[Accouplements, correspondances holomorphes, et une tranche de Bers]
There are two frameworks for mating Kleinian groups with rational maps on the Riemann sphere: the algebraic correspondence framework due to Bullett-Penrose-Lomonaco [BP94, BL20] and the simultaneous uniformization mating framework of [MM23a]. The current paper unifies and generalizes these two frameworks. To achieve this, we extend the mating framework of [MM23a] to genus zero hyperbolic orbifolds with at most one orbifold point of order $\nu \ge 3$ and at most one orbifold point of order two. We give an explicit description of the resulting conformal matings in terms of uniformizing rational maps. Using these rational maps, we construct correspondences that are matings of such hyperbolic orbifold groups (including punctured spheres and Hecke groups) with polynomials in real-symmetric hyperbolic components. We also define an algebraic parameter space of correspondences and construct an analog of a Bers slice of the above orbifolds in this parameter space.
Il existe deux cadres pour l’accouplement de groupes kleiniens avec des applications rationnelles sur la sphère de Riemann : le cadre de correspondance algébrique dû à Bullett-Penrose-Lomonaco [BP94, BL20] et le cadre d’accouplement par uniformisation simultanée de [MM23a]. Le présent article unifie et généralise ces deux cadres. Pour ce faire, nous étendons le cadre d’accouplement de [MM23a] aux orbifolds hyperboliques de genre zéro avec au plus un point d’orbifold d’ordre $\nu \ge 3$ et au plus un point d’orbifold d’ordre $2$. Nous donnons une description explicite des accouplements conformes qui en résultent en termes de fonctions rationnelles uniformisantes. À l’aide de ces fonctions rationnelles, nous construisons des correspondances qui sont des accouplements de tels groupes d’orbifolds hyperboliques (y compris les sphères perforées et les groupes de Hecke) avec des polynômes en composantes hyperboliques à symétrie réelle. Nous définissons également un espace de paramètres algébriques de correspondances et construisons un analogue d’une tranche de Bers des orbifolds ci-dessus dans cet espace de paramètres.
Accepté le :
Publié le :
Keywords: Fuchsian group, Bowen-Series map, rational map, simultaneous uniformization, conformal mating, algebraic correspondence, Teichmüller space, Bers slice
Mots-clés : Groupe fuchsien, application de Bowen-Series, fonction rationnelle, uniformisation simultanée, accouplement conforme, correspondance algébrique, espace de Teichmüller, tranche de Bers
Mahan Mj 1 ; Sabyasachi Mukherjee 1

@article{JEP_2025__12__1445_0, author = {Mahan Mj and Sabyasachi Mukherjee}, title = {Matings, holomorphic correspondences, and {a~Bers~slice}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1445--1502}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.315}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.315/} }
TY - JOUR AU - Mahan Mj AU - Sabyasachi Mukherjee TI - Matings, holomorphic correspondences, and a Bers slice JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 1445 EP - 1502 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.315/ DO - 10.5802/jep.315 LA - en ID - JEP_2025__12__1445_0 ER -
%0 Journal Article %A Mahan Mj %A Sabyasachi Mukherjee %T Matings, holomorphic correspondences, and a Bers slice %J Journal de l’École polytechnique — Mathématiques %D 2025 %P 1445-1502 %V 12 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.315/ %R 10.5802/jep.315 %G en %F JEP_2025__12__1445_0
Mahan Mj; Sabyasachi Mukherjee. Matings, holomorphic correspondences, and a Bers slice. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1445-1502. doi: 10.5802/jep.315
[AIM09] - Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Math. Series, vol. 48, Princeton University Press, Princeton, NJ, 2009 | MR | Zbl
[AS76] - “Domains on which analytic functions satisfy quadrature identities”, J. Anal. Math. 30 (1976), p. 39-73 | DOI | MR | Zbl
[Ber60] - “Simultaneous uniformization”, Bull. Amer. Math. Soc. (N.S.) 66 (1960), p. 94-97 | DOI | MR | Zbl
[BF03] - “Hecke groups, polynomial maps and matings”, Internat. J. Modern Phys. B 17 (2003) no. 22-24, p. 3922-3931, Dynamics Days Asia-Pacific (Hangzhou, 2002) | DOI | MR | Zbl
[BF05] - “Holomorphic correspondences mating Chebyshev-like maps with Hecke groups”, Ergodic Theory Dynam. Systems 25 (2005) no. 4, p. 1057-1090 | DOI | MR | Zbl
[BH00] - “Mating quadratic maps with Kleinian groups via quasiconformal surgery”, Electron. Res. Announc. Amer. Math. Soc. 6 (2000), p. 21-30 | DOI | MR | Zbl
[BH07] - “Pinching holomorphic correspondences”, Conform. Geom. Dyn. 11 (2007), p. 65-89 | DOI | MR | Zbl
[BL20] - “Mating quadratic maps with the modular group II”, Invent. Math. 220 (2020) no. 1, p. 185-210 | DOI | MR | Zbl
[BL22] - “Dynamics of modular matings”, Adv. Math. 410 (2022), article ID 108758, 43 pages | DOI | MR | Zbl
[BL24] - “Mating quadratic maps with the modular group III: The modular Mandelbrot set”, Adv. Math. 458 (2024), article ID 109956, 48 pages | DOI | MR | Zbl
[BLLM24] - “Mating parabolic rational maps with Hecke groups”, 2024 | arXiv | Zbl
[BP94] - “Mating quadratic maps with the modular group”, Invent. Math. 115 (1994) no. 3, p. 483-511 | DOI | MR | Zbl
[BS79] - “Markov maps associated with Fuchsian groups”, Publ. Math. Inst. Hautes Études Sci. (1979) no. 50, p. 153-170 | DOI | MR | Numdam | Zbl
[Bul00] - “A combination theorem for covering correspondences and an application to mating polynomial maps with Kleinian groups”, Conform. Geom. Dyn. 4 (2000), p. 75-96 | DOI | MR | Zbl
[CR80] - “Positively expansive maps of compact manifolds”, in Global theory of dynamical systems (Evanston, Ill., 1979), Lect. Notes in Math., vol. 819, Springer, Berlin, 1980, p. 96-110 | DOI | MR | Zbl
[Dav88] - “Solutions de l’équation de Beltrami avec ”, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988) no. 1, p. 25-70 | DOI | MR | Zbl
[Dou83] - “Systèmes dynamiques holomorphes”, in Séminaire Bourbaki, Vol. 1982/83, Astérisque, vol. 105-106, Société Mathématique de France, Paris, 1983, p. 39-63 | MR | Numdam | Zbl
[DS06] - “Distribution des valeurs de transformations méromorphes et applications”, Comment. Math. Helv. 81 (2006) no. 1, p. 221-258 | DOI | MR | Zbl
[Fat29] - “Notice sur les travaux scientifiques de M. P. Fatou, astronome titulaire de l’observatoire de Paris” (1929), https://www.math.purdue.edu/~eremenko/dvi/fatou-b.pdf
[Hub12] - “Matings and the other side of the dictionary”, Ann. Fac. Sci. Toulouse Math. (6) 21 (2012) no. 5, p. 1139-1147 | DOI | MR | Numdam | Zbl
[JS00] - “Removability theorems for Sobolev functions and quasiconformal maps”, Ark. Mat. 38 (2000) no. 2, p. 263-279 | DOI | MR | Zbl
[Kap01] - Hyperbolic manifolds and discrete groups, Progress in Math., vol. 183, Birkhäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl
[LLM24] - “A general dynamical theory of Schwarz reflections, B-involutions, and algebraic correspondences”, 2024 | arXiv | Zbl
[LLMM23] - “Dynamics of Schwarz reflections: the mating phenomena”, Ann. Sci. École Norm. Sup. (4) 56 (2023) no. 6, p. 1825-1881 | MR | Zbl
[LM85] - Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., vol. 58, no. 336, American Mathematical Society, Providence, RI, 1985 | DOI | Zbl
[LM97] - “Laminations in holomorphic dynamics”, J. Differential Geom. 47 (1997) no. 1, p. 17-94 | MR | Zbl
[LMMN25] - David extension of circle homeomorphisms, welding, mating, and removability, Mem. Amer. Math. Soc., vol. 313, no. 1588, American Mathematical Society, Providence, RI, 2025
[Mar16] - Hyperbolic manifolds. An introduction in 2 and 3 dimensions, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl
[McM94a] - “The classification of conformal dynamical systems”, in Current developments in mathematics, 1995 (Cambridge, MA) (R. Bott, M. Hopkins, A. Jaffe, I. Singer, D. W. Stroock & S.-T. Yau, eds.), International Press, Cambridge, MA, 1994, p. 323-360 | MR | Zbl
[McM94b] - Complex dynamics and renormalization, Annals of Math. Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994 | MR | Zbl
[McM96] - Renormalization and 3-manifolds which fiber over the circle, Annals of Math. Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996 | DOI | MR | Zbl
[MFK94] - Geometric invariant theory, Ergeb. Math. Grenzgeb. (2), vol. 34, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl
[Mil06] - Dynamics in one complex variable, Annals of Math. Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006 | MR | Zbl
[MM23a] - “Combining rational maps and Kleinian groups via orbit equivalence”, Proc. London Math. Soc. (3) 126 (2023) no. 5, p. 1740-1809 | DOI | MR | Zbl
[MM23b] - “The Sullivan dictionary and Bowen-Series maps”, EMS Surv. Math. Sci. 10 (2023) no. 1, p. 179-221 | DOI | MR | Zbl
[MS98] - “Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system”, Adv. Math. 135 (1998) no. 2, p. 351-395 | DOI | MR | Zbl
[Pil03] - Combinations of complex dynamical systems, Lect. Notes in Math., vol. 1827, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[PM12] - “On the notions of mating”, Ann. Fac. Sci. Toulouse Math. (6) 21 (2012) no. 5, p. 839-876 | DOI | MR | Numdam | Zbl
[Ran86] - Holomorphic functions and integral representations in several complex variables, Graduate Texts in Math., vol. 108, Springer-Verlag, New York, 1986 | DOI | Zbl
[Sak91] - “Regularity of a boundary having a Schwarz function”, Acta Math. 166 (1991) no. 3-4, p. 263-297 | DOI | Zbl
[Sul85] - “Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains”, Ann. of Math. (2) 122 (1985) no. 3, p. 401-418 | DOI | MR | Zbl
Cité par Sources :