect
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INVARIANTS OF THE SINGULARITIES OF SECANT VARIETIES OF CURVES 3

to f. Roughly speaking these are perverse sheaves on the singular fiber Xq = f~1(0)
which measure the behavior of K near X in a way that is more refined than just
taking the restriction K|x,.

When K = Qx[n], the nearby and vanishing cycles give subtle information about
the singularities of Xy. This idea is used, in particular, in Saito’s definition of mixed
Hodge modules. Given a candidate Hodge module M on X one needs to check certain
regularity conditions along all holomorphic functions f on X, and this is done via the
functors vy and ¢ . More recently, the Hodge theoretic nearby and vanishing cycles
have found applications in the study of singularities via Hodge ideals [16] and higher
multiplier ideals [22]. Having explicit descriptions of ¢y K and ¢ K more easily allows
one to understand exactly what information it contains regarding the singularities
of X.

The paper is in two main sections. The first deals with secant varieties of arbitrary
curves, and the second focuses on the case of rational normal curves.

1.1. SECANT VARIETIES OF ARBITRARY CURVES. — We begin in Section 2 by construct-
ing secant varieties Sec® and secant bundles B for an arbitrary smooth projective
curve C. After developing these preliminaries we move on to studying the intersection
complex of each Sec”. Sections 2.2 to 2.6 are devoted to computing the intersection
cohomology of the secant varieties Sec”. This is the main result of this section.

Tueorem 1.1. — Let C be a smooth projective curve, M a line bundle on C which
separates 2k points, and { the class of the tautological line bundle on the k-th secant
bundle B¥ — C®). Then the intersection cohomology of Sec® is given by the formula
TH (Sect) = 4 N=2EHY O,
max{j—k,0}<2¢

where 0 < j < 2k — 1. The degrees above the middle are obtained by duality.

In particular, the intersection cohomology is entirely determined by the cohomology
of the curve C. We end with Section 2.7 in which we compare more explicitly the
constant sheaf and the intersection complex for Sec?.

1.2. SECANT VARIETIES OF RATIONAL NORMAL CURVES. — The bulk of the paper is con-
tained in Section 3. This section is dedicated to the study of secant varieties of rational
normal curves. Here we switch to the simpler notation Sy, for Sec® in order to distin-
guish this setting from the case of an arbitrary curve. For a rational normal curve of
degree d and any fixed j € {k —1,...,d — k + 1}, the ideal defining S} is generated
by the (k+ 1) x (k + 1) minors of the generic Hankel matriz

Xo X X2 e Ty
T T2 Tj+1
Hd,j: o ."xj+2

Ld—j Ld—j+1 Ld—j+2 ~° Td

JILP — M., 2026, tome 13



4 D. Brocan

It is known that the ideal generated by these minors is independent of j. Since we
will primarily be interested in rational normal curves of even degree d = 2n, it will be
convenient to take j = n and work with the square matrix Hy,, ,, which we will simply
denote by H,,. Note that the zero locus of f = det H,, is the projective hypersurface S,
for the rational normal curve of degree 2n.

We begin with a key lemma about Hankel matrices in Section 3.1, which allows
us to conclude that Sy is locally isomorphic to a product of an affine space and the
cone over a smaller secant variety for a rational normal curve of smaller degree. This
“inductive structure” on the Si’s will be the most important point in the calculation
of the nearby cycle sheaves. In Sections 3.2 to 3.6 we review the groundwork necessary
to prove Theorem 1.3 below, the main result of the paper. In working toward this goal,
in Section 3.7 we can prove the following.

Tuareorem 1.2. Let C be a rational normal curve of even degree. Then each non-
trivial secant variety Sy satisfies

st[Qk, 1] = ICSk~

Thus Sy, is a rational homology manifold (compare with [17, Cor. G]), so its singu-
lar cohomology satisfies Poincaré duality. It is already known that these varieties are
rational and have rational singularities, so in some sense the Sj are “close” to pro-
jective space. In fact, Theorem 1.2 is true for rational normal curves of any degree.
However, limiting ourselves to the case of even degree will simplify the presentation
greatly and will suffice for the purposes of this paper. A proof for arbitrary degrees
appears in the author’s dissertation [2]. Sections 3.8 to 3.10 contain the meat of the
proof of Theorem 1.3, with Section 3.10 describing the final result.

To state the main theorem we consider a rational normal curve of degree 2n.

Tarorem 1.3. For each k = 1,...,n let Xy, be the affine cone over Sy. Then we
have the following:

(1) All eigenvalues of the monodromy T : ¥ ;Qczn+1[2n + 1] = ¥ Qg2n+1[2n + 1]
are of the form XA = e*™®/9 yhere g € {1,...,n+ 1} and ged(p, ¢) = 1.

(2) For each eigenvalue A of T, the nearby cycle sheaf ¥ \Qczn+1[2n + 1] is pure
of weight 2n.

(3) If X\ = e*™P/4 s an eigenvalue of T with q # 1, then

wf)\@@n“[?n + ].] = IC(L)\),

where Ly is a rank 1 local system on X, _q41.
(4) §0f71QC2n+1 [QTL + 1] =0, so ’(/Jf’lQ(CQn-%—l [2n + 1] = an [2n]

So the nearby and vanishing cycles decompose into a direct sum of intersection
complexes of rank 1 local systems, each of which is supported on some Xj. This
is perhaps the simplest nontrivial result that one could hope for. An application of
Theorem 1.3 will appear in an upcoming work of Schnell and Yang in which they show
that a similar result holds for theta divisors on hyperelliptic Jacobians. We end in
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INVARIANTS OF THE SINGULARITIES OF SECANT VARIETIES OF CURVES J

Section 3.11 with a way to explicitly compute eigenvectors of the monodromy operator
on the nearby cycles.

Acknowledgements. I am very grateful to my advisor Christian Schnell for intro-
ducing me to this topic and his guidance throughout. I thank Ruijie Yang for helpful
comments on an earlier draft of this work. I would also like to express gratitude
to Mark de Cataldo for helpful conversations which helped get this project started.
Finally, I thank Matthew Huynh, Brad Dirks, Yilong Zhang, and the many PhD stu-
dents at Stony Brook for the various helpful conversations over the course of this
project.

2. SECANT VARIETIES OF CURVES

2.1. SECANT BUNDLES AND SECANT VARIETIES. — In this section we construct secant

varieties as in [1]. We only review the main points needed for this paper. We use

the convention that P*(V') denotes the projective space of hyperplanes in the vector

space V. Let C' be a smooth projective algebraic curve over C. The k-fold symmetric

product C*) is the quotient of C* by the natural action of the symmetric group .

The variety C*) is smooth projective of dimension k and its points are the effective

divisors of degree k on C.

Derinirion 2.1. — We say that a line bundle M € Pic C separates k points if
h(C,M(=D)) = h°(M,C) — k

for all D € C¥),

Exampre 2.2. — A line bundle M separates one point if and only if it is basepoint
free and M separates two points if and only if it is very ample.

Exampre 2.3 — The line bundle Op: (n) separates n + 1 points for n > 0.

The universal divisor @y, of C x C®) is defined as the image of the embedding
Cx kb cxcoW
(p, D) — (p,p + D).

Let my, 9 denote the projections to the first and second factors of C' x C*), Then we
have the following exact sequence

0 —mMe0O0(-%;) — M —1iM®0g, —0

and when M separates k points this sequence remains exact when pushed down
to C®). Let us set the notation

E* = (m).(mi M ® 0,).

This is a vector bundle of rank k over C'*). We then define the k-th secant bundle of C
(with respect to M) to be the projective bundle B*(M) = P(E*) over C*). We may
also denote this as B¥(C) when the line bundle M is clear from context, and when

JIP — M., 2026, tome 13



6 D. Brocan

there is no danger of confusion we will omit M and C' from the notation entirely and
simply write B*. There is a natural map

B : BE(M) — P((m3)«(x* M)) = PH°(C, M) x C*) — PHO(C, M).

If the original line bundle M separates 2k points, then the image of [y is the variety
of secant (k — 1)-planes or the k-th secant variety of C and is denoted by Sec”(M).
Again, we will write Sec” (C) or simply Sec® depending on the context. The notation is
such that a particular fiber of B, or a particular (k — 1)-plane in Seck, is determined
by choosing k (not necessarily distinct) points on the curve C. If BY denotes the fiber
of the map B¥ — C®) over D = p; +- - -+ py, then B (B%) is the (k — 1)-plane secant
to C' at the points in the support of D with the appropriate multiplicities.
For m < k there are also natural maps a, ; induced by the addition map

a4 =y : C x k=) o)

B x Olk=m) 2k, pi
DPm X idc(k‘,—m,)l lpk

cm) x ¢k—m) — (k)

In the diagram above, p,, is the structure map of the projective bundle. The bundle
B™ x C%*=m) gyer Cm) x C*k=m) ig called the m-th relative secant bundle. One can
show that these maps satisfy the following compatibility lemma.

Lemva 2.4. — Form < £ < k, the following diagrams commute:

B™ x Ck=m) pr P PHO(C, M)

e

Bm

QO &

B x ot o ote—) 0t ) g cen Ok, p

m %’f

B™ % O(kfm)

What we need from [1] is an understanding of when Sec’ is the classical k-th
secant variety, and what structure the maps 3 and a,y, ; have for varying k and m.
We summarize the results in the following proposition.

Prorosition 2.5. — Let C be a smooth curve in PN embedded via a line bundle M
which separates 2k points. For each m < k, let ZF = a1, (B™ x C*=™)) and write
Uk = BF < Z}j_l.

(1) B! is isomorphic to the curve C, the secant bundle map 31 : B — C is an
isomorphism, and with this identification, B1 : B* — PN is the embedding into P
induced by M. In particular, Sec'(C) = C.

JE.P — M., 2026, tome 13



INVARIANTS OF THE SINGULARITIES OF SECANT VARIETIES OF CURVES 7

(2) For each m = 2,....k, Sec™ is a proper subvariety of PN singular along
Sec™ L. Furthermore, the map B, : B™ — Sec™ is an isomorphism on U™. In partic-
ular, it is a resolution of singularities with exceptional divisor ;' (Sec™ ') = Z™ .

(3) For each m € {2,...,k}, the singular locus of Z* is Z* . Furthermore, the
map O @ B™ x Ck=m) _ Zk is an isomorphism on U™ x Ck=m) " This map is
similarly a resolution of singularities with exceptional divisor Z]'_ X Ck=m),

From this point on we will always make the assumption that M separates 2k points
so that the above proposition applies, unless otherwise stated.

2.2, INTERSECTION conomoLoGy. — The majority of this section will be devoted to
finding a general formula for the intersection cohomology of Sec®(C) for any smooth
curve C' embedded by a sufficiently positive line bundle. Section 2.3 covers some
homological preliminaries about perverse sheaves and semismall maps. In Sections 2.4
and 2.5 we study the relevant maps on the cohomology of the secant bundles B*. The
final computation takes place in Section 2.6. For the rest of the section, we work with
cohomology with Q-coefficients unless otherwise stated, and we omit the coefficient
field from our notation in this case.

Norarion 2.6. Many of the Hodge structures floating around in this section are
Tate twisted, sometimes many times. Usually these twists are induced by explicit
differential forms, and so to keep track of this while avoiding notation that is too
unwieldy, we will write the forms explicitly. For example, if B is the k-th secant

bundle for a curve C, we have the projection map
) 2 o ) ) .
HI(B* x C)= @ H'"(B*) ® H'(C) — H/7*(B*) ® H*(C) = H/"*(B*)(-1).
i=0

We will instead write the right hand side as H’~2(B*)w where w € H?(C) is a gen-
erator. This will have the advantage of making the effect of certain maps completely
clear.

2.3. SEMISMALL MAPS AND THE DECOMPOSITION THEOREM. — Let f : X — Y be a proper
morphism of irreducible complex varieties and define

Yo, = {y €y | dlmfil(y) = m}
We say that f is semismall if
(2.1) 2m + dimY,, < dim X

for each m. The Y,, for which equality holds in (2.1) are called the relevant strata for f.
De Cataldo and Migliorini prove an especially useful form of the BBDG decomposition
theorem when X is smooth and the morphism in question is semismall [4, Th. 3.4.1].
We state a simplified version which will suffice for our purposes.

JIP — M., 2026, tome 13



8 D. Brocan

Taeorem 2.7. Let f : X =Y be a proper semismall morphism between irreducible
complex varieties. Furthermore, assume that X is smooth and the fibers of [ are irre-
ducible. Then in the bounded derived category D%(Y) there is a canonical isomorphism

Rf.Qx[n] = ICy,
where the sum runs over all relevant strata for f.

2.4. FINDING THE INTERSECTION COMPLEX. — Now let C' be a curve embedded in pro-
jective space by a line bundle which separates 2k points. We stratify the secant variety
Sec® by open subsets U™ of the smaller secant varieties:

U™ = Sec™ ~.Sec™ ! C Sec”
for m < k. By Proposition 2.5 we have that the fiber over x € U™ is
Bt (w) = Otk
It follows that for x € U™
2dim B H(x) + dim U™ = 2(k — m) + 2m — 1 = 2k — 1 = dim B".

Thus B is a semismall morphism for each k and each stratum is a relevant stratum
for Bi. Furthermore, the fibers of the maps [y are just symmetric powers of C' and
hence are irreducible. Thus we can apply Theorem 2.7 to get a canonical decomposi-
tion in the bounded derived category D% (Sec®):

k
R(Bk)*QBk[Qk — 1] >~ @ [Csecm.

m=1
It is natural to pass through the above isomorphism and try to find a map realizing the
projection away from ICg..+. Theorem 2.8 does just that. First, consider the Gysin
morphism 7, induced by the projection 7 : B¥ x C' — B*.

7wt Qprxc[2k] — T Qpr[2k — 2].
If we pull back this map by o = ay, k1, we can precompose with the pullback map o*.
Qpr12k + 1] 2 Ra,Qpixo[2k + 1] — Ra,m*Qpe[2k — 1]
Pushing forward via 41 gives us a map

mea R(ﬂk+1)*(@3k+l[2k + 1] — R(/Bk»)*QBk [2]6' - 1],

which we continue to denote by 7,a*. This is the map of interest.

Tarorem 2.8. — Let C be a curve embedded in projective space by a line bundle
separating 2k + 2 points. The map of perverse sheaves on Secht?

Tea’™ R(ﬂk+1)*QBk+1 [Qk + 1] — R(Bk)*QBk[Qk‘ - 1]

has ker moa* = ICgockt1, where 7 : BX x C' — B¥ is the projection and o = a 11 is
the map on relative secant bundles.

JEP — M., 2026, tome 13



INVARIANTS OF THE SINGULARITIES OF SECANT VARIETIES OF CURVES 9

Thus if we compute the kernel of m,a* on the level of cohomology, then we can
compute the intersection cohomology of the secant varieties. The main part of the
proof of Theorem 2.8 is contained in the following proposition.

Prorosition 2.9. — The map m.o* : HI(B*TY) — HI=2(B*)w is surjective for each
Jj=0.

Proofof Theorem 2.8. — The ICgecm for 1 < m < k + 1 have distinct supports in
Seck‘H7 so by irreducibility and strict supports, the map m.a* decomposes into a
sum of maps ICgecm — ICseem which are either isomorphisms or zero. In particular,
ICgk+1 is in the kernel. To see that no other ICgecm is in the kernel, note that the
map induced on cohomology

H2k72m+2(Bk+17@) N H2k72m(Bk7Q)

is surjective by Proposition 2.9. Since Q = IH(Sec™) C H?*~2"(B* Q) the map
ICgecm — ICgeem cannot be zero. Thus ker(m.a*) = ICg 1. O

It now suffices to prove Proposition 2.9. To do this we will thoroughly study the
maps m,a on cohomology.

2.5. Tue mars m.a*. On cohomology the map m.a* is the composite
(2.2) HI(BF) —9 gi(BF x O) - HI=2(BF)w,

where w € H?(C) is a generator, the map a = a, 41 is induced by the addition map
a:C® x C — C**tD and the map 7, is induced by the projection coming from
the Kiinneth formula. Since each B* is a P*~'-bundle over C*), its cohomology ring
H*(B*) is generated as an algebra over H*(C®)) by the class ¢ of the tautological
line bundle. In any given degree this just means

(2.3) HI(BY) = '@ B (0W)¢,
1=0

where by convention we take cohomology in negative degrees to be 0. The map o* is
induced via the above algebra structure by the addition map

a:C®) x ¢ — okt

The idea is that it should suffice to understand m,.a*( and the effect of m,a* on the
level of C'(k+1),

We will start with understanding a*(. We will need the following lemma:

Lemva 2.10. — Let (pyq and (g be the tautological classes for B**1 and B* respec-
tively. Then o ((ky1) = 7 (k).

The proof of Lemma 2.10 uses two elementary lemmas. Recall that for a vector
bundle p : E — S, the tautological class ¢ on the projective bundle, which we will

JILP — M., 2026, tome 13



10 D. Brocan

denote p : P(E) — S, comes from the tautological line bundle Opg)(1) which is
defined by the exact sequence

where N is the vector bundle whose fiber over x € P(E) is the corresponding hyper-
plane in Ej, ).

Levmva 2,11, Letp: E— S andp' : E' — S be two vector bundles over a common
base S. Suppose that E' is a quotient of E, i.e. we have a commutative diagram

FE—%T g

N

Abusing notation, let ¢ : P(E') — P(E) denote the map on the projective bundles.
Then (}'*OP(E)(l) = o]P’(E’)(l)~

Lemma 2.12. — Let
f/
#E-L g
ol
S — S
f
be a map of vector bundles over bases S and S’ induced by the map f :~S/ — S. Let
[ P(f*E) — P(E) denote the induced map on projective bundles. Then f*Op(gy(1) =

Op(s+m)(1)-

Proofof Lemma 2.10. — For each m < k + 1 we have the following commutative
diagram.
B™ x O(k+1-m) Y, k41 Bkt1
Py ™) ———— B(a® B*H) —0 s B(h+)

T |

cm) x ¢k+1-m) T> C(k+1)

Note that the map a*EF*!t — Ty B™ is & surjection, so we can apply Lemmas 2.11
and 2.12 and get that o, ;Opsi1(1) = Op(ﬂz(m gy (1) = T Opm (1). The con-
clusion follows in the case m = k. g

Now we turn our attention to the map

(2.4) mea* : HI(CHHD)y — HIZ2(0W)w.

JE.P — M., 2026, tome 13



INVARIANTS OF THE SINGULARITIES OF SECANT VARIETIES OF CURVES 11

Prorosition 2.13. The map in (2.4) is surjective for each j, and the kernel is
given by

NHYC) 0<j<k+1,

0 otherwise.

(2.5) ker(m.a*) = {

Proof. — In [14] Macdonald computes the cohomology of the symmetric product

C*+1) in terms of the cohomology of C. In fact, he gives explicit generators.

If p; : C* — C for i = 1,. ..,k denote projection onto the various factors, then define
G=pivit o +pay  fori=1,...,2,
T=piw+--+ppw,

where g is the genus of C, the v; generate H'(C), and w generates H?(C). The
cohomology classes & and 7 are invariant under the action of the symmetric group.
They therefore descend to cohomology classes on C'*+1) which we denote by &; and n
respectively. Macdonald shows that these classes generate the cohomology of C*+1).
He also gives relations between the & and 7 (see also [10]). In degrees j < k+1 the &;
anticommute and 7 is central. Hence for j < k 4+ 1 we arrive at the isomorphism

(2.6) (W)= @ (NHHYC)) 7'

i>0

If ¢ and 7’ denote the classes in H*(C'®)) analogous to &; and 7 respectively, then
we obviously have (up to perhaps a multiplicative constant) that

a‘*gi = 51{ ®p2+1%‘>
a*n =1 @ pjw.

It follows that, under the the isomorphism in (2.6), the map m.a*, which is induced by
the projection in the Kiinneth formula and the addition map, is just the projection
map formally sending 1’ to (')*~*w when i > 1 and sending 7° to 0. Explicitly,
in degrees j =0,...,k + 1 we have a diagram as below.

*

Tl

Hi(C*k+1)) HIi=2(C®)w

@@o (/\jiziHl(C)) 7 — @121 (/\jfziHl(C)) () 'w

The bottom map is the projection away from the ¢ = 0 factor. Therefore it is surjective
and its kernel is A7 H!(C). We can similarly find the kernel in higher degrees using
the hard Lefschetz isomorphisms, which we denote by L!. When j = k + 2 we have
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2 D. Brocan

the diagram

HF+2(Ck+D)) Txa H*(C™)w
g
H* Ok

@z;o (AkiQiHl(C)) 't ——— @i}O (Aki%Hl(C)) (n')'w

and the bottom arrow is an isomorphism. Finally in the case j > k + 2 we have the

diagram
HI(Ck+D) ma” Hi=2(C®)w
Lj—k—lH HLj_k_Q
H2k+27j(c(k+1))ne H2k+27j(c(k))(77/)£71w

@120 (/\2k+27j72iH1(C)) nZJri @120 (/\2k+27j72iH1(C)) (n’)“”iw

and once again the bottom arrow is an isomorphism. To summarize, we have calculated
that the map m.a* : H/(C*+D) - HI=2(C")w is always surjective and the kernel
is given by the isomorphism in (2.5). O

We now have enough information to prove the surjectivity in Proposition 2.9, which
will complete the proof of Theorem 2.8.

Proof of Proposition 2.9. — Observe that we have the isomorphism of Hodge struc-
tures

) k=2 . )
H2(B*)wx~ @ H 27 2(CW)(iw.
1=0

For any 8 ® ¢} @ we HI72=2(CW)(iw, let v HI~2(C*+D) be in(m.a*)"H(BRW).
Recalling that 7, is just the Kiinneth projection

H(B* x C) — HI7%(B*)w,
it then follows that
T (Y® () =@y @) = BR (L ®w. O

Because each Qpr[2k + 1] and each ICg. .+ underlie Hodge modules and all of the
maps above underlie morphisms of Hodge modules, we automatically get the following
corollary.

JE.P — M., 2026, tome 13



INVARIANTS OF THE SINGULARITIES OF SECANT VARIETIES OF CURVES 13

Cororrary 2.14. Let C be a smooth curve embedded in projective space by a line
bundle which separates 2k points. Then we have an isomorphism of Hodge modules

R(54).Qpe(2k — 1] = @ O (—(k —m)).

m=1
2.6. COMPUTING THE INTERSECTION COHOMOLOGY. — We can now compute the inter-
section cohomology of Sec”.
Turorem 2.15. — Let C be a smooth projective curve, M a line bundle on C which

separates 2k points, and ( the class of the tautological line bundle on the k-th secant
bundle B¥ — C®). Then the intersection cohomology of Sec® is given by the formula

IH (Sec”) = & N=HHN O,

max{j—k,0}<2i

where 0 < j < 2k — 1.

The degrees above the middle are obtained by duality. In particular, for 7 < k we

have
(2.7) IH7 (Sec”) = @ (N2 H'(C)) ¢' = HI(CW).
i>0
Proofof Theorem 2.15. — By Theorem 2.8 we get a long exact sequence in cohomol-
ogy.

coo— TH (Sec®) — HI(BF) 2%y gi—2(BF 1) — ...
By Proposition 2.9 the connecting maps are zero, so IH’(Sec”) is the kernel of the
map 7. : HY(B*) — H/~2(B*~1)w. Decomposing this map according to the direct
sum decompositions in (2.3), this takes the form of a map

k—1 L ) k—2 . . .
mat s @ HITH(OW) G — @ HITP (R D) G w.
=0 1=0

Again we emphasize the distinction between (; and (x_1. Because « is induced by
the addition map a : C x C*~1 — C®*) it can be seen that the components of this
map are of the form

Teat Hj72i(C(k+1))<]i N Hj7272i(c(k:))<~]i_lw,

where 7 here also denotes the projection C*) x C' — C*). Then by Proposition 2.13
the kernel of this map is

NTEHYC) G 0<j—2i <k,

0 otherwise.

ker(m.a*) = {

It follows that IHj(Seck') is the sum of the above groups for i = 0,...,k — 1. This is
exactly the desired result. |

The formula is worth specifying for the case C' = P!,
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Cororrary 2.16. If C = P, then the intersection cohomology of Sect is
C jevenand0<j <4k —2,

0 otherwise.

TH? (Sec®) = {

2.7. Tuk constant sueAr oF Sec?. — Now we give a strategy for more precisely com-
puting the intersection complex ICg..x, carrying out this computation in the case
k = 2. We make use of a theorem belonging to the study of Du Bois complexes, orig-
inally studied in [8]. An introduction can be found in [18, §7.3]. Specifically, we need
the following result (see [18, Ex. 7.25]).

Tarorem 2.17. — Let X and Y be complex algebraic varieties with X singular along
the subvariety Z. Let p : Y — X be a map which is an isomorphism away from
E=p1(2).

E-l vy

| P

Z(T>X

Then we have a distinguished triangle

Qx (—)> pQy ©i.Qs 2L p,Qp
in the bounded derived category D2(X).
Turorem 2.18. — Let C be a smooth projective curve embedded by a line bundle which

separates 4 points. Then Qgec2[3] is perverse and there is an exact sequence of perverse
sheaves

(2.8) 0 — Qc¢[l] ® H(C) — Qgec2[3] — ICgec2 — 0.
Proof. — By Proposition 2.5 the diagram
BlxC <%, p?
7T1i lﬂz
C —— Sec?

satisfies the hypotheses of Theorem 2.17, where 7, denotes the projection onto the
first factor B* = C. Hence we get an exact triangle in the derived category.

Qsec2[3] — (82)+Qp2[3] ® Qc[1] — (82)+Qoxc|3] L

After applying Theorem 2.7, the long exact sequence in perverse cohomology sheaves
reduces to the exact sequences

0— pr:72 (@Sec2 [3] — QC[l] — QC[l] @ HO(Oa Q) — pj{il QSe(32 [3} — 07
0 — Qc[l] ® H'(C,Q) = PH® Qgee2[3] = IC g2 ®Qc[1] = Qc[1] ® H*(C, Q) — 0.

Clearly the middle map in the top sequence is an isomorphism, so Qgec2[3] is per-
verse. In the second sequence, ICg..2 has strict support, hence its image is zero.
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It must therefore be that Q¢[1] maps isomorphically onto Q¢[1] ® H?(C,Q). Thus
this sequence contains the exact sequence of perverse sheaves in (2.8) as a direct

summand. |
CoroLrary 2.19. — The singular cohomology of Sec? is given by

HO(Sec?) = HO(C'®),

H'(Sec?) =0,

H?(Sec?) = HO(C?)¢,

H*(Sec?) = Sym*(H'(C)),

H*(Sec?) = H*(C?)¢,

H®(Sec?) = H3(C?)¢

HO(Sec?) = HY(CP),

where C is the tautological class for the secant bundle B> — C®). In particular,
H3(Se(:2) is pure of weight 2. The other H' are pure of weight i.

Proof. — This follows Theorem 2.18 after taking the long exact sequence in coho-
mology. Alternatively, one can use long exact sequence coming from the triangle
in (2.8). O

In particular Sec? (C) is never a rational homology manifold unless C' = P!. We will
see later that in fact all secant nontrivial varieties of rational normal curves are
rational homology manifolds.

3. SECANT VARIETIES OF RATIONAL NORMAL CURVES

3.1. HaNkeL maTrIcES. — We now restrict our attention to the case C' = P! is a
rational normal curve of degree 2n in P?". We will use the more compact notation
Sk = Sk(2n) = Sec*(0¢(2n)) to denote the secant varieties of C' and we write X; =
X1 (2n) to denote the cone of Sy(2n) in C?+1.

It is well known (see [9, Prop.4.3]) that the ideal of Si is generated by the
(k+1) x (k+ 1) minors of any matrix of the form

ZTo X1 T ot Tm

Ty T2 T T
X9 . . T2 |0
Tp Tn4+1 Tp+2 * " zn-&-m

where £k < m < n. For example, the curve C = S is the zero locus of the ideal
generated by all of the 2 X 2 minors of the above matrix, Ss is cut out by the 3 x 3
minors, and so on. Matrices of this form are known as Hankel matrices or catalecticant
matrices. To be precise, a Hankel matrix H is a matrix such that H; ; = Hy
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16 D. Brocan

if i +j =4 + j'. We are primarily interested in square Hankel matrices, i.e. matrices
as above where m = n. We will denote the (n + 1) x (n + 1) Hankel matrix by

‘/EO xl .« .. x’ﬁ,

T T2 - Tpga
H, = +

Tpn Tn41 " T2n

The hypersurface S,, of P27 is the largest nontrivial secant variety of C and its defining
equation is f = det H,. The following fact about Hankel matrices is elementary, but
it will be extremely useful for understanding the local geometry of the Sj. It also,
to my knowledge, does not appear anywhere in the literature.

Lemvia 3.1. — Let H, be as above and let f = det H,, considered as a function on
C**l Fiz k €{0,...,n— 1} and let

Ve ={r e C* |2; =0 for j < k—1 and zy # 0}.
Then there are coordinates yg, ..., Yon—_k 0N Yi such that
flvi(y) = y(’f“ det Hy—k—1(Yk+2,- -+ Yon—k)-

The proof below shows that we can transform the matrix H,, into a block matrix
of the form

0 -1
. . 0
Yo - Yk
(3.1) Yk+2 Yk+3 *° Ynt1
0 Ykt3 Uktd - Yni2
Yn+1 Yn+2 " Yon—k

while keeping the determinant unchanged. In the matrix above, both nonzero blocks
are Hankel matrices. In the top left block A we have A; ; =0 for i + j < k.

Proof. — For the proof we will let H = H,,. Inductively define functions py, . . ., p2n—k
on Y by the identities ppxy = 1 and

PoXk+t + P1Trte—1 + -+ pexp =0
for £=1,...,2n — k. Now consider the (n+ 1) x (n 4 1) upper triangular matrix
PoP1 -+ Pn
0 po- Pn-1
P=1. .. .
00 - po
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INVARIANTS OF THE SINGULARITIES OF SECANT VARIETIES OF CURVES 17

If we start indexing our matrices from 0 then we have the formulas H;; = x;4; and
Pi;j = pj—;, where we take the convention p; = 0 for ¢ < 0. Consider the product
N = PTHP. Then we have

n
(32) Z m bej - Z Pi—aZa4+bPj—b = Z sz aLla+bPj—b-
a,b=0 a,b=0 a=0 b=0

We aim to show that N is a block diagonal matrix of the form in (3.1). We break this
up into three cases.

Case 1: The top lefi block. — Thisis a (k+1) x (k+ 1) matrix, so in this case we have

i,j € {0,...,k}. We want to show that this is a Hankel matrix whose terms above
the main anti-diagonal are zero. More precisely, we want to show that
0 ifi+5=0,....k—1,
Nij = S
Ditj—k ifi4+j=k,..., 2k

If i+ €{0,...,k — 1} then each x4 in (3.2) is zero by assumption, so N; ; = 0.
Now suppose i +j =k, ..., 2k. Then

i J
Jj = Zpi—a Z%erpj—b
=0 =
ai k—1—a
:Zpia( Z TatbPj—b + Z Tat+bPj— b)
a=0

b=k—a

The left b-indexed sum contains only z,4, with a +b < k — 1, which all vanish by
assumption. The right b-indexed sum is exactly the expression defining p;_j+q, which
vanishes except when j — k + a = 0. In that case we have a = k — j, so this term is
the only nonzero term of the sum. Therefore

N;j = Ditj—kTkPo = Ditj—k;
as desired.

Case 2: The bottom lefi block. In this case we have 1 = 0,...,kand j =k+1,...,n
As in Case 1 we can write

i J
=Y Pia Z%erpj—b
=0 =
ai k—1—a
:Zpi_a< Z Ta+bPj— b+ Z Ta+bPj— b)
a=0

b=k—a

and the only possibly nonzero term occurs when j — k+a = 0. However, now we have
j > k so that that j —k+a > 0, Therefore the sum on the right is zero as well and all
entries of the the bottom left block vanish. By symmetry the top right block vanishes
as well.
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18 D. Brocan

Case 3: The bottom right block. This is a (n — k) x (n — k) matrix with entries IN;;
where 7,7 = k+1,...,n. First we will show that this is a Hankel matrix, then we will
compute the entries. To show that this is a Hankel matrix, it is enough to show that
Nit1,; = N; j+1 whenever ¢,7 = k+1,...,n— 1. Separating the a = 0 terms from the
expression in (3.2), we find that

i+1 J

z+1,j szrlebp] b +Zzpz+l aanrbp] b

a=1 b=0
i+1 J

—pz-l—lszp] b +Zzpz+l ala+bPj—b,

a=1b=0

where we have removed the first k& terms in the first sum using the fact that z;, =0
for b < k. But now the first sum is the expression defining p;_j, which is zero. So we

have
i+1 7

Nij1; = ZZPZ‘H aZa+bPj—b-

a=1b=0

Similarly, by separating the b = 0 terms from V; ;41 we will find that

i g+l
Nijy1 = g E Di—aTa+bPj+1—b-
a=0b=1
These two expressions are the same by re-indexing, so N;11,; = N; j41. Therefore this

block is a Hankel matrix.
To compute the entries, it suffices to check the first and last rows. The entries in
the first row of this block are of the form N4, ; for j =k 4 1,...,n. We have

k+1 j

Niy1; = Z Zpk+1—a9€a+bpj—b

a=0 b=0

k J J
= Zpkﬂﬂ Z Ta+bPj—b + Po Z L+1+bPj—b
a=0 B =
k k—a—1
:Zpk+1a( Z TatbPj—b + Z TatbPj— b) +pozxk+1+bpg b-
a=0

b=0 b=k—a b=0

The first and second b-indexed sums are zero by the same argument as in Case 2.
Thus

J
Niy1,5=po E Tk4146Pj—b = —POTEPj+1 = —Pj+1
b=0

by the definitions of pg and p;yi. The computation for the last row is similar and
yields

Nyj = —DPjtn—k-
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To conclude, we have shown that

0 P p()

Po - Pk
N = —Pk+2 —Pk+3 " —Pn+1
0 —p'k+3 _Z.)k+4 _p:rz+2
—Pn4+1 —Pn+2 *° —P2n—k

Let N’ = py 2 N. By the definition of N we have
det N’ = py 2" ?(det P)* det H,, = det H,, = f.
On the other hand, by the explicit description for N above, we have
det N' = pak_l det H, 1 (—pEQp;H_g, ey —p62p2n_k).
Thus, in the coordinates

Py i=0,
Yi = pazp’b Z':l,...,k,
—poipi i=k+1,...,2n—k,

we have f = y§+1 det Hy,—p—1(Ygt2, - - -y Y2n—k) as desired. O

Lemma 3.1 has the following consequence for the local geometry of S,,. Compare
with [12, Th. 2.8].

Corovrrary 3.2. — If C is a rational normal curve in P2, then any point x € S, (2n)
has a Zariski open neighborhood U C S,,(2n) such that U = C x X,_1(2n — 2).

Proof. — When zy # 0, Lemma 3.1 states that the function f = det H,, takes the
form yodet H,_1 in some coordinates yo,...¥y2,. We can dehomogenize by setting
Yo = 1, s0 f = det H,,_1 on the affine open with coordinates y, ..., y2,. Since y; does
not appear in H,,_1, the zero locus of f in this affine open is C x X,,_1(2n — 2). Thus
the theorem is true for any = € S, (2n) with z¢ # 0.

Now we want to show that this works for any = € S,(2n). Observe that the
coordinates (2, . .., T2,) on P2" = PH(C,0c(2n))Y are induced by the coordinates
(z,w) on C = P!, namely z, is the coefficient of the form z2"~*w*. The hyperplane
H = {xz¢ = 0} is the osculating hyperplane of C at the point p = (0, 1), i.e. H is the
hyperplane such that H N C' = 2np. Suppose = € S,,(2n) is in the complement of a
hyperplane H' such that H' N C = 2np’ for some p’ € C. Let T € SLy(C) be such
that T(H') = H. Then we can apply the result for p and transform by 7! to get the
result for p'.
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Now it just suffices to show that any point x € P?" is in the complement of some
osculating hyperplane H of C. This amounts to showing that the sections correspond-
ing to the osculating hyperplanes span H°(C,O(2n)). These sections are the 2n-th
powers of linear forms. It is an elementary fact that any polynomial in one variable
of degree d can be written as a sum of d-th powers of linear forms. Homogenizing this
fact allows us to conclude. g

3.2. REVIEW OF NEARBY AND VANISHING CYCLES. — Now we take some time to review
the basics of the nearby and vanishing cycle functors. These functors act on D%(X),
the derived category of constructible sheaves on X, in a way which generalizes the
vanishing cycles in Picard-Lefschetz theory. A comprehensive introduction on the
topology of vanishing cycles and their connection to perverse sheaves can be found
in [15, Chap. 10]. For a quick introduction in the case of perverse sheaves, see [5,
§5.6-5.6].

Let X be a complex manifold, let f : X — C be a holomorphic function on X with
an isolated critical value at 0. By Ehresmann’s theorem, f is a locally trivial fibration
away from the origin. Let Xy = f~1(0) be the singular fiber of f. The nearby cycle
functor 17 : D%(X) — D%(Xp) is defined as follows. Let i : Xy — X be the inclusion
and let j : X* = X \ Xg — X be the inclusion of the complement. The exponential
map exp : C — C* is the universal cover. Let X be the total space of the pullback of
the fibration f|x« : X* — C* via the map exp. We have a diagram

Xo o x ol xe P %
[ A |
0 C C* 4o C

For K € D%(X), the nearby cycles ¥y K € Db(Xy) are defined as

UK =i*(jop)«(jop) K[-1]
Evidently ¥y K depends only on the restriction of K to X*. By adjunction there is
a natural map K[—1] — (j o p)«(j o p)*K[—1], so applying i* to this we get a map
i*K[—1] — ¢ ;K. The vanishing cycles ¢ ;K are the cone over this morphism, so that
there is a distinguished triangle.

PR[-1] — g K 0 o g

Note that this is not a definition of ¢ as a functor since the cone over morphism
in the derived category is not a functorial construction, however this description will
suffice for our purposes. The full construction of ¢, can be found in [11, §8.6]. It is
also possible to construct a morphism
var
(pr Em— 1/JfK

Treorem 3.3 ([3, Cor. 1.6-1.7]). — If K is a perverse sheaf on X, then ;K and o K
are perverse sheaves on Xj.
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Now let K be a perverse sheaf, so that the above theorem applies. The group of
deck transformations of the covering exp : C — C* is generated by the map z — z+1.
This induces a map on X above, and hence also induces a map T': ¢y K — ¢y K called
the monodromy. Since the category of perverse sheaves is an abelian category, we can
take the generalized eigenspaces

YA K = ker(T — Nid)V,
where A € C* and N is sufficiently large. We then have a direct sum decomposition

VK = @ YraK.
AEC*

Similarly, we get a monodromy operator on ¢y K which we also denote by T, along
with a decomposition into generalized eigenspaces. The generalized eigenspaces ¢y K
and ¢y 1K are called the unipotent parts of the nearby and vanishing cycles respec-
tively. Since T fixes i* K, the distinguished triangle above along with the generalized
eigenspace decompositions yield an exact sequence of perverse sheaves.

0 — " K[-1] — 51 K =25 01 K — 0.

Moreover, for all A # 1 the morphism can induces an isomorphism 7 \K = ¢ K.

On the unipotent part vy 1K, the nilpotent operator N = (27i)"Llog T is equal
to the composition var o can. Similarly, on ;1K we have N = canovar. If we think
of N as an operator on 1¢ 1 K, then ¢7 1K = im NN in the category of perverse sheaves.
The nilpotent operator N induces a filtration W, on 91K in the following way, see
[20, Lem. 6.4].

Prorosition 3.4. — Let N be a nilpotent endomorphism on a finite-dimensional com-
plex vector space V. Then there is a unique filtration W, on V' such that

(1) for each k € Z we have N(W;V) C Wy_5V,

(2) for each k > 1 the map

NtagVV— g Vv
s an isomorphism.

The filtration W, is called the monodromy weight filtration, or simply the weight
filtration.

ExampiLe 3.5. — If N # 0 but N2 = 0 then the weight filtration on V is W1V =V,
WoV =ker N, W_1V =im N, W_,V = 0.

Cororrary 3.6. — Let N is a nilpotent operator on V. Then N? = 0 if and only
if the filtration induced on im N as a quotient of V', or equivalently via the induced
action of N, is trivial.

Proposition 3.4 hold in any abelian category, so we can apply it to complexes
of constructible sheaves. Hence the nilpotent operator N induces a weight filtration
on both 91K and ¢s1K. The perverse sheaf i*K[—1] also gets endowed with a
weight filtration by virtue of being a subobject of ¥ 1 K. When K underlies a mixed
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Hodge module, the weight filtration from N and the weight filtration from the MHM
structure on i* K [—1] coincide.

3.3. Tur ArrINE MILNOR FIBRATION. We keep the notation of the previous section,
however we now let X = C™ and f : X — C a homogeneous polynomial on X of
degree d. For any k € N let p; denote the group of k-th roots of unity. In our setting,
the only possibly singular fiber is X = f~1(0). The fibration fx, : X* — C* is called
the (affine) Milnor fibration associated to f and we call F = f~1(1) the (affine)
Milnor fiber. It can be shown that F' is homotopy equivalent to the usual locally
defined Milnor fiber at 0, for example see [7, §3.1]. Acting by a generator of 71 (C*),
we get the monodromy transformation which we also denote by T': FF — F. If A\ € ugq
is a d-th root of unity, then f(z1,...,2,) =1 yields

fQz,... A xy,) = )\df(xl,...,xn) =1,

0 g acts on F as well. In fact these actions are the same. Indeed, if y(t) = exp(2mit)
is a path which generates 7 (C*), then for a point = € F, the path ¥(t) = v(¢t/d)x
lifts 7, and we have 3(0) = x and F(1) = exp(27i/d)x.

We have the following relationship between F' and the the nearby cycles 1.
Prorosition 3.7. — Let X = C™ and let f : X — C" be a homogeneous polynomial.
Then the cohomology of the stalk of ¥;Qx[n| at 0 is given by the singular cohomol-
ogy of F with rational coefficients. Furthermore, the isomorphism commutes with the
monodromy.

H*(;Qx [n])o —— H*"=1(F,Q)

7| |r

H*(4;Qx[n))o —z— H*""}(F,Q)

Proof. — H* (yQx[n])o is obtained by taking an appropriate complex representing
¥ ;Qx [n], restricting to 0, and taking cohomology of this complex of vector spaces.
But by the definition of vf, restricting to 0 is the same as taking a representative I
of K[—1] and computing

ol T (I, ((j o p) (X" N D)),

where U ranges over all neighborhoods of 0. But for small neighborhoods U of 0, the
open set

(jop) M X" NU)
is homeomorphic to X , which deformation retracts to F. Hence this colimit is just
I'(F,I|r). The cohomology of this is then

H*(F,Qp[n — 1)) = H¥""Y(F,Qp).

The statement about the monodromy follows since in both cases it is induced by the
deck transformations of exp : C — C*. |
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In the following sections, F;, will denote the affine Milnor fiber associated to the
homogeneous function f = f, = det H,,, where H,, is the n x n Hankel matrix as in
Section 3.1.

3.4. OrpERED pARTITIONS. — Our computation of the cohomology of F,, relies on
stratifying C?"*! in a particular way which we will describe in Section 3.5. However,
we first need some elementary preliminaries. For the moment, let n be an arbitrary
positive integer. An ordered partition P of n is a tuple of positive integers

P = (plv"'apf)
such that p; + -+ + p; = n. We call ¢ the length of P and denote it by |P| = £.

We write ged(P) in place of ged(py,...,pe). We collect some facts about ordered
partitions here.

Facrs 3.8
(1) The set of ordered partitions of n is in bijection with the powerset of the set
{1,...,n — 1}. Tt follows that the ordered partitions of n of length ¢ are in bijection

with the subsets of {1,...,n — 1} of size n — £. In particular, there are 2"~ ordered
partitions of n and (Zj) = (’;:11) ordered partitions of n with length ¢.

(2) If ged(P) = d # 1 then d divides n and P = d-@Q where Q = (po/d, . ..,pe—1/d)
is an ordered partition of n/d with ged(Q) = 1.
(3) Let g(n) be the number of ordered partitions P of n with ged(P) = 1. Then
by the previous two facts we have
> gld) =271
d|n

Therefore, by Mobius inversion, we have
g(n) = u(n/d)2*",
d|n
where p denotes the classical Mébius function. If g¢(n) denotes the number of ordered
partitions P of n with |P| = ¢ and gcd(P) = 1 then we similarly have

antm) =t/ ()
d|n

3.5. STRATIFYING AFFINE SPACE. — Now fix a positive integer n. Recall that f = det H,
is the general Hankel determinant on C2"*! whose zero locus is X,, and whose affine
Milnor fiber is F,,. We will use the local structure of F), to compute its cohomology,
but it will be convenient to stratify the whole of C?"*!. The strata will be denoted
by Yp and Yp where P ranges over ordered partitions of n + 1.

We construct this stratification inductively. In the base case n = 0 we need to
stratify C. Call the coordinate zy. There is only a single partition of 1 and we set

5/(1) = {1‘0 7& 0} = (C*a
Y(1),0 = {0 = 0} = {0}.
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For arbitrary n > 1, we first set
Ve ={z e C* |2;=0for j <k—1and x4 # 0}

for kK = 0,...,n. The coordinates yo, ..., Yy2n—r from Lemma 3.1 give us an isomor-
phism

(3.3) Yy & C* x CHF1 x c2n—2k—1)

where yg is the coordinate on the first factor, y1,...,yr+1 are the coordinates on the
second factor, and yx42, ..., Y2n—k are the coordinates on the third factor. By induc-

C2n—2k—1 whose strata we

tion, for each k we have a stratification of the third factor
denote by Zg and Zg o, indexed by the ordered partitions ) of n — k. This induces
strata C* x C*1 x Zg and C* x C* x Zg o on Yy, If P = (k+ 1,pa,...,p¢) is an
ordered partition of n + 1, then @ = (p2,...,p¢) is an ordered partition of n — k and

we set
Yp = C* x CkJrl X ZQ,
Yp,o =C*x (Ck+1 X ZQ,O-

This constructs strata Yp and Yp o of C?"*! for each ordered partition P of n + 1.
The reason for introducing this stratification is contained in the following.

Prorosition 3.9. Let P = (p1,...,pe) be an ordered partition of n+ 1 and let Yp
and Yp g be the corresponding strata of C*"*1. Then the function f vanishes identically
on Ypo and is nonvanishing on Yp. In particular, X, = UP Ypo. Furthermore, there
are coordinates y; on Yp which induce an isomorphism Yp = ((C*)Z x C™ and in these
coordinates we have

f|YP = ygl "'ygiy
Remark 3.10. — By an abuse of notation we are using the symbols y; for coordinates

on Yp, but these are not the same as the coordinates on any Y in Lemma 3.1 or in
the construction of the stratification above.

Proof. — We go by induction. The claim is clear in the case n = 0 by the construction
of the stratification, since in this case f = zo. If n > 1, write Q = (pa2,...,ps).
By Lemma 3.1 there are coordinates y; on Y, _1 which induce the isomorphism in (3.3)
and in these coordinates we have

Flvp, oo = vo" det Hy 1 (Ykt2s -+ Y2n—k)-

By induction, det H,_;_; vanishes identically on Zg o, so f vanishes identically on
Ypo. Furthermore, by induction there are coordinates z; on Zg C C2"~2*~1 which
induce an isomorphism Zg = (C*)*~1 x C"~*~1 such that in these coordinates

_ P2 ... Dt
det Hy—p—1 = 2, 7

for some ¢a,...,qe. It follows after relabeling the coordinates (yo,. .., Yk, 20, 21, - - )
we have the desired expression for f and we get an isomorphism

Yp =C* x CF x Zp = (C*)* x C".

JEP — M., 2026, tome 13



INVARIANTS OF THE SINGULARITIES OF SECANT VARIETIES OF CURVES 25

O

Cororrary 3.11. — In the setting of Proposition 3.9, let d = ged(P). Then we can
change coordinates on Yp = (C*)* x C™ such that fly, = 2%, where z is a coordinate
on one of the C* factors.

Proof. — Consider the monomial z%y° on (C*)? where a > b and ged(a,b) = 1. Write
a=gb+r with ¢ > 0and 0 < r < b so that 2%° = 2"(2%)" = 27y’ where x; = x
and y; = z%y form a coordinate system on C*. Continuing in this way, the Euclidean
algorithm guarantees that we will end up with coordinates xy,yr such that either
z%yb = x¢ or 2%y’ = yd. Performing this procedure repeatedly to pairs of factors in
the product

flve =o'y

yields a coordinate system on Yp with f = 2¢ for some coordinate z. O

Let P = (p1,...,p¢) be a partition of n + 1. The proof of Lemma 3.1 shows that,
after restricting to Y, _1, we can think of the Hankel matrix H,, as being the same
(for the purposes of the hypersurface defined by det H,, = 0) as the matrix in (3.1).
Repeating this procedure for the lower right block and continuing in this way, we find
that the stratum Yp corresponds to a way of “turning H,, into a block diagonal matrix”
and the coordinate change functions to make each block a “skew lower triangular”

matrix:
ly) Tl " Tp—1 PIO"'O
T1 Ty - Tp 0P -0
(3.4) . .. . ~ e R E
Tp_1 Ty -+ Top 00 ---F

where the P; are Hankel matrices of size p; X p; in which the entries above the main
skew diagonal are all zero.

0 -~ 0 Yai
0 - Yq; Yqi+1

P=| . ) )
Ya; * " Ygqi+pi—1 Yqi+ps

This description, while not entirely rigorous, perhaps provides an intuitive picture for
the strata Yp and the form that f takes on each one.

Exavrre 3.12 (n = 2). In this case we work on C® and our matrix is

To T1 T2
1 T2 T3
T2 T3 T4

We have 4 strata corresponding to the 4 ordered partitions of 3.
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« P =(1,1,1) corresponds to the block diagonal matrix

yo/0 O
0y20
0 0]ya

and on Yp =2 (C*)3 x C? we have fly, = yoyays-
« P =(2,1) corresponds to the block diagonal matrix

and on Yp = (C*)? x C? we have fly, = y3ya.
« P =(1,2) corresponds to the block diagonal matrix

and on Yp = (C*)? x C? we have f|y, = yoy3.
« P = (3) corresponds to the block diagonal matrix
0 0 yo
0 y2 ys
Y2 Y3 Ya
and on Yp =2 C* x C? we have fly, = v3.
3.6. Tur Hobce poLynomiaL. — Here we give a very brief review of the Hodge poly-

nomial. For a more detailed introduction see [18, §2]. The main theorem we need is
the following.

Turorem 3.13. — There is a unique way to assign to each complex algebraic variety X
a polynomial hx (u,v) with integer coefficients such that
(1) if X is smooth and projective, then
hx(u,v) = Z WP 9 X)uPv?

1,420
where h?9(X) = dim H1(X, Q% ),
(2) if Z C X is closed and U = X \ Z, then

hx(u,v) = hz(u,v) + hy(u,v),

(3) if E — X is a Zariski locally trivial fiber bundle with fiber F (in particular if
E =X x F) then
he (ua U) =hx (ua U)hF (uv U)'

We call hx (u,v) the Hodge polynomial of X.
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ExampLe 3.14. If X is a union of d points, then hx (u,v) = d. We also have
hpn(u,v) =1+ uv + - +u™0",
hen (u,v) = u™o™,
hes (u,v) = =1 + uv.
For arbitrary X it is not true that the coefficients of the Hodge polynomial hx are

the dimensions of the cohomology of X. However, there is a general formula in terms
of the compactly supported cohomology of X.

Tarorem 3.15. — For each complex algebraic variety X, let
hx (u,v) = Z (—1)PT" dim gr?, grmq H!(X,C)uPvi.
P,q,i20

Then this assignment satisfies the properties in Theorem 3.13.

It follows that when the cohomology groups H(X,C) are all pure, the dimensions
can be recovered from the coefficients of hx (u,v).

Cororrary 3.16. If X is an algebraic variety such that each H(X,Q) is pure of
weight ©, and h?9 are defined so that

hx (u,v) = E hPdyPy,
P,q,120

then dim H{(X,C) = > hP4.

p+q=i
3.7. PURITY OF THE CONSTANT SHEAF. We now move on to proving the main results.
By the discussion in Section 3.3, in order to compute the nearby and vanishing cycles
we will need to compute the cohomology of the affine Milnor fiber F,. To do this,
it will be useful to understand the relationship between Qg, [2k—1] and IC'g, in a way
similar to Theorem 2.18 above. In fact we will prove that for rational normal curves
they are the same. We present the proof for even degrees here, since it will suffice for
our purposes and the presence of Lemma 3.1 allows us to simplify the proof greatly.
Nonetheless, the statement holds for rational normal curves of any degree. The proof
of the general case appears in the author’s dissertation [2, Th.4.2.4].

Turorem 3.17. — Let C = P! C P?" be a rational normal curve of degree 2n. For
each k=1,...,n, let X}, be the affine cone over Si. Then for each k we have IC's, =
Qs [2k — 1] and ICx, = Qx, [2FK].

Proof. — The result obviously holds for Sy since S; 2 C' is smooth. Now assume that
the result holds for each m =1,...,k — 1. By Corollary 3.2, Sy is locally isomorphic
to the product of Xj_1 (for a curve of smaller degree) with a smooth variety, hence
the result holds for Sj. By Corollary 2.16, we therefore have

Q j=0,2,4,...,4k -2,

0 otherwise.

HY(Sk, Q) = IH (Sk) ={
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We similarly have the result at every point of X} away from the origin as well. Thus
we just need to show that the natural map Qx,[2k] — ICx, is an isomorphism at
the origin.

For this, we blow up the origin of C2"*+!, which yields the total space of the line
bundle O(1) — P?". We get a diagram like so.

id

]PJQ’n c - Blo (C2n+1 > Eﬂn
| Js
{0} Z—> (C2n+1

0

For a pure perverse sheaf K of geometric origin on P?", the shifted pullback p*K[1]
is again perverse and pure. This means that we can apply the decomposition theorem
to get
ep K[l = Ko @ H;[—j],
JEL

where K and .p*K[1] are isomorphic away from the origin and the H; are supported
at the origin. We also have the relative hard Lefschetz isomorphisms L7 : H_; — H;
and by base change we have isomorphisms

PHY K @ Hy = HY (P?,i*p* K[1]) = H/ L (P?" K).

Combining all of this, we get a diagram.

PII R @ H_;, L 30 5K @ H,

| |2

H*j+1(]P>2n’K) o N HjJrl(Eﬂn,K)

By hard Lefschetz for H*(P?", K) the bottom map is surjective and the kernel
is by definition the primitive cohomology H;{;l(IP’Q",K ). It’s a general fact that
P37 i K = 0 for j > 1, so it follows that PH 7 igK = H /" (P?" K) for j > 1.
Applying this to K = IC's, = Qg, [2k — 1], we find that K = IC'x, and
PHT i IC K, = H JH (B, ICs, ) = Ho 1 E2 (S5, Q).
Since the cohomology of Sy is isomorphic to the cohomology of P?*~1 it must be
generated in HY using the hard Lefschetz map. In particular, the only primitive coho-
mology is the one in H°. Similarly, when K = Qp2x[2n], we have K = Qgznt1[2n + 1].
Applying the same argument as above and shifting we get
PH T i3 Qeznsr [2k — 1] = H_IT2F(p2 Q).

prim
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We thus have a commutative diagram

PH 2 Qeant1 [2k — 1] —— PH i ICx,

H 122k p2n Q) ——— H O JHR(S), Q)

prim prim

where the horizontal maps are the restriction maps. Since Sy has the cohomology of
projective space, this square is nonzero only for j = 2k, in which case the bottom
map is clearly an isomorphism. Thus the top map is an isomorphism as well, meaning
that ICx, is isomorphic to Qx, at the origin. O

3.8. Tue conomoroGy or THE MitNxor FiBER. We will compute the cohomology
of F,, in two parts. First, we will compute the Hodge polynomial of F},, then we will
show that each H'(F,,,Q) is a pure Hodge structure of weight i.

Prorosition 3.18. — Ifn > 1 and F, is the Milnor fiber for f = det H,, then the
Hodge polynomial of F,, is
h, (u,0) = (wo)"™" 3" (n+1/d) (uo)?,
d|(n+1)
where o(k) = |Z/kZ*| is the Euler function.

Proof. — To make the formulas a bit nicer, we will prove the proposition for F,_;.
Stratify C2"~! as in the discussion in Section 3.5. This induces a stratification of
F,_1 by F,,_1 NYp. The Ypy do not appear since F,,_1 NYpo = & for each P by
Proposition 3.9.

By the same proposition and Corollary 3.11, for each ordered partition P =
(p1,---,pe) of n, the closed subset F,,_; N Yp is the set in Yp = (C*)* x (C)"~! on
which f = 2¢ = 1, where z is a coordinate on one of the C* factors and d = ged(P).
It follows that F,,_; NYp is a product of (C*)*~! x C*~! with a union of d points, so
by Theorem 3.13 and Example 3.14 we have

he, _nye(u,v) = ged(py, . . ,pg)(uv)"*l(uv - 1)671.

Since these polynomials only depend on the product uv, write ¢t = wv. By (2) in
Theorem 3.13, hp, , (f) is the sum of the hp,_,ny,(t) over all ordered partitions P
of n.

h,, () =) ged(P)" (e = 1)/ P17
3

Splitting up the sum based on the length and gecd of the partition P yields
TNCED > D IR S
d|n |P|=£gcd(P)=d

Now recall that the number of ordered partitions P of n with |P| = £ and ged(P) = d
is the same as the number of ordered partitions P of n/d with |P| = £ and ged(P) = 1,
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which is the number gy (n/d). From Facts 3.8 we have

g¢ (n/d) = m%:/du (nn/ld> (7?_11)

Hence we can write

hi, () =71 Y dge (n/d) (¢ = 1)

dln £=1

S S an (M) (7 e

d|n =1 m|n/d

_ Y Y (”/d>i(€1> (- 1)t

dln m|n/d

=" 1NN dp (n/d>tm—1.

dln m|n/d

The third equality is true since the binomial coefficients are zero if £ > m and the last
equality is the binomial theorem applied to t™~! = ((¢t — 1) +1)™~!. Finally, observe
that d | n and m | n/d if and only if m | n and d | n/m. Therefore we can switch the
sums to isolate the coefficient of t™~! and get

th t — = 12 Z d (n/d> tm—l

dln m|n/d

=t ST Y dp (n/d>

m|n dln/m

=S (nfm) e,

m|n

which the desired polynomial. O
Now we just need to show that each H:(F),) is pure of weight i.
Prorosrtion 3.19. Each H'(F,,Q) is a pure Hodge structure of weight i.

Proof. — Let P?"*1 have coordinates o, ..., Z2,,y and let X C P?"*1 be the zero
locus of the function g(x,y) = f(x)—y™ . By setting y = 0 we see that S,, naturally is
a closed subset of X. Write ¢ : S, — X for the inclusion. The complement is obtained
by setting y = 1 and we see that this is the affine Milnor fiber F,,. So X = F, LIS, can
be seen as a disjoint union. We have an exact sequence in the cohomology in which
the restriction map * : H (X,Q) — H*(S,,Q) commutes with the restriction map
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from projective space.

w -

Hi (I[1>2n+17 Q) N Hi(]Pﬁn’ Q)

By Corollary 2.16 and Theorem 3.17, the restriction map H*(P?", Q) — H'(S,,Q) is
an isomorphism for each i < 2n — 1. It follows that the map ¢* must be surjective and
we get a short exact sequence.

0 — H(F,,Q) — H'(X,Q) — H*(S,,Q) — 0.

Therefore, to get purity of H!(F,,Q), it suffices to show that H*(X, Q) is pure.

Recall that g(z,y) = f(x) — y"T! is the defining equation for X in P27+1
By Lemma 3.1, we can cover P2"*! by affine opens U on which f looks like the
determinant of a smaller Hankel matrix. For such affine opens we have a distinguished
triangle

+1
QX [Zn]\U — wg)lQPZW‘Fl [27’1, + 1]|U — (pg’lQPQn+l [2n + 1]|U —_ .

By Thom-Sebastiani [15, Th. 10.3.16] we have an isomorphism

g,1Qp2nt1 20 +1][u 2 Y~ 07,0Qc2n [20] ® pynsr 5Qel1],
af=1

which respects the monodromy. Since f is the determinant of a smaller Hankel matrix
on U, by induction we can say that both factors of each summand on the right hand
side are pure, hence the left hand side is also pure. If N is the nilpotent operator on
the vanishing cycles, then by Corollary 3.6 this means that that N = 0 on the right
hand side, so it is true on the left. Since ¢4 1Qp2n+1[2n 4+ 1] = im N, this means that
N2 =0 on tpy1Qpzn+1[2n + 1]. It follows that the monodromy weight filtration on
g, 1Qp2n+1[2n + 1] lives in weights 2n + 1, 2n, and 2n — 1. Therefore Qx[2n] only has
weights 2n and 2n — 1. Explicitly, we have a distinguished triangle

(3.5) K — Qx[2n] —s ICx 15 ...

where K is pure of weight 2n — 1. This yields the diagram

s HYK) L g L (X ——

(3.6) lLi . lLi le'

D H(K) —L— g2ri(x) —L i (x) ——

where the rows are the long exact sequence in cohomology coming from (3.5) and the
vertical maps L! are the hard Lefschetz maps. Note that these maps are isomorphisms
on the left and right terms since K and ICx are pure.

From this we can show that the cohomology of X is pure. To do this, we need to
show that the map j is zero for all 4, for which it suffices to show that the map ¢ is
injective for all 4. First, by the Lefschetz hyperplane theorem, H?"~¢(X) = 0 for odd
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1 > 0, so we consider only the even cohomology for now. For each k = 1,...n—1 have
a commutative diagram

HOE2 ) — Ty go(x) —L THO(X)

b

H2R P2ty Ty gk (xy L R (x)

where r is the isomorphism induced by the inclusion X — P?"*!. Observe that qor
is an isomorphism in degree 0 and the rightmost L* is injective by hard Lefschetz.
It follows that L* o ¢ o r is an isomorphism. We also have that the leftmost L* is an
isomorphism. It follows that the bottom ¢ must be injective. Therefore

q: H" (X)) — TH"7'(X)

is injective for all i > 1 so that j = 0 in the negative degrees. Since L’ is an iso-
morphism on the cohomology of K, it follows that 7 = 0 in the positive degrees as
well.

To summarize, we have shown that H*(X) is pure for i # 2n. To get purity of the
middle cohomology, we use the Hodge polynomial. By Proposition 3.18 we have

hx(u,v) = hg, (u,v) + hg, (u,v).

Since both terms on the right hand side only contain even degree monomials of the
form uPvP, the same is true of hx. However, H?"(X) only has weights 2n and 2n — 1
and the rest of the cohomology is pure. Applying Theorem 3.15 we find that the
coefficients of the odd degree monomial uPv2" 1P are the numbers

dim grh, gryy | H*"(X) — dim grh, H*"71(X) = 0.

The odd degree cohomology is zero by the Lefschetz hyperplane theorem, so it follows
that the graded pieces of Wy, 1 H*"(X) are zero as well. Therefore Ws,, 1 H?"(X) =0,
completing the proof. O

It immediately follows from Corollary 3.16 that the dimensions of the H!(F;,) are
given by the coefficients of the Hodge polynomial of F),. Applying Poincaré duality
gives the following.

Cororrary 3.20. The cohomology of F,, is pure and of Hodge-Tate type, and the
dimensions are given by

dim H'(F,,,C) = {50«”"'1)/61) i=n+1—d whered| (n+1),

otherwise.

3.9. Ki1GENVALUES OF THE MONODROMY ACTION. — The formula in Corollary 3.20 sug-
gests that the eigenspaces for the monodromy operator T : H*(F,,C) — H*(F,,C)
correspond to primitive roots of unity, with each (n + 1)/d-th primitive root having
a 1-dimensional eigenspace in H"*1~¢ We now show that this is actually the case.
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Prorosirion 3.21. For all divisors d of n+ 1 and all primitive (n + 1)/d-th roots

of unity A, the A-eigenspace of the monodromy operator T is 1-dimensional and lies
in H"H1=4(F, C).

Proof. — Since the action of T on F is given by multiplying by (n 4 1)-th roots of
unity, the eigenvalues of the induced action on H*(F,,,C) can only be roots of unity.
So we only need to find the eigenspaces for these eigenvalues.

Recall that for each k& € N the symbol uj denotes the group of k-th roots of
unity, whose action on F,, is the monodromy action 7'. For each divisor d of n+ 1 let
F,4= F,/(pta). Since F, is smooth and the action of 11 is free, the cohomology
of F}, q is the part fixed by p4.

H*(F, 4,C) = H*(F,,C)"
Since we have the exact sequence
0 —> pta — fint1 — H(ny1)/a — 0,

this means exactly that the induced action of T on H*(F,, 4,C) has only eigenvalues
which are (n + 1)/d-th roots of unity. We now aim to show that

H™ W =m(EF) dim| (n+1),

3.7 HHl=m(F, ) =
(3.7) (Fr.a) {0 otherwise.

The cohomology of F,, 4 is pure since it is a sub Hodge structure of H*(F,,, Q) which
is pure. So by Corollary 3.16, to compute the dimensions it suffices to compute the
Hodge polynomial of F, 4. In order to do this, we will find a convenient C*-bundle on
F,.q whose Hodge polynomial can be computed.

Let C2"*2 be the affine space with coordinates z, ..., Z2,,y and define

G = {(z,y) € C*"F2 [y 4D/ f(2) = 1},

We have a natural map
p: Gn,d — Fn,d
given by p(z,y) = [y*/%x]. Note that y'/4z is well-defined only up to multiplication by
a d-th root of unity, so the class in the quotient is well-defined. Now define a C*-action
on Gy q by the formula
S (xvy) = (S_lxa de)

for s € C*. This action gives G, 4 the structure of a C*-torsor over F;, 4 via the map p.
If we pull p back by the quotient map ¢ : F;, — F), q we get a trivial C*-bundle.
It follows that G, 4 is an étale locally trivial C*-bundle over F}, 4, hence it is Zariski

locally trivial (because GL,,(C) is “special”).

pl
F,xC* ——— F,

i o
Gnd —p Fra

Here p’ is projection onto the first factor and ¢/(z,t) = (¢t~ 'z, t%).
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The function defining G, 4 is similar enough to f that computing its Hodge poly-
nomial is doable in the same way. We partition C?"*2 in exactly the same way as
in Section 3.5 so that y("+1)/4f(2) is a product of monomials on each stratum after
some coordinate change. These strata again correspond to ordered partitions of n+ 1.
If P = (p1,...,pe) is a partition and Zp is a stratum, then just as in the proof of
Proposition 3.18 we have

ha, snze(u,v) = ged((n + 1) /d,p1,. .., pe) (uv)" (uv — 1)*.

Note that we now have this extra (n + 1)/d appearing in the ged. Summing over all
ordered partitions and simplifying the sum in the same way yields the formula

ha, ,(u,v) = ()" Muv —1) Y (w)"e((n+1)/m).
dim|(n+1)
Since Gy, q is a C*-bundle over F,, 4, applying (3) in Theorem 3.13 and Example 3.14
gives

(3.8) hp,  (w0) = ()" " (w)"e((n+1)/m).

d|lm|(n+1)

Now we can compare the coefficients of hp, (u,v) and hp, ,(u,v) to find that

Hp+m=Y(Fy) d[m](n+1),

H?+m71(Fn,d) = .
0 otherwise.

Applying Poincaré duality, we arrive at the claimed isomorphism in (3.7). Hence
H"+1=4(F,) is fixed by j14, meaning that the eigenspaces contained in it are associated
with (n + 1)/d-th roots of unity. The same kind of argument shows that if A € p,,
with m | (n + 1)/d then no M-eigenspace of T is contained in H"*1=¢(F,). It follows
that the only eigenspaces in H"1~9(F,,) are those whose associated eigenvalues are
primitive (n 4 1)/d-th roots of unity. This proves the first half of the proposition.
To find the dimensions of the eigenspaces, observe that each T is induced by an action
on the rational cohomology, hence its minimal polynomial will be rational. It follows
that each primitive eigenspace has dimension at least 1, and by Corollary 3.20 each
eigenspace has dimension at most 1 since there are exactly ¢ ((n 4 1)/d) primitive
(n + 1)/d-th roots of unity. Thus each of their dimensions must be exactly 1. This
completes the proof. O

3.10. Tue maiNy THEOREM. — We now have the results needed to prove the main theo-
rem: the computation of the nearby and vanishing cycles for the function f = det H,,.
More precisely, we compute 9 ;Qczn+1[2n + 1] and ¢ fQgzn+1[2n + 1], where we con-
sider f as a function on affine space C2"*!. The theorem is as follows.

Turorewm 3.22. Let f = det H,, and let X,, be as above.

(1) All eigenvalues of T : ;Qczn+1[2n + 1] = ¥ Qc2n+1[2n + 1] are of the form
A = > /9 ywhere g € {1,...,n+ 1} and ged(p,q) = 1.
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(2) For each eigenvalue A of T, the nearby cycle sheaf ¥y \Qczn+1[2n + 1] is pure
of weight 2n.
(3) If X\ = *™P/4 s an eigenvalue of T with q # 1, then

Py AQeen+1[2n + 1] = IC (L),

where Ly is a rank 1 local system on X, _q41.
(4) (Pf’lQC2n+1 [277, + 1] =0, so ¢f71(@@2n+1 [QTL + 1] =Qx [271}

By Corollary 3.2, we can prove the theorem by induction. The difficult part is
understanding what happens at the origin. However, this is taken care of by our work
computing H*(F,,C).

Proof. — By the same argument as in Corollary 3.2, each point z € X,, \ {0} has a
neighborhood U with U =2 V x X,,, where m < n and V is smooth. Thus, by induction,
(1) is true away from the origin. At the origin, (1) follows from the arguments given
in Section 3.9.

Since Qx,, [2n] is pure, ¥ 1Qcz2n+1[2n + 1] is as well. The weight filtration induced
by the nilpotent operator N is therefore trivial, which means that N = 0. Thus

(pf,lQCQn+1 [2TL + 1] =im N = 0.

This proves (4).
Now we prove (2) and (3). Let ip : {0} — X,, be the inclusion of the origin. Let
g€{2,...,n+1} and let A € p, be a primitive g-th root of unity. Let

Py = 1/}]07)\(@@2714@ [2n + 1}

If g =n+ 1, then P, is supported at the origin, and is just the A-eigenspace of T in
the cohomology of F;,, which has rank 1 by the arguments in Section 3.9. If ¢ < n+1,
then by induction P, is pure of weight 2n away from the origin and we can write

P\ =P @ PY,

where Pj is supported on X, 441 and Py is supported at 0. But the cohomology
vector spaces H”(i§ Py) are the \-eigenspaces of T in H*(F,,, Q). By Proposition 3.21,
the A-eigenspaces for T occur in negative degree cohomology, so it cannot have a
component supported at the origin. Thus Py = 0 in this case. The purity follows
from the purity of the cohomology of each F}, for k < n. This completes the proof.
Suppose g # n + 1. Then each nonzero cohomology occurs in negative degree, so
P! = 0. Finally, Py is pure of rank 1, and since the weight filtration is symmetric
about weight 2n (see Proposition 3.4), it must be of weight 2n. This proves the claims
in (2) and (3) for ¢ # n+ 1. When ¢ = n+ 1, P) is already supported at the origin
and has rank 1. This completes the proof. O

As an immediate corollary of the purity of the nearby and vanishing cycles, we know
the “center of minimal exponent” of the pair (C?"*!, X,,). This is an invariant intro-
duced in [22, §7.4] which is defined as being the support of a subquotient of a certain
“higher multiplier ideal” which is specified by the minimal exponent. We remark that
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in the same paper it is shown that the minimal exponent for the hypersurface S,
in P2 is o = 3/2.

CoroLrary 3.23. The center of minimal exponent for the pair (C*" 1 X)) is X,,_1.

3.11. EXPLICIT EIGENVECTORS. By Proposition 3.21 we know the eigenvalues and
eigenspaces of the monodromy action on H*(F,,C). However, it is possible to do
even better and give a way to compute a basis for each H"*1=9(F),) consisting of
eigenvectors of T. We give an outline of the strategy here and actually carry it out in
the case n = 2.

For the moment, let f be an arbitrary homogeneous polynomial of degree N on
Y = (C*)* x C", and consider the complex (2}, D) whose terms are just the usual
sheaves of differential forms

(3.9) Oy — Qy —> - — QF

with differential given by D¢ (w) = dw+df Aw. We will call this complex the de Rham-
Koszul complex for f, since the differential is the sum of the usual de Rham and Koszul
differentials. In [7, §6.1-§6.2], Dimca shows that when Y = C", the cohomology
of (Q3,Dy) is the same as the (reduced) cohomology of the Milnor fiber. He also
shows that the eigenvalues of the monodromy operator are easy to read off from the
cohomology of this complex. Here is how it is done. We say a k-form is homogeneous
of degree d + k if it can be written as a sum of k-forms of the form

h(z1,...,zp)dxsy A - ANdzy,,

where h(z1,...,z,) is a homogeneous polynomial of degree d and dz;, A --- A dz;,
is a basic k-form in the coordinates z1,...x,. For each a € {0,...,N — 1} we let
(25, be the subcomplex of 2§, spanned by the homogeneous forms of degree k, where
k = amod N. It’s easy to see that this is a well defined subcomplex since if w is
homogeneous of degree a, then

Dy(w) =dw+df Nw,

where dw and df A w are homogeneous of degree a and N + a respectively. We also
have

N-1
(€, Dy) = @O(Q;/,WDJC)'
a=
Dimca proves the following theorem; see [7, Th.6.2.9].

Turorem 3.24. — Let F be the Milnor fiber of the homogeneous polynomial f.
Then there is a natural isomorphism H**1(Q3,, Dy) = H*(F,C). Furthermore, the
subspaces H’”‘l(Qg,’a,Df) map isomorphically onto the e2™/N
HF(F,C).

-etgenspace for T in

Before we begin with the computation at hand, we need some lemmas.
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Lemma 3.25. Let g(z) = 2™ on C with m > 1 Then

0 k=0,

H*(Q., D,) =
(0, Dy) {(C(dz, zdz, ..., 2" Ndz) k=1,

0 k=0
H*(Q%(log(x)), Dy) = ’
(c(log(x)). Dy) {(C(idz, dz, zdz,..., 2" ldz) k=1
Proof. — After taking global sections, the complex (g, D,) becomes the two term
complex C[z] — Clz]dz. The differential acts by

Dy(1) = mz""tdz,
Dy(2") = (kzF 71 + m2A"mthdz for k > 1.

From this it is easy to see that D, is injective, and the cokernel is spanned by the
desired elements. The computation for log forms is similar. (|

Levva 3.26. — Let Yp be a stratum as in Section 3.5. Let Z = Yp ~\Yp. The residue
exact sequences

Res ke
0— Q’;,—P — Q’;—P(log(Z)) —= 05t 50

respect the differential Dy, and hence extend to an exact sequence of complezxes. More-

over, each map preserves the spaces of homogeneous forms of degree a mod (n + 1)

for each a € {0,...,n}.

Proof. The first map clearly respects the differentials Dy along with the degree
of the forms mod (n + 1). To see that the residue map does as well, we can work in
coordinates. If Z is defined by z = 0 on Yp then for a and 8 holomorphic forms on
Yp we have

Df(Res(,BJraA%)) :dOL+df/\OL:ReS(Df(ﬂ+Ol/\%)).

The fact that Res preserves the degrees of homogeneous forms mod n + 1 is due to
the fact that dz/z is homogeneous of degree 0. |

These lemmas allows us to come up with an algorithm for computing a basis for
each H*(F,,C). The strategy is to simply compute the cohomology of each QE:Z,,LHﬂ
by doing the computation for functions of the form in Lemma 3.25, and then using
the above lemmas as well as Corollary 3.11 and the structure of the stratification in
Section 3.5 to assemble the cohomology in the correct way. This is essentially a more
detailed version of the computation of the eigenvalues above where we work with
explicit cohomology groups and exact sequences as opposed to the Hodge polynomial
and its additivity property.
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Exampre 3.27. As an example we carry out this strategy in the case n = 2. In this
case we have
Zo L1 T2
f=det|z1 2223 | = 71':2,) + 2x1T003 — 1'01’:2)) — x%x4 + xpToTy
T2 T3 T4

is the determinant of the 3 x 3 Hankel matrix. Let A = e27/3, Tt follows from Theo-
rem 3.24 that under the isomorphism

H*(F,,C) = H*(Q%s, Dy)
the A-eigenspace of the left hand side corresponds to H k(Q(’CSQ, Dy). Now stratify C°
as in Section 3.5 and fix a stratum Yp = (C*)* x C", where £ = |P|. By Corollary 3.11

we can change coordinates so that f = z? where d = ged(P). Since f only involves
the coordinate on one factor, it is easy to see that

(QTP.’Df) = (g, Df) ® (QEC*)lecmd)'

Furthermore, the cohomology of the right tensor factor is spanned by homogeneous
forms of degree 0. It follows from Lemma 3.25 that the only P for which forms of
degree 1 appear are the P on which f can be written as 2% on Yp with d > 1. Since
d = gcd(P), the only partition satisfying this is P = (3), and by construction, the
coordinate z = —xg; see Example 3.12). By Lemma 3.25, we have

HY@ o D)= @ HOh,Dp)@ HY (O, d) = {
a+b=1 mod 3

(C(d.’l?2> k= 1,
0 k1.
Let Z = {xo = 0}. Using the residue exact sequences and Lemma 3.26, we find that

the connecting homomorphisms induce an isomorphism
U Hl(Qﬁ,l,Df) = H(Qy, 1, Dy) = H*(Qgs 1, Dy).

The connecting homomorphisms are easily made explicit. We lift dzs to the log form
(1/x1)dxo A dxy, then we apply the differential, which gives

1
d(f|Zo) A\ ;dl’g N diL’l = 721’2d1’1 A\ dlL’Q A\ dl’g + l’ldl’l AN dZIZQ N diL’4,
1

which is a representative of a class in H? (92%,.1: Dy). Then we do this again to pass
from Z to C®, and we obtain the form

a1 = 0(dx) = (2z123 — 223)dxo A - -+ A day,

which is homogeneous of degree 7. The computation for A? is the same except we
start with xodzs, so we get
o = (2x1w0w3 — 223)dag A - - - A dy.

These forms a; and as generate the A- and A\2-eigenspaces for T in H3(Fy, C).

For larger Hankel determinants connecting homomorphisms are just as easy to
compute if one knows df, so this procedure will give the correct representatives in
general. However the exact sequences become much more numerous, and keeping
track of the coordinate changes in a consistent way is the current obstruction to
carrying this out in general.
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