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MATINGS, HOLOMORPHIC CORRESPONDENCES, AND

A BERS SLICE

by Mahan Mj & Sabyasachi Mukherjee

Abstract. — There are two frameworks for mating Kleinian groups with rational maps on the
Riemann sphere: the algebraic correspondence framework due to Bullett-Penrose-Lomonaco
[BP94, BL20] and the simultaneous uniformization mating framework of [MM23a]. The current
paper unifies and generalizes these two frameworks. To achieve this, we extend the mating
framework of [MM23a] to genus zero hyperbolic orbifolds with at most one orbifold point of
order ν ⩾ 3 and at most one orbifold point of order two. We give an explicit description of the
resulting conformal matings in terms of uniformizing rational maps. Using these rational maps,
we construct correspondences that are matings of such hyperbolic orbifold groups (including
punctured spheres and Hecke groups) with polynomials in real-symmetric hyperbolic compo-
nents. We also define an algebraic parameter space of correspondences and construct an analog
of a Bers slice of the above orbifolds in this parameter space.

Résumé (Accouplements, correspondances holomorphes, et une tranche de Bers)
Il existe deux cadres pour l’accouplement de groupes kleiniens avec des applications ration-

nelles sur la sphère de Riemann : le cadre de correspondance algébrique dû à Bullett-Penrose-
Lomonaco [BP94, BL20] et le cadre d’accouplement par uniformisation simultanée de [MM23a].
Le présent article unifie et généralise ces deux cadres. Pour ce faire, nous étendons le cadre
d’accouplement de [MM23a] aux orbifolds hyperboliques de genre zéro avec au plus un point
d’orbifold d’ordre ν ⩾ 3 et au plus un point d’orbifold d’ordre 2. Nous donnons une descrip-
tion explicite des accouplements conformes qui en résultent en termes de fonctions rationnelles
uniformisantes. À l’aide de ces fonctions rationnelles, nous construisons des correspondances
qui sont des accouplements de tels groupes d’orbifolds hyperboliques (y compris les sphères
perforées et les groupes de Hecke) avec des polynômes en composantes hyperboliques à symé-
trie réelle. Nous définissons également un espace de paramètres algébriques de correspondances
et construisons un analogue d’une tranche de Bers des orbifolds ci-dessus dans cet espace de
paramètres.
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1. Introduction

Fatou [Fat29] observed an empirical similarity between the behavior of two com-
plex one-dimensional dynamical systems: one coming from iteration of polynomi-
als, the other from Kleinian groups. This was developed into a systematic dictio-
nary by Sullivan [Sul85] (see also [McM94b, McM94a, McM96, MS98, Pil03, LM97]
etc.). Fatou’s original suggestion [Fat29] of developing a unified framework for treat-
ing these two kinds of dynamical systems in terms of correspondences (multi-valued
maps with holomorphic local branches) was pursued by Bullett and his co-authors in
[BP94, Bul00, BH00, BH07, BL20, BL24, BL22]. A new conformal matings frame-
work based on orbit-equivalence was developed by the authors recently [MM23a]
adapting the theme of Bers’ simultaneous uniformization (in the context of Kleinian
groups, [Ber60]) and mating (in the context of polynomial and rational dynamics,
[Dou83, Hub12]). The conformal matings framework of [MM23a] (see [MM23b] for a
brief account of this framework) furnished new examples of mateable groups; however,
two fundamental questions remained unanswered:

Question 1.1
(1) Identify the class of analytic functions obtained via the mating process of

[MM23a].
(2) Is there a relationship between the Bullett-Penrose-Lomonaco correspondences

of [BP94, Bul00, BL20, BL24, BL22] and the matings in [MM23a]?

A primary aim of this paper is to answer both these questions by
(1) characterizing the class of analytic functions obtained via the mating process

of [MM23a], and
(2) establishing an equivalence between the two notions of matings coming from

correspondences and simultaneous uniformization.

The class of orbifolds. — Before we state the main theorems of the paper, let us
describe the general class of orbifolds (equivalently, Fuchsian groups) that are the
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Matings, correspondences, and a Bers slice 1447

principal players in the game. The family of correspondences most extensively stud-
ied by Bullett and his collaborators exhibit matings of the modular group PSL2(Z)
and quadratic polynomial/rational maps. On the other hand, the conformal matings
framework of [MM23a] applies to Bowen-Series maps of Fuchsian punctured sphere
groups, possibly with an order two elliptic element. In this paper, we work with the
following collection of finite volume hyperbolic orbifolds that includes both these as
special cases:

S := hyperbolic orbifolds of genus zero with
(1) at least one puncture,
(2) at most one order two orbifold point,
(3) at most one order ν ⩾ 3 orbifold point.

Going up/going down and conformal matings. — It should be pointed out at the
outset that the modular group does not fit into the conformal matings framework of
[MM23a] as the existence of an order three orbifold point forces its Bowen-Series map
to be discontinuous. To circumvent this obstacle, one can pass to a ν-fold cyclic cover Σ̃
of Σ ∈ S such that the Bowen-Series map ABS

Σ̃
of the Fuchsian group uniformizing Σ̃

(equipped with suitable fundamental domains) only has controlled discontinuities.
Remarkably, all these points of discontinuity disappear when one passes to appropriate
factors of these Bowen-Series maps. Heuristically, passing to a factor dynamical system
(going down) can be thought of as the dual of passing to a cyclic cover of Σ (going up).
This gives rise to continuous factor Bowen-Series maps AfBS

Σ̃
(see Figures 1 and 4).

This construction is detailed in Section 2.

Σ̃ ABS
Σ̃

Σ AfBS
Σ̃

cover factor

Figure 1. Going up and going down

A key feature of a factor Bowen-Series map, one that lies at the heart of the
construction of conformal matings, is that its restriction on the unit circle S1 is topo-
logically conjugate to zd|S1 , where

d ≡ d(Σ) :=

{
1− 2ν · χorb(Σ) if Σ has an order ν ⩾ 3 orbifold point,
1− 2χorb(Σ) if Σ does not have an order ν ⩾ 3 orbifold point.

Our first main theorem extends the conformal mating construction of [MM23a]
to genus zero orbifolds in the above class. We direct the reader to Section 3 for the
precise notion of a conformal mating. For now, it suffices to say that a conformal
mating is a map F : Ω→ pC, where Ω ⊂ pC is open, and the dynamics of F combines
naturally the dynamics of a piecewise Möbius map and a polynomial.
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1448 M. Mj & S. Mukherjee

Theorem A (Conformal matings of factor Bowen-Series maps with polynomials)
Let Σ∈S, and P be a complex polynomial in the principal hyperbolic component Hd

of degree d polynomials. Then the factor Bowen-Series map AfBS
Σ̃

and the polynomial P
are conformally mateable. Moreover, the conformal mating is unique up to Möbius
conjugacy.

See Theorem 3.2 for the proof existence of conformal matings. There are two special
cases of Theorem A that need special mention:

(1) The case where Σ has no order ν(⩾ 3) orbifold points. This is treated in
Section 2.3, and was dealt within the conformal matings framework of [MM23a].

(2) The case where Σ has exactly one cusp, i.e., it is the (2, ν,∞) orbifold of genus
zero. This is treated in Section 2.4. The case ν = 3 was extensively studied within
the correspondence framework by Bullett and his collaborators starting with [BP94]
and culminating in [BL20, BL24, BL22]. The case ν = 4 was examined in [BF05].
Theorem A in combination with Theorem B unifies and generalizes these examples
to arbitrary ν ⩾ 3. A set of necessary conditions of a completely different flavor for
general ν ⩾ 3 was given in [Bul00, BH00].

Rational uniformization of conformal matings. — The next result (see Corol-
lary 4.12), which plays the role of a bridge between conformal matings and algebraic
correspondences, answers the first part of Question 1.1. The existence of the rational
function R in the proposition below is established via a new application of the
relationship of anti-holomorphic maps with quadrature domains [LLMM23]. A key
fact that leads to this rational uniformization is a crucial property of the factor
Bowen-Series map: AfBS

Σ̃
acts via an involution on the ideal polygon boundary of

its domain of definition. See Lemmas 4.7 and 4.9 where this is exploited and made
explicit.

Proposition 1.2 (Rational uniformization of conformal matings). — Let Σ ∈ S, let P
be a complex polynomial in the principal hyperbolic component Hd, let F : Ω→ pC be
the conformal mating of AfBS

Σ̃
and P , and let η(z) = 1/z. Then, there exist

• a Jordan domain D with η(∂D) = ∂D, and
• a degree d+ 1 rational map R of pC that maps D homeomorphically onto Ω,

such that F ≡ R ◦ η ◦ (R|D)−1. In particular, we have

(1.1) F ◦R = R ◦ η.

The construction of the rational uniformizing map R above is detailed in Section 4,
especially Sections 4.2 and 4.3.

From conformal matings to algebraic correspondences. — Thanks to the alge-
braic description of the conformal mating given in Relation (1.1) above, one can
pull back such a conformal mating by the branches of R−1 to obtain an algebraic
correspondence C on the Riemann sphere pC. The next main theorem of the paper
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Matings, correspondences, and a Bers slice 1449

(see Theorem 5.18) gives a positive answer to the second part of Question 1.1. Let
d = d(Σ) be as above.

Theorem B (Mating genus zero orbifolds with polynomials as correspondences)
Let Σ∈S, and P be a complex polynomial in the principal hyperbolic component Hd

of degree d polynomials. Then, there exists a bi-degree d:d algebraic correspondence C

on the Riemann sphere pC defined by the equation

(1.2) R(w)−R(1/z)
w − 1/z

= 0,

and a C-invariant partition pC = T̃ ⊔ K̃ such that the following hold.
(1) On T̃, the dynamics of C is orbit-equivalent to the action of a group of conformal

automorphisms acting properly discontinuously. Further, T̃/C is biholomorphic to Σ.

(2) K̃ can be written as the union of two copies K̃1, K̃2 of K(P ) (where K(P )

is the filled Julia set of P ), such that K̃1 and K̃2 intersect in finitely many points.
Furthermore, C has a forward (respectively, backward) branch carrying K̃1 (respec-
tively, K̃2) onto itself with degree d, and this branch is conformally conjugate to
P : K(P )→ K(P ).

We remark that the relation (1.1) connects two dynamical planes: one correspond-
ing to the conformal mating or F -plane, and one corresponding to the correspondence
or C-plane. The rational map R mediates the connection between these two planes.
This is elaborated upon in Section 5.

The following diagram summarizes the discussion above in terms of interconnec-
tions among the objects that are mated, the resulting conformal matings, and the
associated correspondences.

Teich(Σ)×Hd

M

Moduli space of
conformal matings

C

Moduli space of
correspondences

Combination via
orbit equivalence

Uniformization + Pullback by rational map

Conformal class of dynamics
on invariant subsets

Figure 2. Flow-chart of interconnections

Theorem B establishes an exact translation between the Bullett-Penrose-Lomonaco
correspondence framework [BP94, Bul00, BL20, BL24, BL22] and the conformal mat-
ings framework of [MM23a]. In particular, we obtain a different way of construct-
ing the Bullett-Penrose-Lomonaco correspondences, starting from conformal matings
(see Section 8 for details). The matings framework is complex analytic in nature,
as opposed to the more algebraic flavor of the correspondence framework. The ana-
lytic setup has greater flexibility, giving new examples of correspondences that com-
bine Fuchsian punctured sphere groups (possibly with some elliptic elements) and
polynomials.
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1450 M. Mj & S. Mukherjee

Correspondences as character variety and a new Bers slice. — We turn now to
the final theme of this paper. The existence of the rational map R allows us to look
at the space of matings algebraically parametrized by the coefficients of R. Extending
the Sullivan dictionary to the present setup, we have the following:

• The algebraic equation (1.2) shows that correspondences are parametrized by the
quasi-projective variety Ratd+1(C), the space of rational maps R of degree exactly
equal to (d + 1). In the context of correspondences, Ratd+1(C) plays the role of the
representation variety. The quotient Ratd+1(C)/∼ by the equivalence relation

R ∼M2 ◦R ◦M1,

where R ∈ Ratd+1(C),M2 ∈ PSL2(C), and M1 belongs to the centralizer of η(z) = 1/z

in PSL2(C), plays the role of the character variety (see Section 6).
• There is a complex-analytic realization of the Teichmüller space of punctured

spheres (more generally, genus zero orbifolds as in Theorem B) within the space
Ratd+1(C)/∼ . This gives the analog of a Bers slice (see Section 7).

Theorem C below makes this precise:

Theorem C (Bers slices of genus zero orbifolds in spaces of correspondences)
Let Σ0 ∈ S and d := d(Σ0). Then, the Teichmüller space Teich(Σ0) can be bi-

holomorphically embedded in a space of bi-degree d:d algebraic correspondences on pC
such that each resulting correspondence is a mating of some Σ ∈ Teich(Σ0) and the
polynomial zd (in the sense of Theorem B).

Further implications of unification of the mating frameworks. — As mentioned
above, the explicit nature of factor Bowen-Series maps and the complex-analytic con-
struction of correspondences via conformal matings facilitates the construction of such
objects. In a recent work of the second author with Shaun Bullett, Luna Lomonaco,
and Mikhail Lyubich, this strategy was employed to construct correspondences as
matings of all parabolic rational maps and Hecke surfaces settling a parabolic version
of a conjecture of Bullett and Freiberger (see [BLLM24], [BF03, §3, p. 3926]).

The unification of the two mating frameworks also allows one to study parame-
ter spaces of correspondences in terms of parameter spaces of conformal matings of
polynomials and factor Bowen-Series maps. Often, these conformal matings behave
like pinched polynomial-like maps. In a joint work of the second author with Mikhail
Lyubich and Yusheng Luo [LLM24], such spaces of pinched polynomial-like maps are
investigated using puzzle techniques from one variable complex dynamics. This study
reveals intimate topological relations between various spaces of correspondences and
connectedness loci of complex polynomials.

Notation and convention. — For the convenience of the reader, we set forth some basic
notation that will be used throughout.

• η(z) := 1/z, η−(z) = 1/z, ι(z) = z.
• The topological closure of a set X ⊂ pC is denoted by X or clX.
• D∗ := pC∖ D.
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Matings, correspondences, and a Bers slice 1451

• md : R/Z→ R/Z, θ 7→ dθ.
• For a meromorphic map f : U → pC, the set of critical points of f is denoted by

crit(f).
Unless stated otherwise, we will draw non-escaping sets of the maps in consideration

as bounded subsets of the plane.

Acknowledgements. — The authors thank the anonymous referee of the present paper
for a diligent and careful reading, and for his/her numerous valuable suggestions that
have improved the exposition. We are grateful to Tien-Cuong Dinh for posing to us
the first part of Question 1.1. We thank an anonymous referee of [MM23b] for posing
the second part of Question 1.1. We also thank Yusheng Luo for helpful conversations.

2. Factor Bowen-Series maps

We will now study Bowen-Series maps associated with appropriate cyclic covers
of genus zero orbifolds. These maps have mild discontinuities. However, one can pass
to factors of these Bowen-Series maps such that the factors are continuous. The con-
struction of factor Bowen-Series maps is the first key step in the proofs of our main
theorems.

2.1. Factor Bowen-Series map for a base group

Let n, p be two positive integers with np ⩾ 3. For r ∈ {1, . . . , n}, denote the counter-
clockwise arc

>
e2iπ(r−1)/n, e2iπr/n ⊂ S1 by Jr. Note that J1 is the counter-clockwise

arc of S1 connecting 1 to e2iπ/n, and the various Jr are obtained by rotating J1
successively by angle 2π/n about the origin. We set ω := e2iπ/n, and Mω : D→ D,
z 7→ ωz.

Further, for r ∈ {1, . . . , n}, consider the chain of p bi-infinite hyperbolic geodesics

Cr,s := e(2iπ(r−1)/n)+(2iπ(s−1)/np), e(2iπ(r−1)/n)+(2iπs/np), s ∈ {1, . . . , p}.

For any r ∈ {1, . . . , n}, the geodesic Cr,1 has its endpoints at e2iπ(r−1)/n and
e(2iπ(r−1)/n)+(2iπ/np), and the other Cr,s are obtained by rotating Cr,1 successively
by angle 2π/np about the origin (see Figure 3). The geodesics Cr,s induce a partition
of the arc Jr into p arcs Jr,1, . . . , Jr,p, where Jr,s is the arc of S1 of length 2π/np

connecting the endpoints of Cr,s.
The bi-infinite geodesics Cr,s, r ∈ {1, . . . , n}, s ∈ {1, . . . , p}, bound a closed ideal

np-gon (in the topology of D), which we call ΠΠΠ. We will now introduce Möbius maps
of the disk that pair the sides of ΠΠΠ. To do so, we will exploit the symmetry Mω

of ΠΠΠ. Specifically, we will prescribe the side-pairings for C1,1, . . . , C1,p explicitly, and
conjugate these side-pairing transformations by powers ofMω to define pairings for the
other sides of ΠΠΠ. Let us denote the diameter of S1 with endpoints at ±eiπ/n by ℓ. Now
observe that the Möbius map g1,s obtained by post-composing the reflection in C1,s

with the reflection in ℓ carries C1,s to C1,p+1−s. In particular, g1,p+1−s = g−1
1,s . Note

that when p is odd, then g1,(p+1)/2 is an involution with a fixed point on C1,(p+1)/2.
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1452 M. Mj & S. Mukherjee

By the Poincaré polygon theorem, the Möbius maps

gr,s :=Mr−1
ω ◦ g1,s ◦M−(r−1)

ω , r ∈ {1, . . . , n}, s ∈ {1, . . . , p}

generate a Fuchsian group Γn,pΓn,pΓn,p, and ΠΠΠ is a closed fundamental domain for the
Γn,pΓn,pΓn,p-action on D. Moreover, D/Γn,pΓn,pΓn,p is biholomorphic to

• a sphere with (np/2) + 1 punctures for p even, and
• a sphere with (n(p− 1)/2) + 1 punctures and n order two orbifold points for p

odd.

Remark 2.1
(1) The integer p can be thought of as the number of ‘pockets’ in each sector of

angular width 2π/n. On the other hand, the integer n plays the role of ν appearing
in the definition of the class S of genus zero orbifolds (see Section 1).

(2) When n ⩾ 3, the orbifold D/Γn,pΓn,pΓn,p is an n-fold cyclic cover of a base genus zero
orbifold ΣΣΣ ∈ S with ⌊p/2⌋+1 punctures, zero/one order two orbifold point depending
on the parity of p, and an order n orbifold point.

We now look at the Bowen-Series map ABS
Γn,pΓn,pΓn,p

equipped with the above fundamental
domain ΠΠΠ and side-pairing transformations (cf. [BS79]). By definition, the map

ABS
Γn,pΓn,pΓn,p

: D∖ intΠΠΠ −→ D

acts as gr,s on the closure of the hyperbolic half-plane enclosed by the geodesic Cr,s

and the arc Jr,s (see Figure 3). It is now easily checked that ABS
Γn,pΓn,pΓn,p

is continuous on
S1 ∖ n

√
1, and the left and right-hand limits of ABS

Γn,pΓn,pΓn,p
at the points of n

√
1 lie in the

set n
√
1. We will now use this fact to pass to a factor of ABS

Γn,pΓn,pΓn,p
that is continuous

everywhere.
Consider the bordered (orbifold) Riemann surfaces

Q := D/⟨Mω⟩, Q1 :=
(
D∖ intΠΠΠ

)
/⟨Mω⟩,

and note that a closed fundamental domain for the action of ⟨Mω⟩ on D is given by

{z ∈ D : 0 ⩽ arg z ⩽ 2π/n} ∪ {0}.

Thus, Q is biholomorphic to the surface obtained from the above fundamental domain
by identifying the radial line segments {r : 0 ⩽ r ⩽ 1} and {re2πi/n : 0 ⩽ r ⩽ 1}
by Mω.

By construction, the Bowen-Series map ABS
Γn,pΓn,pΓn,p

commutes with Mω, and hence it
can be pushed forward via the quotient map q : D→ Q to define a map

q ◦ABS
Γn,pΓn,pΓn,p
◦ q−1 : Q1 −→ Q.

Note that the map z 7→ zn yields a conformal isomorphism ξ between the (bordered)
surfaces Q and D. Finally, we set

AfBS
Γn,pΓn,pΓn,p

:= ξ ◦
(
q ◦ABS

Γn,pΓn,pΓn,p
◦ q−1

)
◦ ξ−1 : DΓn,pΓn,pΓn,p

:= ξ(Q1) −→ D.

Note that AfBS
Γn,pΓn,pΓn,p

: S1 → S1 is an orientation-preserving covering map of degree np− 1

(see Figure 3). By [LMMN25, Lem. 3.7], the map AfBS
Γn,pΓn,pΓn,p
|S1 is expansive. Moreover,
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Figure 3. Left: The fundamental domain ΠΠΠ of Γ4,3Γ4,3Γ4,3 is the polygon
having the geodesics Cr,s, r ∈ {1, 2, 3, 4}, s ∈ {1, 2, 3}, as its edges.
The Bowen-Series map ABS

Γ4,3Γ4,3Γ4,3
, which commutes with Mi, acts on the

arcs J1,1, J1,2, J1,3 as g1,1, g1,2, g1,3. The map ABS
Γ4,3Γ4,3Γ4,3

is continuous away
from the fourth roots of unity. The pre-images of the vertical and
horizontal radial lines under g1,s are displayed in green. Identifying
the radial lines at angle 0, π/2 under Mi and uniformizing the re-
sulting cone yields the factor Bowen-Series map AfBS

Γ4,3Γ4,3Γ4,3
. Right: The

factor Bowen-Series map AfBS
Γ4,3Γ4,3Γ4,3

is defined outside of the ideal triangle
ΠΠΠ/⟨Mω⟩ with vertices at the third roots of unity, and is a degree 11

covering of S1. It maps all the green curves to the radial line at
angle 0, and hence has three critical points each of multiplicity three
(at the valence four vertices of the green graph).

AfBS
Γn,pΓn,pΓn,p

has p critical points at ξ(q(g1,s(0))), s ∈ {1, . . . , p}, and each of them has
multiplicity n− 1. All these critical points are mapped to 0.

Definition 2.2. — We call the map AfBS
Γn,pΓn,pΓn,p

: DΓn,pΓn,pΓn,p
→ D the factor Bowen-Series map

of Γn,pΓn,pΓn,p equipped with the fundamental domain ΠΠΠ.

Remark 2.3. — It is worth noting that AfBS
Γn,pΓn,pΓn,p

extends continuously to the boundary
∂ΠΠΠ/⟨Mω⟩ of the ideal triangle ΠΠΠ/⟨Mω⟩. Further, this action on ∂ΠΠΠ/⟨Mω⟩ is by com-
plex conjugation. In what follows, it will be important that the action of AfBS

Γn,pΓn,pΓn,p
on

∂ΠΠΠ/⟨Mω⟩ is by an involution.

2.2. Deformations and moduli spaces of factor Bowen-Series maps. — The pre-
ferred fundamental domain ΠΠΠ of Γn,pΓn,pΓn,p can be used to equip every marked Fuchsian
group in the Teichmüller space Teich(Γn,pΓn,pΓn,p) of Γn,pΓn,pΓn,p with a preferred fundamental
domain. This, in turn, will allow us to define factor Bowen-Series maps for all marked
groups in a suitable symmetry locus of Teich(Γn,pΓn,pΓn,p).
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Recall that the Teichmüller space Teich(Γn,pΓn,pΓn,p) is the space of Möbius conjugacy
classes of discrete, faithful, strongly type-preserving representations of π1 (D/Γn,pΓn,pΓn,p) ∼=
Γn,pΓn,pΓn,p into Aut(D) ∼= PSL2(R). Any such representation ρ : Γn,pΓn,pΓn,p → Γ is given by
ρ(g) = ψρ ◦g◦ψ−1

ρ , g ∈ Γn,pΓn,pΓn,p, where ψρ is a quasiconformal homeomorphism of pC that
preserves D. The quasiconformal homeomorphism is not unique. However, two such
quasiconformal homeomorphisms inducing the same representation ρ agree on S1.
We can and will choose a quasiconformal homeomorphism ψρ such that ψρ(1) = 1,
and ψρ(ΠΠΠ) is a hyperbolic ideal polygon. The ideal polygon ψρ(ΠΠΠ) is a preferred
fundamental domain for the marked group Γ.

We denote by Teichω(Γn,pΓn,pΓn,p) the collection of (ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teich(Γn,pΓn,pΓn,p) that
commute with conjugation by Mω; i.e.,

ρ(Mω ◦ g ◦M−1
ω ) =Mω ◦ ρ(g) ◦M−1

ω , g ∈ Γn,pΓn,pΓn,p.

This is equivalent to requiring that the associated quasiconformal map ψρ commutes
with Mω.

For each (ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p), consider the Bowen-Series map

ABS
Γ ≡ ψρ ◦ABS

Γn,pΓn,pΓn,p
◦ ψ−1

ρ : D∖ intψρ(ΠΠΠ) −→ D

associated with the marked group Γ equipped with the preferred fundamental domain
ψρ(ΠΠΠ). By definition, ABS

Γ commutes with Mω, and thus can be pushed forward via
the quotient map q : D→ Q. As in the previous section, this gives rise to a map

AfBS
Γ := ξ ◦

(
q ◦ABS

Γ ◦ q−1
)
◦ ξ−1 : DΓ := ξ(q(D∖ intψρ(ΠΠΠ))) −→ D,

that is quasiconformally conjugate to AfBS
Γn,pΓn,pΓn,p

.

Definition 2.4. — For (ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p) induced by the quasiconformal
map ψρ, the map AfBS

Γ : DΓ → D is called the factor Bowen-Series map of Γ equipped
with the fundamental domain ψρ(ΠΠΠ).

Remark 2.5. — For the symmetric base group Γn,pΓn,pΓn,p, the generators chosen in Sec-
tion 2.1 are compositions of two anti-Möbius reflections. However, the (quasiconfor-
mally deformed) preferred generators for (ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p) in general do
not admit such symmetries.

The group pΓΓΓn,p generated by Γn,pΓn,pΓn,p and Mω is an index n extension of Γn,pΓn,pΓn,p. Clearly,
the set

pΠΠΠ := {z ∈ ΠΠΠ : 0 ⩽ arg z ⩽ 2π/n} ∪ {0}

is a closed fundamental domain for the action of pΓΓΓn,p on D. It follows that D/pΓpΓpΓn,p is
biholomorphic to

• a sphere with p/2 + 1 punctures and an order n orbifold point for p even, and
• a sphere with (p+ 1)/2 punctures, an order two orbifold point and an order n

orbifold point for p odd.
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The space of factor Bowen-Series maps constructed above is parametrized by
Teichω(Γn,pΓn,pΓn,p), which in turn can be identified with the Teichmüller space Teich(pΓΓΓn,p).
Specifically, for the representation (ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p), we define

pΓ := ⟨Γ,Mω⟩,

and associate with ρ the representation

(pρ : pΓΓΓn,p −→ pΓ) ∈ Teich(pΓΓΓn,p), where pρ|Γn,pΓn,pΓn,p
≡ ρ|Γn,pΓn,pΓn,p

and pρ(Mω) =Mω.

Thus, Teichω(Γn,pΓn,pΓn,p) is the same as the Teichmüller space of the orbifold group pΓΓΓn,p =

Γn,pΓn,pΓn,p ⋊ ⟨Mω⟩.

Remark 2.6

(1) The orbifold D/pΓΓΓn,p is a base genus zero orbifold ΣΣΣ ∈ S with ⌊p/2⌋ + 1 punc-
tures, zero/one order two orbifold point depending on the parity of p, and an order n
orbifold point when n ⩾ 3 (cf. Remark 2.1). Thus, any Σ ∈ Teich(ΣΣΣ) is uniformized
by some Fuchsian group Γ ∈ Teich(pΓΓΓn,p).

(2) The fact that the chosen fundamental domain and side-pairings of the
base group Γn,pΓn,pΓn,p admit a 2π/n rotation symmetry and that the representations
(ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p) respect this symmetry, together imply that the orb-
ifolds D/Γ have an order n isometry. Quotienting by this isometry yields an n-fold
(branched) covering D/Γ→ D/pΓ.

D/Γ ABS
Γ

D/pΓ AfBS
Γ

cover factor

Figure 4. Covering orbifolds and factor Bowen-Series maps

We summarize the main properties of factor Bowen-Series maps below.

Proposition 2.7
(1) AfBS

Γ : S1 → S1 is a piecewise analytic, orientation-preserving, expansive, cov-
ering map of degree np−1. In particular, it is topologically conjugate to znp−1|S1 ; i.e.,
there exists a homeomorphism hΓ : S1 → S1 such that hΓ(znp−1) =

(
AfBS

Γ (hΓ(z))
)
.

(2) The restriction AfBS
Γ :

(
AfBS

Γ

)−1
(DΓ)→ DΓ is a covering map of degree np−1.

In particular, it maps each component of
(
AfBS

Γ

)−1
(intDΓ) homeomorphically onto

some component of intDΓ.
(3) The restriction AfBS

Γ :
(
AfBS

Γ

)−1
(D ∖DΓ) → D ∖DΓ has degree np. If n ⩾ 2,

there are p critical points of AfBS
Γ , each of multiplicity n − 1, in

(
AfBS

Γ

)−1
(D ∖DΓ).

All these critical points are mapped to the unique critical value 0 of AfBS
Γ .

(4) The set D∖DΓ is (the interior of) a topological p-gon with its p vertices on S1.
Each such vertex is a fixed point or a 2-periodic point under AfBS

Γ .
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(5) For Γ = Γn,pΓn,pΓn,p, the factor Bowen-Series map acts as complex conjugation on
∂DΓn,pΓn,pΓn,p

∩ D, which is the boundary of the ideal polygon D ∖ DΓn,pΓn,pΓn,p
. For a general Γ,

the factor Bowen-Series map AfBS
Γ acts by an involution on ∂DΓ ∩ D.

J11,1

J21,1

J31,1J41,1
J11,2

J21,2

J31,2

J41,2

J51,2
J11,3

J21,3

J31,3

J41,3

Figure 5. Displayed is the dynamical plane of the factor Bowen-Series
map AfBS

Γ4,3Γ4,3Γ4,3
and the partition of S1 given by the arcs Ji1,s := ξ(q(J i

1,s))

(cf. Figure 3). Pulling this partition back by AfBS
Γ4,3Γ4,3Γ4,3

yields a Markov
partition for the map.

Proof. — It is enough to verify the assertions for the base map AfBS
Γn,pΓn,pΓn,p

. We endow the
bordered Riemann surface Q with a preferred choice of complex coordinates via its
identification with {z ∈ D : 0 ⩽ arg z ⩽ 2π/n} ∪ {0} (with the boundary radial lines
glued together).

(1) The facts that ABS
Γn,pΓn,pΓn,p

is continuous on S1 ∖ n
√
1 and the left and right-hand

limits of ABS
Γn,pΓn,pΓn,p

at the points of n
√
1 lie in the set n

√
1 together imply that

A
BS

Γn,pΓn,pΓn,p
:= q ◦ABS

Γn,pΓn,pΓn,p
◦ q−1

is continuous.
Let us partition each arc J1,s ⊂ S1, s ∈ {1, . . . , p}, into sub-arcs J1

1,s, . . . , J
m(s)
1,s ,

where each J i
1,s is a connected component of some g−1

1,s(Jr), with i ∈ {1, . . . ,m(s)},
r ∈ {1, . . . , n}. Then, with the above choice of coordinates on Q,

• A
BS

Γn,pΓn,pΓn,p
acts as a Möbius map hi,s (called a piece of ABS

Γn,pΓn,pΓn,p
) on q(J i

1,s); specifically,
hi,s is a composition of g1,s with a power of Mω,
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• hi,s(q(J
i
1,s)) is the union of finitely many sub-arcs from the collection

{q(J1,s) : s ∈ {1, . . . , p}}.

(See Figure 5 for the ξ-images of the arcs q(J i
1,s) in S1, for n = 4, p = 3.) It follows

that with the above choice of coordinates on Q, the map ABS

Γn,pΓn,pΓn,p
is a piecewise Möbius,

orientation-preserving, covering map of ∂Q. The statement that ABS

Γn,pΓn,pΓn,p
: ∂Q→ ∂Q has

degree np− 1 follows from the fact that all but finitely many points in S1 have np− 1

preimages under the map ABS
Γn,pΓn,pΓn,p

(since ABS
Γn,pΓn,pΓn,p

maps each arc Jr,s to S1 ∖ int Jr,p+1−s).
Finally, expansivity of ABS

Γn,pΓn,pΓn,p
|∂Q is a consequence of the fact that each g1,s has deriv-

ative larger than one on int J1,s, for s ∈ {1, . . . , p} (cf. [LMMN25, Lem. 3.8]).
Since ξ : Q→ D is a biholomorphism, the properties of ABS

Γn,pΓn,pΓn,p
listed in the previous

paragraph imply that the map AfBS
Γn,pΓn,pΓn,p
≡ ξ ◦ABS

Γn,pΓn,pΓn,p
|∂Q ◦ξ−1 : S1 → S1 is a piecewise ana-

lytic (not piecewise Möbius when n > 1), orientation-preserving, expansive, covering
map of degree np− 1.

The existence of the circle homeomorphism hΓ that conjugates znp−1 to AfBS
Γ now

follows from the fact that two expansive circle coverings of the same degree are topo-
logically conjugate (cf. [CR80, Property (2’), p. 99]).

(2) and (3) The Bowen-Series map ABS
Γn,pΓn,pΓn,p

sends the hyperbolic half-plane bounded
by the geodesic C1,s and the arc J1,s ⊂ S1 conformally to the complement of the
hyperbolic half-plane bounded by the geodesic C1,p+1−s and the arc J1,p+1−s ⊂ S1,
s ∈ {1, . . . , p}. Hence, the region D ∖ DΓ is covered np times by AfBS

Γn,pΓn,pΓn,p
, while DΓ is

covered np − 1 times. Clearly, AfBS
Γ :

(
AfBS

Γ

)−1
(DΓ) → DΓ is piecewise conformal,

and hence a covering map.
To locate the critical points of AfBS

Γn,pΓn,pΓn,p
, let us denote the union of the radial lines in D

at angles 2jπ/n, j ∈ {0, . . . , n− 1}, by P. Note that AfBS
Γn,pΓn,pΓn,p

maps each ξ(q(g−1
1,s(P))) to

the line segment [0, 1] and sends ξ(q(g−1
1,s(0))) to 0, for s ∈ {1, . . . , p} (see Figures 3

and 5). It follows that for each s ∈ {1, . . . , p}, the point ξ(q(g−1
1,s(0))) is a critical point

of multiplicity n− 1 with associated critical value 0.
(4) and (5) These follow from Definitions 2.2 and 2.4, and the discussion in Sec-

tion 2.1. □

We denote the circle homeomorphism that conjugates znp−1 to AfBS
Γn,pΓn,pΓn,p

by h0, nor-
malized such that h0 sends the fixed point 1 of znp−1 to the fixed point 1 of AfBS

Γn,pΓn,pΓn,p
.

Further, the quasiconformal conjugacy ψρ between Γn,pΓn,pΓn,p and Γ induces a quasiconfor-
mal conjugacy pψρ between AfBS

Γn,pΓn,pΓn,p
and AfBS

Γ . In the remainder of the paper, we will work
with the normalized conjugacy hΓ = pψρ ◦ h0 : S1 → S1 between znp−1|S1 and AfBS

Γ |S1 .
Let us denote the set of p ideal boundary points of D∖DΓ on S1 by SΓ. Under the

circle homeomorphism hΓ, the set SΓ is pulled back to the set

Ap := {i/p : i ∈ {0, . . . , p− 1}}
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(here we identify S1 with R/Z). See Proposition 2.7 (parts 4, 5). More precisely, if p is
even (respectively, odd), the two points (respectively, one point) of SΓ that are (respec-
tively, is) fixed by AfBS

Γ correspond to 0, p/2p = 1/2 (respectively, corresponds to 0),
and the 2-cycles of AfBS

Γ in SΓ correspond to the 2-cycles ±i/p, i ∈ {1, . . . , ⌊p−1
2 ⌋}, of

mnp−1.

2.3. Special case I: continuous Bowen-Series maps

In [MM23a, MM23b], Bowen-Series maps of Fuchsian punctured sphere groups
(possibly with an order two orbifold point) equipped with special fundamental do-
mains were studied. These maps, which are covering maps of S1, are contained in the
class of maps constructed in Section 2.2.

2.3.1. Bowen-Series maps of Fuchsian punctured sphere groups. — Let n=1 and p⩾4

be an even integer. Then D/Γn,pΓn,pΓn,p is a sphere with p/2 + 1 punctures, and for
(ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p) ≡ Teich(Γn,pΓn,pΓn,p), the map AfBS

Γ agrees with the standard
Bowen-Series map ABS

Γ of Γ equipped with the fundamental domain ψρ(ΠΠΠ) (see
[MM23a, §3] and Figure 6(left)). This map restricts to a piece-wise analytic C1,
expansive, degree p − 1 covering of S1. Moreover, it has no critical points in its
domain of definition DΓ.

ΠΠΠ(Γ1,6Γ1,6Γ1,6)

C1,1

C1,6

C1,2

C1,5

C1,3

C1,4

g1,1

g−1
1,1

g1,2

g−1
1,2

g1,3

g−1
1,3

ΠΠΠ(Γ1,5Γ1,5Γ1,5)

C1,1

C1,5

C1,2

C1,4

C1,3

g1,1

g−1
1,1

g1,2

g−1
1,2

g1,3

Figure 6. The preferred fundamental hexagon (respectively, penta-
gon) of Γ1,6Γ1,6Γ1,6 (respectively, of Γ1,5Γ1,5Γ1,5), which uniformizes a four times
punctured sphere (respectively, a sphere with three punctures and
an order two orbifold point), is shown. The action of the correspond-
ing Bowen-Series maps on these arcs are also marked.
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2.3.2. Bowen-Series maps of Fuchsian groups uniformizing punctured spheres with an
order two orbifold point. — Let n = 1 and p ⩾ 3 be an odd integer. Then D/Γn,pΓn,pΓn,p

is a sphere with (p+ 1)/2 punctures and an order two orbifold point, and for
(ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p) ≡ Teich(Γn,pΓn,pΓn,p), the map AfBS

Γ agrees with the standard
Bowen-Series map ABS

Γ of Γ equipped with the fundamental domain ψρ(ΠΠΠ) (see
[MM23a, §3] and Figure 6(right)). This map restricts to a C1, expansive, degree p−1

covering of S1. Moreover, it has no critical points in its domain of definition DΓ.

C1,1

C4,1

C2,1

C3,1

g1,1

Figure 7. Left: The fundamental domain Π of Γ4,1Γ4,1Γ4,1 is the polygon
having the geodesics Cr,1, r ∈ {1, 2, 3, 4}, as its edges. The Bowen-
Series map ABS

Γ4,1Γ4,1Γ4,1
, which commutes with Mi, acts as g1,1 on the arc

J1,1. The pre-images of the vertical and horizontal radial lines under
g1,1 are displayed in green. Right: The factor Bowen-Series map AfBS

Γ4,1Γ4,1Γ4,1

is defined outside of an ideal monogon with its vertex at 1, and is
a degree three covering of S1. The map AfBS

Γ4,1Γ4,1Γ4,1
extends continuously

to the boundary of the ideal monogon and acts on it by complex
conjugation. It has a unique critical point of multiplicity three at the
valence four vertex of the green graph.

2.4. Special case II: fully ramified factor Bowen-Series maps. — We now look at
the case when p = 1 and n ⩾ 3 is any integer. By construction, for r ∈ {1, . . . , n}, the
map gr,1 is an involution with an elliptic fixed point on Cr,1. Moreover, D/Γn,pΓn,pΓn,p is a
sphere with one puncture and n order two orbifold points. The corresponding index n
extension pΓΓΓn,p is a classical Hecke group, which uniformizes a genus zero orbifold with
exactly one puncture, exactly one order two orbifold point and exactly one order n
orbifold point. In particular, Teich(pΓΓΓn,p) is a singleton, and hence the factor Bowen-
Series map associated with Γn,pΓn,pΓn,p (equipped with the fundamental n-gon ΠΠΠ) is rigid.

The map AfBS
Γn,pΓn,pΓn,p

restricts to a C1, expansive, degree n− 1 covering of S1. Further,
this map has a unique critical point of multiplicity n− 1 (see Figure 7).
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3. Conformal matings of factor Bowen-Series maps with polynomials

The goal of this section is to prove Theorem A. In fact, we will prove a more general
statement that allows the polynomials to lie in arbitrary hyperbolic components in
the connectedness locus.

3.1. The notion of conformal mating. — Let n, p be two positive integers with
np ⩾ 3, and P be a monic, centered complex polynomial of degree d := np− 1 with a
connected and locally connected Julia set J(P ). Let K(P ) denote the filled Julia set.
Recall that there exists a unique conformal map

ψP : pC∖ D −→ B∞(P ) := pC∖K(P )

(called the Böttcher coordinate of P ) that conjugates zd to P , and is tangent to
the identity map near infinity (cf. [Mil06, Th. 9.1]). As J(P ) is locally connected,
ψP extends continuously to S1 to yield a semi-conjugacy between zd|S1 and P |J(P ).

We now define the notion of topological/conformal mating of P and AfBS
Γ , where

Γ ∈ Teichω(Γn,pΓn,pΓn,p). Recall from Section 2.2 that there exists a normalized homeomor-
phism hΓ : S1 → S1 that conjugates zd to AfBS

Γ . Let us now consider the disjoint union
K(P ) ⊔ D and the map

P ⊔AfBS
Γ : K(P ) ⊔DΓ −→ K(P ) ⊔ D,(

P ⊔AfBS
Γ

)
|K(P ) = P,

(
P ⊔AfBS

Γ

)
|DΓ

= AfBS
Γ .

Let ∼m (here ‘m’ stands for mating) be the equivalence relation on K(P ) ⊔ D gener-
ated by
(3.1) ψP (z) ∼m hΓ(z)), for all z ∈ S1.

The map P ⊔AfBS
Γ descends to a continuous map P⊥⊥AfBS

Γ to the quotient
K(P ) ⊥⊥ D :=

(
K(P ) ⊔ D

)
/ ∼m

∼= S2.

The map P⊥⊥AfBS
Γ is called the topological mating of P and AfBS

Γ . We say that P and
AfBS

Γ are conformally mateable if the topological 2-sphere K(P )⊥⊥D admits a complex
structure that turns the topological mating P⊥⊥AfBS

Γ into a holomorphic map.
Here is an equivalent formulation (cf. [PM12, Def. 4.14]).

Definition 3.1. — The maps P and AfBS
Γ are conformally mateable if there exist a

continuous map F : Dom(F ) ⊊ pC → pC (called a conformal mating of AfBS
Γ and P )

that is complex-analytic in the interior of Dom(F ) and continuous maps
XP : K(P ) −→ pC and XΓ : D −→ pC,

conformal on intK(P ) and D (respectively), satisfying
(1) XP (K(P )) ∪ XΓ

(
D
)
= pC,

(2) Dom(F ) = XP (K(P )) ∪ XΓ(DΓ),
(3) XP ◦ P (z) = F ◦ XP (z), for z ∈ K(P ),
(4) XΓ ◦AfBS

Γ (w) = F ◦ XΓ(w), for w ∈ DΓ, and
(5) XP (z) = XΓ(w) if and only if z ∼m w where ∼m is the equivalence relation on

K(P ) ⊔ D defined by Relation (3.1).
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The semi-conjugacies XP ,XΓ are called the mating semi-conjugacies associated with
the conformal mating F of P and AfBS

Γ . When mating semi-conjugacies are injective,
they are simply referred to as mating conjugacies.

3.2. Existence of conformal matings. — Let (ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p) and P

a monic, centered, hyperbolic complex polynomial of degree d = np − 1 with a con-
nected Julia set. We now state and prove a generalization of [MM23a, Th. 3.6].

Theorem 3.2. — There exists a conformal mating F of P : K(P ) → K(P ) and
AfBS

Γ : DΓ → D. Moreover, F is unique up to Möbius conjugacy.

We will start with a technical lemma.

Definition 3.3. — An orientation-preserving homeomorphism H : U → V between
domains in the Riemann sphere pC is called a David homeomorphism if it lies in the
Sobolev class W 1,1

loc (U) and there exist constants C,α, ε0 > 0 with

σ({z ∈ U : |µH(z)| ⩾ 1− ε}) ⩽ Ce−α/ε, ε ⩽ ε0.(3.2)

Here σ is the spherical measure, and µH = ∂H/∂z
∂H/∂z is the Beltrami coefficient of H

(see [AIM09, Chap. 20] for more background on David homeomorphisms).

Lemma 3.4. — The circle homeomorphism hΓ of Proposition 2.7 continuously extends
to a David homeomorphism of D.

Proof. — Recall from Section 2.2 that hΓ = pψρ ◦ h0, where pψρ is the restriction of
a global quasiconformal map and h0 conjugates znp−1 to AfBS

Γn,pΓn,pΓn,p
. Hence, it suffices to

check that h0 continuously extends to a David homeomorphism of D.
We will use the notation introduced in Proposition 2.7. In particular, we endow Q

with a preferred choice of complex coordinates via its identification with the set
{z ∈ D : 0 ⩽ arg z ⩽ 2π/n} ∪ {0} (with the boundary radial lines glued together).

The partition of ∂Q into the arcs{
q(J i

1,s) : s ∈ {1, . . . , p}, i ∈ {1, . . . ,m(s)}
}

does not necessarily give a Markov partition for ABS

Γn,pΓn,pΓn,p
since the map may send both

endpoints of such a partition piece to 1. However, we can refine the above partition
by pulling it back under ABS

Γn,pΓn,pΓn,p
, and this produces a Markov partition {Ik}.

Each piece hi,s|Ik of ABS

Γn,pΓn,pΓn,p
extends conformally as hi,s to a neighborhood of Ik

in Q̃, where Q̃ is the double of Q and Ik ⊂ q(J i
1,s). Finally, since the pieces of

A
BS

Γn,pΓn,pΓn,p
are Möbius (with respect to the preferred coordinates on Q), which send round

disks to round disks, we can choose round disk neighborhoods Uk ⊂ Q̃ of the interi-
ors of the Markov partition pieces int Ik (intersecting ∂Q orthogonally) such that if
A

BS

Γn,pΓn,pΓn,p
(Ik) ⊃ Ik′ , then A

BS

Γn,pΓn,pΓn,p
(Uk) ⊃ Uk′ .
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The properties of ABS

Γn,pΓn,pΓn,p
listed in the previous paragraph imply that the map

AfBS
Γn,pΓn,pΓn,p
≡ ξ ◦ABS

Γn,pΓn,pΓn,p
|∂Q ◦ ξ−1 : S1 → S1 is a piecewise analytic orientation-preserving ex-

pansive covering map of degree d ⩾ 2 admitting a Markov partition {ξ(Ik)} satisfying
conditions (4.1) and (4.2) of [LMMN25, Th. 4.12]. Moreover, each periodic break-
point of its piecewise analytic definition is symmetrically parabolic (cf. [LMMN25,
Def. 4.6, Rem. 4.7]). By [LMMN25, Th. 4.12], the orientation-preserving homeomor-
phism h0 : S1 → S1 that conjugates the map zd|S1 to AfBS

Γn,pΓn,pΓn,p
|S1 (and sends 1 to 1)

extends continuously as a David homeomorphism of D. □

Proof of Theorem 3.2. — As J(P ) is locally connected, ψP extends to a continuous
surjection ψP : S1 → J(P ) semi-conjugating zd to P . Also note that since P is
hyperbolic with connected Julia set, B∞(P ) is a John domain and J(P ) is removable
for W 1,1 functions [JS00, Th. 4].

Let hΓ : D → D be a continuous extension of hΓ : S1 → S1 that is a David
homeomorphism on D. The existence of such an extension is guaranteed by Lemma 3.4.
Also recall that hΓ conjugates zd|S1 to AfBS

Γ |S1 . Consider the topological dynamical
system

F̃ (w) :=

{
P on K(P ),

ψP ◦ η ◦ h−1
Γ ◦AfBS

Γ ◦ hΓ ◦ η ◦ ψ−1
P on ψP

(
η
(
h−1
Γ (DΓ)

))
⊂ B∞(P ),

where η(z) = 1/z. By equivariance properties of hΓ : S1 → S1 and ψP : S1 → J(P ),
the two definitions agree on J(P ). We denote the domain of F̃ by Dom(F̃ ).

We define a Beltrami coefficient µ on the sphere as follows. On K(P ) we set µ to
be the standard complex structure. On B∞(P ), we set µ to be the pullback of the
standard complex structure (on D) under the map hΓ ◦ η ◦ ψ−1

P . Since hΓ ◦ η ◦ ψ−1
P is

a David homeomorphism (by [LMMN25, Prop. 2.5(iv)]), it follows that µ is a David
coefficient on pC. It is easy to check that µ is F̃ -invariant.

The David integrability theorem (see [Dav88], [AIM09, Th. 20.6.2, p. 578]) provides
us with a David homeomorphism H : pC → pC such that the pullback of the standard
complex structure under H is equal to µ. Conjugating F̃ by H, we obtain the map

F := H ◦ F̃ ◦ H−1 : H(Dom(F̃ )) −→ pC.

We set Dom(F ) := H(Dom(F̃ )).
We proceed to show that F is holomorphic on intDom(F ). As J(P ) is removable

for functions in class W 1,1, it follows from [LMMN25, Th. 2.7] that H(J(P )) is locally
conformally removable. Hence, it suffices to show that F is holomorphic on the inte-
rior of Dom(F ) ∖ H(J(P )). Indeed, this would imply that the continuous map F is
holomorphic on intDom(F ) away from the finitely many critical points of F . One can
then conclude that F is holomorphic on intDom(F ) using the Riemann removability
theorem.

To this end, first observe that both the maps hΓ ◦ η ◦ ψ−1
P and H are David home-

omorphisms on B∞(P ) straightening µ|B∞(P ). By [AIM09, Th. 20.4.19, p. 565], the
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map hΓ ◦ η ◦ ψ−1
P ◦ H−1 is conformal on H(B∞(P )). It now follows from the defini-

tions of F̃ and F that F is holomorphic on H(B∞(P )) ∩ intDom(F ). Similarly, both
the identity map and the map H are David homeomorphisms on each component of
intK(P ) straightening µ. Once again by [AIM09, Th. 20.4.19, p. 565], H is conformal
on each component of intK(P ). By definition of F̃ and F , it now follows that F is
holomorphic on each interior component of H(K(P )). This completes the proof of the
fact that F is holomorphic on the interior of Dom(F ).

Figure 8. Displayed are the Bowen-Series map of Γ1,3Γ1,3Γ1,3, the filled Julia
set of P (z) = z2 − 1, and a schematic picture of the conformal mat-
ing F of AΓ1,3Γ1,3Γ1,3

and P .

Finally, we set XP := H : K(P ) → pC and XΓ := H ◦ ψP ◦ η ◦ h−1
Γ : D → pC. It is

readily checked that these maps satisfy the requirements of Definition 3.1. Thus, F is
a conformal mating of P and AfBS

Γ .
Now suppose that there is another conformal mating F1 of P and AfBS

Γ . Then
the respective mating semi-conjugacies paste together to yield a homeomorphism
of pC which is conformal away from H(J(P )) and conjugates F to F1. Conformal
removability of H(J(P )) now implies that this homeomorphism is a Möbius map; i.e.,
F and F1 are Möbius conjugate. □

Remark 3.5. — We note that since XP is the restriction of the homeomorphism H to
K(P ), the map XP is a homeomorphism.
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3.3. Two examples. — We will now work out two concrete examples of conformal
matings. The reader may keep these examples in mind while going through Sections 4
and 5.2.

Figure 9. Displayed are the Bowen-Series map of the Fuchsian thrice
punctured sphere group, the filled Julia set of the critically fixed
cubic polynomial P (z) = z3+3z/2, and a cartoon of their conformal
mating F .

3.3.1. A quadratic example. — Consider the ‘Basilica’ polynomial P (z) = z2− 1 and
the group Γ1,3Γ1,3Γ1,3. The unique finite critical point of the polynomial P forms a 2-cycle
0 ←→ −1. The filled Julia set K(P ), the fixed dynamical ray of P at angle 0, and
the 2-periodic dynamical rays at angles 1/3, 2/3 are displayed in Figure 8 (top right).
The group Γ1,3Γ1,3Γ1,3 uniformizes a sphere with two punctures and an order two orbifold
point. The Bowen-Series map AΓ1,3Γ1,3Γ1,3

: DΓ1,3Γ1,3Γ1,3
→ D is shown in Figure 8 (top left).

The construction of the conformal mating F of P and AΓ1,3Γ1,3Γ1,3
involves identification

of the 2-periodic points of AΓ1,3Γ1,3Γ1,3
in SΓ1,3Γ1,3Γ1,3

(see the last paragraph of Section 2.2) with
the common landing point of the 1/3 and 2/3-dynamical rays of P . Consequently,
Dom(F ) is the union of two closed Jordan disks Ω1,Ω2 touching at a point, and F

restricts as an involution on the boundary of each of the two components Ω1, Ω2; see
Figure 8 (bottom).
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3.3.2. A cubic example. — Let P be the critically fixed cubic polynomial P (z) =

z3 + 3z/2. It fixes both its finite critical points ±i/
√
2. The filled Julia set K(P ), the

fixed dynamical ray of P at angles 0, 1/2, and the 2-periodic dynamical rays at angles
1/4, 3/4 are shown in Figure 9 (top right).

Further, let Γ1,4Γ1,4Γ1,4 be the Fuchsian group uniformizing the thrice punctured sphere.
The Bowen-Series map AΓ1,4Γ1,4Γ1,4

: DΓ1,4Γ1,4Γ1,4
→ D is depicted in Figure 9 (top left).

In the dynamical plane of the conformal mating F of P and AΓ1,4Γ1,4Γ1,4
, the fixed points of

AΓ1,4Γ1,4Γ1,4
in SΓ1,4Γ1,4Γ1,4

are identified with the common landing point of the 0 and 1/2-dynamical
rays of P . Thus, Dom(F ) is the union of two closed Jordan disks Ω1,± touching at a
point. However, unlike in the previous example, the map F sends ∂Ω1,± onto ∂Ω1,∓
with F ◦2|∂Ω1,+∪∂Ω1,− = id; see Figure 9 (bottom).

4. Conformal matings and rational uniformization

With the conformal matings of factor Bowen-Series maps and polynomials at our
disposal (Theorem 3.2), we now take up the task of recognizing the class of holomor-
phic maps F that arise in this process and thus answering the first part of Question 1.1.
We carry this out in Sections 4.2 and 4.3, where a generalization of Proposition 1.2
is established. The resulting algebraic description of matings in terms of uniformizing
rational maps serves as a connecting link between conformal matings (Section 3) and
correspondences (to be dealt with in Section 5). Finally in Section 4.4, we investigate
the structure of the critical points of the uniformizing rational maps. This structure
will play a crucial role in studying the dynamics of the associated correspondences in
Section 5.

Throughout this section, we will work with a representation (ρ : Γn,pΓn,pΓn,p → Γ) ∈
Teichω(Γn,pΓn,pΓn,p) and a monic, centered, hyperbolic complex polynomial P of degree d =

np−1 with a connected Julia set. As in Theorem 3.2, the unique conformal mating of P
and AfBS

Γ will be denoted by F . The associated mating semi-conjugacies are denoted
by XP and XΓ (see Definition 3.1). Moreover, ψP , ψρ denote the Böttcher coordinate
for P , and the quasiconformal homeomorphism that defines the representation ρ,
respectively.

4.1. Lamination model of domain of conformal matings. — For the purposes of this
section, a lamination will be a closed set consisting of a collection of non-intersecting
hyperbolic geodesics in D. If the number of geodesics in the collection is finite, the
lamination is said to be finite.

Proposition 4.1. — Dom(F ) is homeomorphic to the quotient of D under an equiv-
alence relation given by a finite lamination. In particular,

(1) Dom(F ) is connected, and
(2) intDom(F ) has finitely many connected components and each of them is a

Jordan domain.
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Proof. — Recall that D ∖ DΓ is the interior of a topological ideal p-gon. Since XΓ

is conformal on D and extends continuously to S1, it follows that the complement of
Dom(F ) is a topological disk and hence Dom(F ) is a full continuum. Moreover, XΓ can
introduce at most finitely many identifications on the boundary of D ∖DΓ (namely,
at the p ideal boundary points of D∖DΓ). It follows that Dom(F ) is homeomorphic
to the quotient of D under a finite lamination. □

We will now give an explicit description of the finite lamination appearing in
the statement of Proposition 4.1. This will be useful in determining the topology
of Dom(F ). Recall the set Ap from Section 2.2.

Definition 4.2. — We define the equivalence relation LP on Ap as: θ1 ∼P θ2 if and
only if the external dynamical rays of P at angles θ1, θ2 land at the same point of J(P ).

Figure 10. Top: Depicted are various laminations LP with the
domain of definition of a factor Bowen-Series map superimposed out-
side the disk, for p = 10. The domain of definition of the conformal
mating is obtained by pinching the leaves of the lamination. Bottom:
The corresponding topological models of Dom(F ) and cartoons of
the non-escaping sets are shown. The bottom left figure has three
corners and three pinched points with rotational symmetry. The bot-
tom right figure has two corners each at the top and bottom, and
three pinched points.

We remark that the above equivalence relation is unlinked. One can view LP as a
finite lamination on D by joining the two points of an equivalence class by a bi-infinite
hyperbolic geodesic. Note that leaves, gaps of this lamination can be defined in the
usual way. In what follows, the word ‘gap’ will refer to gaps of infinite hyperbolic
area, while gaps of finite hyperbolic area will be called polygons. By the construction
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of F , the landing point of the external dynamical ray of P at angle θ is identified
with hΓ(−θ). Hence, the landing points of the external dynamical rays of P at angles
in Ap are identified with points in SΓ.

The following result easily follows from the above discussion.

Lemma 4.3. — The connected components of intDom(F ) correspond bijectively to the
gaps of the lamination LP . Moreover, two components of intDom(F ) touch at a point
if and only if the corresponding gaps of LP either share a common boundary leaf or
have boundary leaves corresponding to the sides of a common polygon.

Remark 4.4. — The topology of Dom(F ) depends on the equivalence relation LP and
the integer p, but not on the integer n.

Definition 4.5. — For a gap G of the lamination LP , the set of points of Ap that lie
on G but are not endpoints of any leaf of L is denoted by cusps(G).

Recall from [Mil06, §18] that the periods of the external dynamical rays landing at
a periodic point of J(P ) are equal. Thus, if 0 or 1/2 belongs to a non-trivial equiva-
lence class of LP , then this class must be {0, 1/2}. On the other hand, if i/p and j/p
(where i, j ∈ {1, . . . , ⌊p−1

2 ⌋}) lie in the same equivalence class, then md(i/p) = −i/p
and md(j/p) = −j/p must do so as well. It follows that the gaps of the lamina-
tion LP either intersect the real line, or come in complex conjugate pairs (see Fig-
ure 10). We enumerate the gaps of LP as G1, . . . ,Gℓ,G1,±, . . . ,Gm,±, and label the
corresponding components of intDom(F ) as Ω1, . . . ,Ωℓ,Ω1,±, . . . ,Ωm,±, where Gi are
the real-symmetric gaps and Gj,± are the complex-conjugate gaps of LP . Thus,

Dom(F ) =
( ℓ⋃
i=1

Ωi

)
∪
(

m⋃
j=1

Ωj,+ ∪ Ωj,−

)
.

Remark 4.6. — For the conformal mating considered in Section 3.3.1, the lamina-
tion LP consists of a unique leaf connecting 1/3 and 2/3. Similarly, for the conformal
mating considered in Section 3.3.2, the lamination LP consists of a unique leaf con-
necting 0 and 1/2. In both cases, LP has two gaps. This is in consonance with the fact
that the domains of definition of the associated conformal matings have two interior
components.

4.2. Explicit description of real-symmetric matings via rational uniformizations

In this subsection, we will give a concrete description of the mating between AfBS
Γn,pΓn,pΓn,p

and PPP , where PPP is a real-symmetric hyperbolic polynomial of degree d = np − 1

with a connected Julia set (assuming that the mating exists). The characterization of
such matings will be based on the following lemma. We recall the notation ι(z) = z,
η−(z) = 1/z, and D∗ = pC∖ D.

Lemma 4.7. — Let Ω ⊂ pC be a simply connected domain with locally connected bound-
ary. Suppose further that f : Ω→ pC is a continuous function such that

(1) f is meromorphic on Ω, and
(2) f ≡ ι on ∂Ω.
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Then there exists a rational map R : pC → pC that carries D univalently onto Ω and
(ι ◦ f) |Ω ≡ R ◦ η− ◦ (R|D)−1.

Proof. — As Ω is simply connected with locally connected boundary, there exists a
conformal isomorphism φ : D→Ω that extends to a continuous surjection φ : S1→∂Ω.
We will show that φ extends to a meromorphic map of the Riemann sphere, and hence
is a rational map. To this end, we define

R : pC −→ pC, R ≡

{
φ on D,
(ι ◦ f) ◦ φ ◦ η− on D∗.

By our assumption, ι ◦ f ≡ id on ∂Ω. This fact, combined with continuity of φ
and f , implies that R is continuous on pC. Moreover, R is meromorphic away from S1.
It follows from the conformal removability of analytic arcs that R is a global mero-
morphic function. Therefore, R is a rational map that takes D injectively onto Ω.
Finally, by construction of R, we have that (ι ◦ f) ◦ R ◦ η− ≡ R on D∗, and hence,
(ι ◦ f) ≡ R ◦ η− ◦ (R|D)−1 on Ω = R(D). □

Remark 4.8. — Domains Ω satisfying the conditions of Lemma 4.7 are examples of
so-called quadrature domains, and the associated maps f are called Schwarz functions.
The characterization of such domains given in Lemma 4.7 is a special case of [AS76,
Th. 1], where a similar result is proved without the local connectedness assumption.
However, we will not need this more general statement in this paper.

With the above preparatory lemma at our disposal, we now proceed to prove the
main result of this subsection. Let us denote the conformal mating of PPP : K(PPP ) →
K(PPP ) and AfBS

Γn,pΓn,pΓn,p
: DΓn,pΓn,pΓn,p

→ D by FFF . Following the convention of Section 4.1, we will
label the components of intDom(FFF ) as

{ΩΩΩα : α ∈ I},

where

I := I1 ⊔ I2, with I1 := {1, . . . , ℓ}, I2 := {(1,+), (1,−), . . . , (m,+), (m,−)}.

We also define an involution

κ : I −→ I,

{
i 7→ i for i ∈ I1,

(j,±) 7→ (j,∓) for (j,±) ∈ I2.

Lemma 4.9. — There exist rational maps RRRα, α ∈ I, of pC such that for each α
(1) ι(ΩΩΩα) = ΩΩΩκ(α),
(2) RRRα maps D injectively onto ΩΩΩα,
(3) ι ◦RRRα = RRRκ(α) ◦ ι, and
(4) FFF |ΩΩΩα

≡ RRRκ(α) ◦ η ◦ (RRRα|D)−1.

Proof. — We first claim that Dom(F ) is real-symmetric and F ◦ ι = ι ◦ F .
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Proof of claim. — The real-symmetry property ofPPP implies that ι◦ψPPP ◦ι conjugates zd
to PPP and is tangent to the identity map near infinity. By uniqueness of Böttcher
coordinates, we have that ι ◦ ψPPP ◦ ι = ψPPP ; i.e., ψPPP commutes with ι.

The orientation-preserving topological conjugacy h0 : S1 → S1 between zd and
AfBS

Γn,pΓn,pΓn,p
sends the fixed point 1 of zd to the fixed point 1 of AfBS

Γn,pΓn,pΓn,p
. Since both zd and AfBS

Γn,pΓn,pΓn,p

are real-symmetric maps (i.e., they commute with ι), it follows that ι◦h0 ◦ ι : S1 → S1

is also an orientation-preserving topological conjugacy between zd and AfBS
Γn,pΓn,pΓn,p

sending 1

to 1. Thus, g := (ι ◦ h0 ◦ ι)−1 ◦ h0 : S1 → S1 commutes with zd, and carries the fixed
point 1 of zd to itself. Due to this commutation property, the orientation-preserving
circle homeomorphism g acts as the identity on the m-th pre-images of 1 under zd, for
m ⩾ 1. Since the iterated pre-images of 1 under zd are dense in S1, it follows that g

is the identity map on S1. Therefore, h0 is real-symmetric. By [LMMN25, Rem. 2.4],
the David extension of h0 to D is real-symmetric. Moreover, as ψPPP is real-symmetric,
it follows that the David coefficient µ appearing in the construction of Theorem 3.2 is
also real-symmetric. The uniqueness part of David Integrability Theorem (see [Dav88],
[AIM09, Th. 20.6.2, p. 578]) then implies that the David homeomorphism H solving
the Beltrami equation with coefficient µ is real-symmetric, from which real-symmetry
of FFF follows. □

Due to real-symmetry of FFF , the escaping and non-escaping sets of FFF and the associ-
ated mating semi-conjugacies are real-symmetric. It follows that if ΩΩΩα is a component
of intDom(FFF ), then ι(ΩΩΩα) = ΩΩΩκ(α).

Note that by the description of the Möbius maps g1,s given in Section 2.1, the factor
Bowen-Series map AfBS

Γn,pΓn,pΓn,p
acts as the complex conjugation map ι on the boundary of

D∖DΓn,pΓn,pΓn,p
. By the real-symmetry property of the mating semi-conjugacies, it follows

that F also acts as ι on the boundary of Dom(FFF ). This is one of the key facts that
leads to the uniformization maps RRRα in Equation 4.1 below.

Also observe that since ∂Dom(F ) is the image of the boundary of D ∖DΓ under
the mating semi-conjugacy XΓ (see Definition 3.1), it is locally connected. Thus, the
restriction ofFFF to the closure of each component of intDom(FFF ) satisfies the hypothesis
of Lemma 4.7. Therefore, for each α ∈ I, there exists a rational map RRRα of pC such
that RRRα : D→ ΩΩΩα is a conformal isomorphism. Moreover, by Lemma 4.7, we have

(4.1) (ι ◦FFF ) |ΩΩΩα
≡ RRRα ◦ η− ◦ (RRRα|D)−1

.

Since ι(ΩΩΩα) = ΩΩΩκ(α), the uniqueness of Riemann maps implies that the uniformizing
rational maps RRRα can be chosen so that ι ◦RRRα = RRRκ(α) ◦ ι.

D ΩΩΩα

pC pC

η

RRRα

FFF

RRRκ(α)

These relations, combined with those in (4.1), imply that FFF |ΩΩΩα
≡ RRRκ(α)◦η◦(RRRα|D)−1.

□
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As
PPP : K(PPP ) −→ K(PPP ) and AfBS

Γn,pΓn,pΓn,p
:
(
AfBS

Γn,pΓn,pΓn,p

)−1
(DΓn,pΓn,pΓn,p

) −→ DΓn,pΓn,pΓn,p

are degree d maps (see Proposition 2.7), it follows that
FFF : FFF−1(intDom(FFF )) −→ intDom(FFF )

is a branched covering of degree d. On the other hand, as
AfBS

Γn,pΓn,pΓn,p
:
(
AfBS

Γn,pΓn,pΓn,p

)−1
(D∖DΓn,pΓn,pΓn,p

) −→ D∖DΓn,pΓn,pΓn,p

has degree d+ 1, it follows that
FFF : FFF−1(pC∖Dom(FFF )) −→ pC∖Dom(FFF )

is a branched covering of degree d+ 1.
Suppose that the global degree of the rational map RRRα, α ∈ I, is dα. The next

result relates these degrees to the degree d of the polynomial PPP .

Lemma 4.10. — We have the following relation:

(4.2)
∑
α∈I

dα =

ℓ∑
i=1

di + 2 ·
m∑
j=1

dj,+ = d+ 1.

Proof. — By Lemma 4.9, we have dα = dκ(α). The first equality now follows from the
definition of dα.

The relation FFF |ΩΩΩα
≡ RRRκ(α)◦η◦(RRRα|D)−1 implies that FFF : FFF−1(ΩΩΩκ(α))∩ΩΩΩα → ΩΩΩκ(α)

is a branched covering of degree dα − 1, and FFF : FFF−1(intΩΩΩ∁
κ(α))∩ΩΩΩα → intΩΩΩ∁

κ(α) is a
branched covering of degree dα. Consequently, points in pC∖Dom(FFF ) = int

(⋂
α∈IΩΩΩ

∁
α

)
have

∑
α∈I dα many preimages under FFF (counted with multiplicity); i.e.,

FFF : FFF−1(pC∖Dom(FFF )) −→ pC∖Dom(FFF )

has degree
∑

α∈I dα. In light of the discussion preceding this proposition, we conclude
that

∑
α∈I dα = d+ 1. □

4.3. Quasiconformal conjugations of real-symmetric matings. — We now look at
real-symmetric hyperbolic components in connectedness loci of polynomials. Any
polynomial P in such a hyperbolic component is quasiconformally conjugate to a
real-symmetric hyperbolic polynomial PPP with a connected Julia set (cf. [MS98]).

Proposition 4.11. — Let (ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p) and P be a polynomial lying
in a real-symmetric hyperbolic component in the connectedness locus of degree d poly-
nomials. Further let F be the conformal mating of P and AfBS

Γ , and Ωα, α∈I, be the
components of intDom(F ) (where the labeling follows the convention of Section 4.1).

Then, for all α ∈ I, there exist Jordan domains Dα and rational maps Rα of
degree dα (with dα = dκ(α)) of pC such that

(1) η(∂Dα) = ∂Dκ(α),
(2) Rα maps Dα injectively onto Ωα,
(3) F |Ωα

≡ Rκ(α) ◦ η ◦ (Rα|Dα
)−1, and

(4)
∑

α∈I dα = d+ 1.
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Proof. — Note that P is quasiconformally conjugate to some real-symmetric hyper-
bolic polynomial PPP of degree d, and AfBS

Γ is quasiconformally conjugate to AfBS
Γn,pΓn,pΓn,p

.
It follows that the conformal mating F of P and AfBS

Γ , which is unique up to Möbius
conjugacy, is quasiconformally conjugate to the conformal mating FFF of PPP and AfBS

Γn,pΓn,pΓn,p
.

Let ΩΩΩα,RRRα be as in Lemma 4.9.
Suppose that Ψ is a quasiconformal homeomorphism of the Riemann sphere to

itself such that F = Ψ ◦ FFF ◦ Ψ−1. We set µ := Ψ∗(µ0) = ∂zΨ/∂zΨ (here, µ0 is
the trivial Beltrami coefficient on the Riemann sphere). As the holomorphic map F

preserves µ0, we have that µ is an FFF -invariant Beltrami coefficient. We pull µ back
by RRRα to obtain Beltrami coefficients µα := RRR∗

α(µ).

D

Di

η

η

Ψi Ψ

RRRi

Ri

FFF

F

Ωi

ΩΩΩi

Figure 11. Illustrated is the proof of Proposition 4.11. See Figure 10
(left) for a cartoon of the non-escaping set of FFF .

Let us first work with α = i ∈ I1. Since FFF (RRRi(z)) = RRRi(η(z)) for z ∈ D, the invari-
ance of µ under FFF translates to the η-invariance of µi. Let Ψi be a quasiconformal
map solving the Beltrami equation with coefficient µi. By construction, the quasireg-
ular map Ri := Ψ ◦RRRi ◦Ψ−1

i : pC→ pC preserves the standard complex structure, and
is thus a rational map. Also, Ψi ◦ η ◦ Ψ−1

i is a Möbius involution. Since any Möbius
involution is conjugate to η, the map Ψi ◦η ◦Ψ−1

i can be chosen to be η after possibly
post-composing Ψi with a Möbius map. Set Di := Ψi(D), and Ωi := Ψ(ΩΩΩi) = Ri(Di).
Since D is mapped inside out by η, it follows that Di is also mapped inside out by η.
In particular, Di is a Jordan domain such that ∂Di is η-invariant (see Figure 11 and
the commutative diagram that follows).

(Di, µ0) (D, µi) (ΩΩΩi, µ) (Ωi, µ0)

(pC, µ0) (pC, µi) (pC, µ) (pC, µ0)

η

Ψ−1
i

η

RRRi

FFF

Ψ

F

Ψ−1
i RRRi Ψ
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As RRRi is injective on D, we conclude that Ri is injective on the closed Jordan disk Di

(which is mapped inside out by η), and F can be written as Ri ◦ η ◦ (Ri|Di
)−1 on Ωi.

Now we turn our attention to α = (j,±) ∈ I2. Let Ψj,± be quasiconformal maps
solving the Beltrami equations with coefficient µj,±. As before, it follows from the
construction that the quasiregular maps Rj,± := Ψ ◦RRRj,± ◦ Ψ−1

j,± : pC → pC preserve
the standard complex structure, and hence they are rational maps of pC.

The relation FFF ◦RRRj,± = RRRj,∓ ◦ ◦η (on D) and the definition of Ψj,± imply that
Ψj,∓ ◦ η ◦Ψ−1

j,± preserve the standard complex structure, and hence they are Möbius
maps. After possibly post-composing Ψj,± with Möbius maps, we can assume that
Ψj,± fix 0, 1, and ∞. Then, the Möbius maps Ψj,∓ ◦ η ◦ Ψ−1

j,± send 0 to ∞, ∞ to 0,
and 1 to 1. It follows that Ψj,∓ ◦ η ◦Ψ−1

j,± ≡ η. We set Dj,± := Ψj,±(D), and Ωj,± :=

Ψ(ΩΩΩj,±) = Rj,±(Dj,±). Since D is mapped inside out by η, it follows that Dj,±

is mapped onto pC ∖ Dj,∓ by η. In particular, Dj,± are Jordan domains such that
η(∂Dj,±) = ∂Dj,∓.

AsRRRj,± are injective on D, we conclude that Rj,± are injective on the closed Jordan
disk Dj,±. Moreover, we have

F = Ψ ◦FFF ◦Ψ−1

= Ψ ◦ (RRRj,∓ ◦ η ◦ (RRRj,±|D)
−1) ◦Ψ−1

= (Ψ ◦RRRj,∓ ◦Ψ−1
j,∓) ◦ (Ψj,∓ ◦ η ◦Ψ−1

j,±) ◦ (Ψj,± ◦ (RRRj,±|D)
−1 ◦Ψ−1)

= Rj,∓ ◦ η ◦ (Rj,±|Dj,±
)−1

on Ωj,±.
Finally, the last item follows from Lemma 4.10. □

Note that any polynomial in the principal hyperbolic component Hd is quasicon-
formally conjugate to a real-symmetric hyperbolic polynomial.

Corollary 4.12. — Let P ∈ Hd and Γ ∈ Teichω(Γn,pΓn,pΓn,p). Then, there exist
(1) a Jordan domain D with η(∂D) = ∂D, and
(2) a degree d+ 1 rational map R of pC that is injective on D,

such that the conformal mating F of P and AfBS
Γ is given by

R ◦ η ◦ (R|D)−1 : R(D) −→ pC.

4.4. Critical points of uniformizing rational maps. — We continue to use the nota-
tion of Proposition 4.11. Our aim in this subsection is to give a complete description
of the critical points of the uniformizing rational maps Rα, α ∈ I, given by Proposi-
tion 4.11.

We recall the notation XP and XΓ from Definition 3.1, and note that the dynamical
plane of F splits into the following invariant subsets:

K ≡ K(F ) := XP (K(P )) and T ≡ T(F ) := XΓ(D),

which we term the non-escaping set and the escaping/tiling set of F (respectively).
By definition, the action of F on K (respectively, on T) is conformally conjugate
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to P |K(P ) (respectively, to AfBS
Γ : DΓ → D). We also denote the common boundary

of K and T by Λ ≡ Λ(F ), and call it the limit set of F . By construction, we have
that Λ = XP (J(P )). Since XP is a homeomorphism, it follows that the limit set of F
is homeomorphic to the Julia set of P (see Remark 3.5 and Figures 8, 9).

As we shall see in Proposition 4.16, the critical points of Rα can be organized into
three categories:

• the critical points of Rα on ∂Dα, which come from cusps of the group pΓ =

Γ⋊ ⟨Mω⟩,
• the critical points of Rα in R−1

α (T), which are associated with the order n elliptic
element of Γ, when n ⩾ 3, and

• the critical points of Rα in R−1
α (K), which correspond to the critical points of P

in K(P ).
To make book-keeping easier, we denote the domain of Rα (this is a copy of the

Riemann sphere) by pCα, and denote points in pCα by (z, α). Note that Dα ⊂ pCα.
Let us now consider the disjoint union

U :=
⊔
α∈I

pCα
∼= pC× I,

and define the maps
R : U −→ pC, (z, α) 7−→ Rα(z),

and
η∗ : U −→ U, (z, α) 7−→ (η(z), κ(α)).

Note that by Proposition 4.11(part (4), the map R is a branched covering of degree np,
and η∗ is a homeomorphism. We also set

D :=
⊔
α∈I

Dα.

Note that the boundary of

Dom(F ) =
⋃
α∈I

Rα(Dα) = R(D)

meets Λ at finitely many points, each of which is either fixed or 2-periodic under F .
We denote the set of these points by SF , and note that

SF = XΓ(SΓ)

(see Section 4.1 for the definition of SΓ). We denote the set of points in SF that do not
disconnect Λ(F ) (or equivalently, are not cut-points of ∂Dom(F )) by Scusp

F . Finally,
we set

S̃α := (Rα|∂Dα)
−1(SF ∩ ∂Ωα).

It is easy to see that ∂Dom(F )∖SF is a union of finitely many non-singular analytic
arcs. Indeed, ∂Dom(F )∖ SF is the image of finitely many hyperbolic geodesics of D
under XΓ◦ξ (where ξ(w) = wn). Moreover, since AfBS

Γ admits an analytic continuation
to a neighborhood of DΓ ∖SΓ, it follows that F admits an analytic continuation to a
neighborhood of Dom(F )∖ SF .

Recall that the global degree of the rational map RRRα, α ∈ I, is denoted by dα.
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Lemma 4.13
(1) F (SF ) = SF .
(2) Each point of Scusp

F is a critical value of some Rα with an associated critical
point on ∂Dα.

(3) η(S̃α) = S̃κ(α).
(4) dα = nqα, where qα is the number of components of S1 ∖ Ap on ∂Gα ∩ S1

(boundary taken in D).

Proof

(1) Note that AfBS
Γ carries the set SΓ onto itself. Thanks to the semi-conjugacy

between AfBS
Γ and F (via XΓ), we conclude that F (SF ) = SF .

(2) Since AfBS
Γ does not admit an analytic continuation in a neighborhood of any

point of SΓ, the map F does not admit an analytic continuation in a neighborhood
of any point of SF . Suppose that x ∈ Scusp

F lies on the boundary of Ωα only. The fact
that F |Ωα

is given by Rκ(α) ◦ η ◦ (Rα|Dα
)−1 implies that (Rα|Dα

)−1 does not extend
complex-analytically to a neighborhood of x. This forces x to be a critical value of Rα

with a corresponding critical point on ∂Dα.
(3) This follows from item (1) and the relation F |∂Ωα ≡ Rκ(α) ◦ η ◦ (Rα|∂Dα)

−1.
(4) The relation F |Ωα ≡ Rκ(α) ◦ η ◦ (Rα|Dα)

−1 implies that

F : F−1(Ωκ(α)) ∩ Ωα −→ Ωκ(α)

is a branched covering of degree dα − 1.
Let qα be the number of components of S1 ∖Ap on ∂Gα ∩ S1. Note that under the

map md (which models the dynamics of P on J(P )) each arc of S1 ∖ Ap is wrapped
onto the whole circle (n − 1) times and onto the complement of the closure of its
complex conjugate arc once. Hence, md(∂Gα ∩ S1) covers ∂Gκ(α) ∩ S1 exactly

(n− 1)qα + (qα − 1) = nqα − 1

times. It follows that Λ(F ) ∩ Ωα covers Λ(F ) ∩ Ωκ(α) exactly (nqα − 1) times under
the map F . Since the limit set of F is completely invariant, we conclude that the map
F : F−1(Ωκ(α)) ∩ Ωα → Ωκ(α) is a degree (nqα − 1) branched covering. Therefore,
dα = nqα. □

Lemma 4.14
(1) We have crit(R|D) = ∅, and (R|∂D)−1(Scusp

F ) ⊂ crit(R) ∩ ∂D. Further, the
points of (Rα|∂Dα)

−1(Scusp
F ) correspond bijectively to the points of cusps(Gα).

(2) F (Scusp
F ∩ ∂Ωα) = Scusp

F ∩ ∂Ωκ(α). The involution η carries (Rα|∂Dα)
−1(Scusp

F )

onto (Rκ(α)|∂Dκ(α)
)−1(Scusp

F ).
(3) The critical points of Rα in pC∖Dα correspond bijectively to the critical points

of F in Ωκ(α) (counted with multiplicities). In particular, R has p distinct critical
points, each of multiplicity n − 1, in R−1(T) ∖ D, and all these critical points are
mapped by R to the same point in T. On the other hand, R has d−1 = np−2 critical
points in R−1(K)∖D.
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Proof

(1) The first statement follows from injectivity of Rα|Dα . The proof of part (2) of
Lemma 4.13 shows that the pre-images of the points of Scusp

F ∩∂Ωα under Rα|∂Dα are
critical points of Rα. The statement that the points of (Rα|∂Dα

)−1(Scusp
F ) correspond

bijectively to the points of cusps(Gα) is a trivial consequence of Definition 4.5.
(2) The real-symmetry property of the lamination LP implies that if θ ∈ cusps(Gα),

then md(θ) = −θ ∈ cusps(Gκ(α)) (see Section 4.1). Under the mating semi-conju-
gacy XP , this translates to the fact that if x ∈ Scusp

F ∩∂Ωα, then F (x) ∈ Scusp
F ∩∂Ωκ(α).

In light of the relation F |∂Ωα
≡ Rκ(α) ◦ η ◦ (Rα|∂Dα

)−1, we conclude that η sends
(Rα|∂Dα)

−1(Scusp
F ∩ ∂Ωα) onto (Rκ(α)|∂Dκ(α)

)−1(Scusp
F ∩ ∂Ωκ(α)).

(3) The first statement follows from the relation F |Ωκ(α)
≡ Rα ◦η ◦ (Rκ(α)|Dκ(α)

)−1

(recall that η carries Dκ(α) onto pC∖Dα). The remaining claims are consequences of
the facts that F has d−1 = np−2 critical points in K (coming from the d−1 critical
points of P in K(P )) and p critical points, each of multiplicity n − 1, in T (coming
from the p critical points of AfBS

Γ in DΓ). Moreover, F maps all the p(n− 1) critical
points in T to the same critical value since AfBS

Γ sends all of its p(n−1) critical points
in DΓ to the origin. □

We will conclude this section with a refined version of part (1) of Lemma 4.14. The
proof will go through an intermediate lemma about the structure of the lamination LP .

Lemma 4.15. — The lamination LP contains no polygon; i.e., each equivalence class
of LP contains at most two elements.

Proof. — By Lemma 4.14, we have that

2dα − 2 = # crit(Rα) ⩾ # cusps(Gα) + # crit(F |Ωκ(α)
),

for each α ∈ I. Summing this inequality over α ∈ I, we get that∑
α∈I

(2dα − 2) =
∑
α∈I

# crit(Rα) ⩾
∑
α∈I

(
# cusps(Gα) + # crit(F |Ωκ(α)

)
)
.

Taking into account the relation dα = nqα (where qα is the number of components of
S1∖Ap on ∂Gα∩S1) and the facts that S1∖Ap has p components, LP has # I many
gaps, and F has a total of

(np− 2) + p(n− 1) = 2np− p− 2

critical points in intDom(F ) (since P has np−2 critical points in K(P ) and AfBS
Γ has

p(n− 1) critical points in DΓ), we can rewrite the above inequality as

2np− 2 ·# I ⩾
∑
α∈I

# cusps(Gα) + (2np− p− 2).

Thus,

(4.3) p+ 2 ⩾ 2 ·# I+
∑
α∈I

# cusps(Gα).
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We claim that Inequality (4.3) is satisfied only if the lamination LP contains no
polygon. To see this, first note that if # I = 1; i.e., when the lamination is empty,
then cusps(G1) consists of p points, and hence the two sides of the inequality coincide.
Now, the introduction of a k-gon in the lamination (or a leaf, when k = 2) adds
k − 1 gaps and kills k cusps. For k > 2, this procedure increases the right side of
Inequality (4.3) by 2(k − 1) − k = k − 2 > 0. Clearly, this violates the inequality,
which proves that each equivalence class of LP contains at most two elements. □

In the next proposition, we record the locations of all the critical points of Rα.

Proposition 4.16
(1) R has no critical points in D.
(2) crit(R) ∩ ∂D = (R|∂D)−1(Scusp

F ). Consequently, η maps crit(Rα) ∩ ∂Dα bijec-
tively to crit(Rκ(α)) ∩ ∂Dκ(α).

(3) R has p distinct critical points, each of multiplicity n− 1, in R−1(T)∖D, and
all these critical points are mapped by R to the same point in T. On the other hand,
R has d− 1 = np− 2 critical points in R−1(K)∖D.

Proof. — The first and third items follow from Lemma 4.14. It remains to prove the
second part.

Since each equivalence class of LP is a point or a leaf, it is easy to see that

2 ·# I+
∑
α∈I

# cusps(Gα) = p+ 2.

This implies, by the proof of Lemma 4.15, that

(4.4)
∑
α∈I

(# (crit (Rα) ∩ ∂Dα)−# cusps (Gα)) = 0.

By part (1) of Lemma 4.14, we have that # (crit(Rα) ∩ ∂Dα)−# cusps(Gα) ⩾ 0 for
each α ∈ I, and hence by Relation (4.4), # (crit(Rα)∩ ∂Dα) = # cusps(Gα) for each
α ∈ I. Since the points of (Rα|∂Dα)

−1(Scusp
F ) correspond bijectively to the points of

cusps(Gα), we conclude that (Rα|∂Dα
)−1(Scusp

F ∩∂Ωα) = crit(Rα)∩∂Dα. The second
statement now follows from part (2) of Lemma 4.14. □

Remark 4.17. — For the conformal mating F considered in Section 3.3.1, the struc-
ture of the lamination L(P ) was discussed in Remark 4.6. In particular, the lamination
has two gaps. By Lemma 4.13, the rational uniformizing map R1 for one of the com-
ponents of intDom(F ) is quadratic, while the other uniformizing rational map R2 is
a Möbius map. The critical points of R1 correspond to the unique point of Scusp

F (see
Figure 8) and the unique critical point of F in K.

The domain of definition of the conformal mating F of Section 3.3.2 also has two
interior components (see Remark 4.6 for a description of the corresponding lamination
L(P )). By Lemma 4.13, the rational uniformizing maps R1,± for the two components
of intDom(F ) are quadratic. The critical points of R1,± correspond to the two points
of Scusp

F (see Figure 9) and the two critical points of F in K.
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The next corollary follows from Proposition 4.16 and the observation that if
LP = ∅, then intDom(F ) is a Jordan domain and hence no point of SF disconnects
∂Dom(F ).

Corollary 4.18. — If LP = ∅, then Ω := intDom(F ) is connected, the degree of
R := R1 is d+1 = np, and the set of critical points of R on ∂D is given by S̃ := S̃1 =

(R|∂D)−1(SF ). In particular, R has p critical points on ∂D, d − 1 = np − 2 critical
points in R−1(K) ∖ D, and p distinct critical points, each of multiplicity n − 1, in
R−1(T) ∖D. All the p(n − 1) critical points of R in R−1(T) ∖D are mapped to the
same critical value.

Moreover, depending on whether p is even/odd, exactly two/one points of S̃ are
fixed by η and the others form 2-cycles under η.

Proof. — We only need to justify the last statement. To this end, observe that depend-
ing on whether p is even/odd, exactly two/one points of SF are fixed by F , and the
others form 2-cycles under F . Since F ≡ R ◦ η ◦ (R|D)−1, it follows that depending
on whether p is even/odd, exactly two/one points of S̃ are fixed by η and the others
form 2-cycles under η. □

Remark 4.19. — Lemma 4.15 and Proposition 4.16 can also be proved by look-
ing at the real-symmetric map FFF that F is quasiconformally conjugate to. For
Lemma 4.15, note that the only singularities on the boundaries of the Jordan quad-
rature domains ΩΩΩα are (inward) conformal cusps (cf. [Sak91]), and hence more than
two such quadrature domains cannot touch at a point.

For Proposition 4.16, first observe that if y ∈ ∂Dα ∖ (Rα|∂Dα)
−1(SF ∩ ∂Ωα) were

a critical point of Rα, then (Rα|Dα
)−1 would not extend analytically to a neigh-

borhood of Rα(y) ∈ Ωα ∖ SF , which contradicts the fact that Rα admits an ana-
lytic continuation to a neighborhood of Ωα ∖ SF . Finally, if Rα had a critical point
y ∈ (Rα|∂Dα

)−1(SF ∖ Scusp
F ), then RRRα(ψ

−1
α (y)) would be a conformal cusp of ∂ΩΩΩα,

while RRRα(ψ
−1
α (y)) would also be a touching point of ∂ΩΩΩα and ∂ΩΩΩβ for some β ̸= α;

which is impossible.

5. Correspondences associated with conformal matings

We will now use the algebraic representation of conformal matings F in terms of
uniformizing rational maps R to define algebraic correspondences C, and study their
dynamical properties to complete the proof of Theorem B, thus answering the second
part of Question 1.1. It turns out that the dynamics of C is intimately related to that
of F : the mating structure in the F -plane can be lifted via R to obtain the desired
mating structure in the C-plane.

5.1. The case of principal hyperbolic components. — Let n, p be positive integers
with np ⩾ 3. Set d := np−1. Suppose that (ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p), P ∈ Hnp−1,
and F : Ω → pC be the conformal mating of AfBS

Γ and P . Further, let R,D be as in
Corollary 4.12. Finally, we set S̃ := S̃1 = (R|∂D)−1(SF ).
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We will define a holomorphic correspondence C ⊂ pC × pC of bi-degree d:d as
(cf. [DS06]):

(5.1) (z, w) ∈ C ⇐⇒ R(w)−R(η(z))
w − η(z)

= 0.

The correspondence C can be regarded as a multi-valued map with holomorphic
local branches. The forward branches of this multi-valued map are given by z 7→
w = R−1(R(η(z))), w ̸= η(z), and the backward branches are given by w 7→ z =

η(R−1(R(w))), z ̸= η(w). Note also that the correspondence C is reversible; i.e., its
forward branches are conjugate to its backward branches via η.

The following observations show that C is obtained by lifting F and its appropriate
backward branches via the rational map R.

• Fix z ∈ D. Then, F (R(z)) = R(η(z)), and hence,

(5.2) (z, w) ∈ C ⇐⇒ R(w) = R(η(z)) = F (R(z)).

• Now fix z ∈ pC∖D. Then, F (R(η(z))) = R(z); i.e.,

(5.3) (z, w) ∈ C ⇐⇒ R(w) = R(η(z)) = F−1(R(z)),

where F−1 is a suitable backward branch of F .

5.1.1. Dynamical partition for C. — The invariant partition of the dynamical plane
of F , given by K and T, can be pulled back by R to produce an invariant partition of
the dynamical plane of the correspondence C. More precisely, we set

K̃ := R−1(K), T̃ := R−1(T).

We call these sets the non-escaping set and the tiling set of the correspondence C.
Note that the common boundary of K̃ and T̃ is given by

Λ̃ := R−1(Λ).

We call Λ̃ the limit set of C. (See Figure 12 for an illustration.)

Proposition 5.1

(1) η(T̃) = T̃, and η(K̃) = K̃.
(2) Let (z, w) ∈ C. Then z ∈ T̃ (respectively, z ∈ K̃) if and only if w ∈ T̃ (respec-

tively, w ∈ K̃).

Proof

(1) It suffices to show that η(K̃) = K̃.
Let us fist assume that z ∈ D∩ K̃. Then, R(z) ∈ K and R(η(z)) = F (R(z)). As K

is invariant under F , it follows that R(η(z)) ∈ K. We conclude that η(z) ∈ K̃.
Next let z ∈ K̃ ∖D. Then, R(z) ∈ K and F (R(η(z))) = R(z). As K is backward

invariant under F , it follows that R(η(z)) ∈ K. We conclude that η(z) ∈ K̃.
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(2) It suffices to show that if z ∈ T̃ (respectively, if z ∈ K̃), then w ∈ T̃ (respectively,
w ∈ K̃).

To this end, first suppose that z ∈ D, which implies that R(w) = R(η(z)) =

F (R(z)). Now let z ∈ T̃ (respectively, z ∈ K̃). The F -invariance of T (respectively, K)
implies that R(w) ∈ T (respectively, R(w) ∈ K). Hence, w ∈ T̃ (respectively, w ∈ K̃).

Next suppose that z ∈ pC∖D, which implies that F (R(w)) = R(z). Now let z ∈ T̃

(respectively, z ∈ K̃). The backward invariance of T (respectively, K) under F implies
that R(w) ∈ T (respectively, R(w) ∈ K). Hence, w ∈ T̃ (respectively, w ∈ K̃). □

Figure 12. The dynamical planes of F and C are displayed, where
P ∈ H5 and Γ ∈ Teich(Γ1,6Γ1,6Γ1,6). Right: The dynamical plane of the
conformal mating F of some P ∈ H5 and some Γ ∈ Teich(Γ1,6Γ1,6Γ1,6) is
depicted. The domain of definition Ω of the mating F is the bounded
region enclosed by the red Jordan curve, and its exterior is T 0. The
blue points on ∂T 0 comprise SF . The non-escaping set K of F is
shaded in gray. The components X1, . . . , X6 of T ∖ T 0 = Ω ∖ intK

are marked. Left: The dynamical plane of C is shown. The domain D

is the bounded Jordan disk enclosed by the η-invariant, piecewise
analytic (oval shaped) red curve marked as ∂D. The six blue points
marked on ∂D constitute S̃. The part of the non-escaping set of C

inside D (respectively, outside D) is shaded in gray and marked
as K̃1 (respectively, as K̃2); it is carried by R univalently (respec-
tively, as a 5:1 branched cover) onto K. The sets K̃1 and K̃2 intersect
in S̃. On the other hand, the tiling set of C is the union of six Jordan
domains, each of which is bounded by a black curve. These black
curves constitute the limit set Λ̃ = R−1(Λ) of the correspondence C.
The six components of R−1(T 0), one in each component of T̃, are
marked as T̃ 0. Finally, the closed topological disks Yi = (R|D)−1(Xi)

are marked.

By Corollary 4.18, there is a unique critical value of R in T when n ⩾ 2 and no
critical value when n = 1. Moreover, the fiber of this critical value (under R) consists
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of p distinct points, each of which is a critical point of multiplicity n−1. As T is simply
connected, a routine application of the Riemann-Hurwitz formula on the branched
covering R : T̃ → T shows that T̃ is the union of p disjoint open topological disks
U0, . . . , Up−1. We can enumerate these components so that η(Ui) = Up−1−i, i ∈ Z/pZ.
Moreover, each Ui contains a unique critical point (of multiplicity n − 1) of R and
maps onto T with degree n. We now study the topology of cl T̃ (the topological closure
of T̃ in pC).

Lemma 5.2
(1) cl T̃ =

⋃p−1
i=0 Ui is connected, where each Ui is a Jordan domain that is mapped

with degree n onto T by R,
(2) Ui ∩ U i+1 is a single point belonging to S̃, and
(3) Ui ∩ Uj = ∅ if |j − i| ≠ 1.

Here, i, j ∈ Z/pZ.

Proof. — We set T 0 := pC∖ Ω. Note that T ∖ T 0 is a connected set. In fact, it is the
union of p closed topological disks (i.e., closures of Jordan domains) X0, . . . , Xp−1

such that
• ∂Xi ∩ ∂T 0 = R(Ui ∩ ∂D),
• Xi ∩Xi+1 is a single point belonging to SF , and
• Xi ∩Xj = ∅ if |j − i| ≠ 1, where i, j ∈ Z/pZ.

(See Figure 12 (right).) The inverse branch (R|D)−1 carries each Xi to a closed topo-
logical disk Yi in D. The boundary of each of these pulled back closed disks Yi contains
(the closure of) a component of ∂D∖ S̃. Hence the boundary of (R|D)−1(T ∖ T 0) =⋃p

i=1 Yi contains all of ∂D. In fact, (R|D)−1(T∖T 0) contains a relative neighborhood
in D of each point in ∂D∖ S̃ (see Figure 12 (left)).

Since η(T̃) = T̃ and cl T̃ ∩D = (R|D)−1(T ∖ T 0), we conclude that
cl T̃ = (R|D)−1(T ∖ T 0)

⋃
η
(
(R|D)−1(T ∖ T 0)

)
.

Finally, that fact that S̃ is η-invariant implies that
• Ui ∩ U i+1 is a single point belonging to S̃,
• Ui ∩ Uj = ∅ if |j − i| ≠ 1, where i, j ∈ Z/pZ, and
• cl T̃ =

⋃p
i=1 Ui is connected.

(See Figure 12 (left).) □

The main result of this subsection is the following theorem, which ties up our frame-
work of mating factor Bowen-Series maps of genus zero orbifolds with polynomials
in principal hyperbolic components with the Bullett-Penrose mating phenomenon.
We recall the notation pΓ = ⟨Γ,Mω⟩ from Section 2.2.

Theorem 5.3. — The correspondence C defined by Equation (5.1) is a mating of P
and Σ := D/pΓ in the following sense.

(1) The dynamics of C on T̃ is equivalent to the action of a group
⟨η⟩ ∗ ⟨τ⟩ ∼= Z/2Z ∗ Z/(np)Z
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of conformal automorphisms of T̃. Here, τ is a conformal automorphism of T̃ of
order np such that τp induces an order n conformal automorphism on each component
of T̃.

Moreover, the above group action is properly discontinuous, and the quotient orb-
ifold T̃/C is biholomorphic to Σ.

(2) The correspondence C has a forward branch carrying K̃ ∩ D onto itself with
degree np − 1. This branch is topologically conjugate to P : K(P ) → K(P ), and the
restriction of the branch to int (K̃ ∩D) is conformally conjugate to P |intK(P ). On the
other hand, C has a backward branch carrying K̃∖D onto itself with degree np−1, and
this branch is also topologically conjugate to P : K(P ) → K(P ) with the conjugacy
being conformal on int (K̃∖D).

The proof of this theorem will be given in the next three subsections. In Sec-
tions 5.1.2 and 5.1.3, we will study the group structure of C on T̃ which will allow
us to identify the conformal structure of the quotient orbifold T̃/C. In Section 5.1.4,
we will analyze the dynamics of suitable branches of C on K̃, which will reveal the
polynomial structure of the correspondence.

5.1.2. Group structure in C

Proposition 5.4. — There exists a conformal automorphism τ of T̃ such that

τnp = id, and R−1(R(z)) = {z, τ(z), . . . , τnp−1(z)} ∀z ∈ T̃.

Proof. — Let ΦΦΦ : D × Z/pZ → T̃ be a conformal isomorphism that sends (0, j) to
the unique critical point (of multiplicity n− 1) of R in Uj , for j ∈ Z/pZ. Recall that
XΓ : D→ T is a conformal isomorphism that conjugates AfBS

Γ to F , and hence sends
the unique critical value 0 of AfBS

Γ to the unique critical value of R in T (which is also
the unique critical value of F in T). Thus,

R̃ := X−1
Γ ◦R ◦ΦΦΦ : D× Z/pZ −→ D

is a holomorphic branched covering of degree np, that restricts to a degree n branched
covering D×{j} → D and carries (0, j) to 0 with local degree n. Thus, after possibly
pre-composing ΦΦΦ with a rotation on each D× {j}, we can write R̃ as

(w, j) 7−→ wn, w ∈ D, j ∈ Z/pZ.

Let us now define a conformal automorphism

τ̃ : D× Z/pZ −→ D× Z/pZ, (w, j) 7−→

{
(w, j + 1) for j ∈ {0, . . . , p− 2},
(e2iπ/nw, 0) for j = p− 1.

It is readily checked that

τ̃np = id, and R̃−1(R̃(w, j)) = {(w, j), τ̃(w, j), . . . , τ̃np−1(w, j)} ∀(w, j) ∈ D× Z/pZ.

The desired automorphism τ of T̃ is now given by ΦΦΦ ◦ τ̃ ◦ΦΦΦ−1. □

Remark 5.5. — Note that by construction, τ(Uj) = Uj+1, j ∈ Z/pZ. Moreover, τp
restricts to an order n conformal automorphism on each Uj .
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It follows that the forward branches of C on T̃ are given by the conformal auto-
morphisms τ ◦ η, . . . , τnp−1 ◦ η.

Proposition 5.6. — The dynamics of C on T̃ is equivalent to the action of the group

⟨η⟩ ∗ ⟨τ⟩ ∼= Z/2Z ∗ Z/(np)Z

of conformal automorphisms of T̃.

Proof. — The tiling set T is dynamically tessellated. We call T 0 (closure taken in T)
the rank zero tile (where T 0 = pC ∖ Ω), and connected components of F−m(T 0) tiles
of rank m. A connected component of the pre-image of a rank m tile of T under R is
called a rank m tile of T̃.

We have already observed that the forward branches of C on T̃ are given by
τ ◦ η, . . . , τnp−1 ◦ η. Furthermore, τ = (τ2 ◦ η) ◦ (τ ◦ η)−1, and hence

⟨τ ◦ η, . . . , τnp−1 ◦ η⟩ = ⟨η, τ⟩.

It now remains to justify that ⟨η, τ⟩ is the free product of the cyclic groups ⟨η⟩ and ⟨τ⟩.
This will be done by applying a ping-pong type argument using the tiling structure
of T̃.

To this end, first note that any relation in ⟨η, τ⟩ other than η2 = id and τnp = id

can be reduced to one of the form

(5.4) (τk1 ◦ η) ◦ · · · ◦ (τkr ◦ η) = id,

or

(5.5) (τk1 ◦ η) ◦ · · · ◦ (τkr ◦ η) = η,

where r ⩾ 1 and k1, . . . , kr ∈ {1, . . . , np− 1}.

Case 1. — Let us first assume that there exists a relation of the form (5.4) in ⟨η, τ⟩.
We claim that (τkj ◦ η) maps a tile T of rank s in T̃ ∖ D to a tile of rank (s + 1)

in T̃ ∖D.

Proof of claim. — By Relation (5.3), we have that F (R(η(z))) = R(z) for z ∈ T̃ ∖D.
Hence, F maps R(η(T)) to a rank s tile in T. It follows that R(η(T)) is a rank (s+1)

tile in T, and hence η(T) is a rank (s + 1) tile in T̃ ∩ D. As R is injective on D,
the non-trivial deck transformation τkj of R carries η(T) to a tile of rank (s + 1) in
T̃ ∖D. □

Hence, the group element on the left of Relation (5.4) maps a tile of rank 0 in T̃

to a tile of rank r ⩾ 1. Clearly, such an element cannot be the identity map.

Case 2. — Now we consider a relation of the form (5.5) in ⟨τ, η⟩. Each (τkj ◦ η) maps
T̃∖D to itself. Hence, the group element on the left of Relation (5.5) maps T̃∖D to
itself, while η maps T̃ ∖D to T̃ ∩D. This shows that there cannot exist a relation of
the form (5.5) in ⟨τ, η⟩.

We conclude that η2 = id and τnp = id are the only relations in ⟨η, τ⟩, and hence
⟨η, τ⟩ = ⟨η⟩ ∗ ⟨τ⟩ ∼= Z/2Z ∗ Z/(np)Z. □
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5.1.3. The quotient orbifold

Proposition 5.7. — The group ⟨η⟩∗⟨τ⟩ acts properly discontinuously on T̃. Moreover,
the quotient orbifold T̃/⟨η⟩ ∗ ⟨τ⟩ is biholomorphic to Σ = D/pΓ.

Proof. — We set T̃ 0 := R−1(T 0). Note that T̃ 0 consists of p components, one in
each Ui, i ∈ Z/pZ. Further, let

G0 := {f ∈ ⟨η⟩ ∗ ⟨τ⟩ : f(U0) = U0}

be the stabilizer subgroup of U0 in ⟨η⟩ ∗ ⟨τ⟩. As the cyclic group ⟨τ⟩ acts transitively
on the components of T̃, it suffices to show that G0 acts properly discontinuously
on U0 and that U0/G0 is biholomorphic to Σ.

Note that the maps ξ and R in the vertical arrows of the following commutative
diagram are degree n branched coverings.

(D, 0) (U0, x0)

(D, 0) (T, R(x0))

ξ:w 7→wn

X̃Γ

R

XΓ

Moreover, ξ (respectively, R) has an (n − 1)-fold critical point at 0 (respectively,
at x0) with the associated critical value at 0 (respectively, at R(x0)). Recall also that
0 ∈ D (respectively, R(x0)) is the unique critical value of AfBS

Γ (respectively, of F
in T). Since the conformal map XΓ conjugates AfBS

Γ to F , it follows that XΓ sends 0

to R(x0). Hence, XΓ lifts to a conformal isomorphism X̃Γ : D→ U0 that maps 0 to x0.
By construction, X̃Γ maps intψρ(ΠΠΠ) conformally onto T̃ 0

U0
:= T̃ 0 ∩U0. After possi-

bly pre-composing X̃Γ with a power of Mω, we can assume that X̃Γ takes the bi-infinite
geodesic ψρ(C1,1) ⊂ ∂ψρ(ΠΠΠ) onto ∂D ∩ U0 ⊂ ∂T̃ 0

U0
. Since τp restricts to an order n

automorphism of the np-gon T̃ 0
U0

that fixes the unique critical point x0 of R (of mul-
tiplicity n − 1) in U0 and has derivative ω at this fixed point (this follows from the
construction of τ in Proposition 5.4), the above construction implies that X̃Γ conju-
gates Mω to τp.

Let us set
S := X̃Γ(ψρ(pΠΠΠ)) ⊆ T̃ 0

U0
,

where pΠΠΠ is the fundamental domain of pΓΓΓn,p = Γn,pΓn,pΓn,p ⋊ ⟨Mω⟩ introduced in Section 2.2.
The set S is a closed sector (in the topology of U0) based at x0 whose sides are
geodesics in the hyperbolic metric of U0. Moreover, R is injective on the interior of S
and maps the two geodesics emanating from x0 to the line segment XΓ(0, 1) in T.

It is not hard to see using the actions of the generators τ j ◦ η of the group ⟨η⟩ ∗ ⟨τ⟩
on the tiles of T̃ that S is a closed fundamental domain for the G0-action on U0.
In particular, G0 acts properly discontinuously on U0.

We now proceed to identify the quotient U0/G0. Each component Ui of T̃ is sta-
bilized by some τ j ◦ η. All these maps, conjugated by suitable powers of τ , give
elements of G0 that act as side-pairing transformations on the boundary of the
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np-gon T̃ 0
U0

. Combined with the map τp, (a subset of) these maps pair the sides of S.
Finally, X̃Γ conjugates these side-pairing transformations for the sector S to the side-
pairing transformations ρ(g1,1), . . . , ρ(g1,p),Mω for the fundamental domain ψρ(pΠΠΠ) of
pΓ = Γ⋊ ⟨Mω⟩. It now follows that U0/G0 is biholomorphic to the quotient D/pΓ. □

Remark 5.8. — Not just the group pΓ, the representation pρ : pΓΓΓn,p → pΓ (see Section 2.2)
is also recovered from C via the side-pairing transformations of S described in the
proof of Proposition 5.7.

5.1.4. Polynomial structure in C. — We now set K̃1 := K̃ ∩ D and K̃2 := K̃ ∖ D.
The description of T̃ given in Section 5.1.2 can be used to study the structure of K̃1

and K̃2.

Lemma 5.9

(1) K̃1 ∩ ∂D = K̃2 ∩ ∂D = K̃1 ∩ K̃2 = S̃.
(2) K̃2 = η(K̃1).
(3) R carries K̃1 (respectively, K̃2) homeomorphically (respectively, as a degree

np− 1 branched cover) onto K.
(4) K̃ is connected.

Proof

(1) By definition, K̃i ∩ ∂D = {z ∈ ∂D : R(z) ∈ K}, for i ∈ {1, 2}. Recall
from Section 4.4 that ∂Ω = R(∂D) meets K precisely at the finite set SF . Hence,
K̃i ∩ ∂D = (R|∂D)−1(SF ) = S̃, for i ∈ {1, 2}. Since K̃1 ∩ K̃2 ⊂ ∂D, it now follows
that K̃1 ∩ K̃2 = S̃.

(2) The η-invariance of K̃ (see Proposition 5.1) implies that η(K̃ ∩ D) = K̃ ∖ D.
By Lemma 4.13, η(S̃) = S̃. The result now follows from these facts and the description
of K̃i ∩ ∂D, i ∈ {1, 2}, given in the previous part.

(3) As R is a homeomorphism from D onto Ω and K ⊂ Ω, it follows that K̃1 =

R−1(K)∩D = (R|D)−1(K). Hence, R carries K̃1 homeomorphically onto K. Since R is
a global branched covering of degree np, it now follows that it maps K̃2 = R−1(K)∖D

as a degree np− 1 branched cover onto K.
(4) Connectivity of K, combined with parts (2) and (3) of this lemma, implies that

both K̃1 and K̃2 are connected. Since K̃1∩K̃2 = S̃ ̸= ∅, we conclude that K̃ = K̃1∪K̃2

is connected. □

Proposition 5.10

(1) K̃2 is forward invariant, and hence, K̃1 is backward invariant under C.
(2) C has a forward branch carrying K̃1 onto itself with degree np − 1, and this

branch is conformally conjugate to P : K(P )→ K(P ).
(3) C has a backward branch carrying K̃2 onto itself with degree np − 1, and this

branch is conformally conjugate to P : K(P )→ K(P ).
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Proof

(1) Let z ∈ K̃2. By Lemma 5.9, η(z) ∈ K̃1. The same lemma also tells us that each
point in K has a unique preimage under R in K̃1 and d = np− 1 preimages under R
(counted with multiplicity) in K̃2. Hence, the non-identity local deck transformations
of R (i.e., local branches of R−1 ◦R) send η(z) ∈ K̃1 to K̃2. Thus, K̃2 is preserved by
the forward branches of the correspondence C.

A similar reasoning shows that K̃1 is invariant under the backward branches of C.
(2) Recall from Lemma 5.9 that R carries K̃1 homeomorphically onto K. We denote

the correspondence inverse branch by (R|
K̃1

)−1. Further, R : K̃2 → K is a degree
np− 1 map. Now define

g : K̃2 −→ K̃1, g := (R|
K̃1

)−1 ◦R|
K̃2
.

By definition, g is a degree np− 1 map satisfying R ◦ g = R. Thus,

g ◦ η : K̃1 −→ K̃1

is a degree np− 1 forward branch of the correspondence C.
Clearly, the forward branch (g◦η)|

K̃1
is topologically conjugate (conformally on the

interior) to F |K ≡ R ◦ η ◦ (R|K̃1
)−1 via the homeomorphism R : K̃1 → K. The result

now follows from the above discussion and the fact that F : K → K is topologically
conjugate (conformally on the interior) to P : K(P )→ K(P ) via XP .

(3) It is easy to see that the map

η ◦ g = η ◦ (R|
K̃1

)−1 ◦R : K̃2 −→ K̃2

is a backward branch of the correspondence C carrying K̃2 onto itself with degree
np − 1. Finally, η restricts to a conformal conjugacy between the backward branch
(η ◦ g)|

K̃2
and the forward branch (g ◦ η)|

K̃1
. □

Proof of Theorem 5.3. — Follows from Propositions 5.6, 5.7, and 5.10. □

5.2. The general case. — In this subsection, we will associate an algebraic corre-
spondence with the conformal mating

F :
⋃
α∈I

Rα(Dα) −→ pC

of the factor Bowen-Series map AfBS
Γ , where (ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p), and a

polynomial P lying in any real-symmetric (not necessarily principal) hyperbolic com-
ponent in the connectedness locus of degree np−1 polynomials (see Proposition 4.11).
The correspondence will live on a nodal Riemann surface whose non-singular compo-
nents are Riemann spheres.

Let us recall some notation (from Section 4.4) that will be used in this section.
• The domain of Rα is denoted by pCα, and points in pCα are denoted by (z, α).

In particular, Dα ⊂ pCα.
• U =

⊔
α∈I

pCα.

• R : U→ pC, (z, α) 7→ Rα(z), is a branched covering of degree np.
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• η∗ : U→ U, (z, α) 7→ (η(z), κ(α)), is a homeomorphism.
• D =

⊔
α∈I Dα.

The conformal mating F gives rise to a holomorphic correspondence on U as follows.
For α, β ∈ I, define

Cα,β :=


{
(z, w) ∈ pCα × pCβ :

Rβ(w)−Rκ(α)(η(z))

w − η(z)
= 0

}
if κ(α) = β,{

(z, w) ∈ pCα × pCβ : Rβ(w)−Rκ(α)(η(z)) = 0
}

if κ(α) ̸= β.

The union of the algebraic curves Cα,β can be written succinctly as

(5.6)
{
(u1, u2) ∈ U× U :

R(u2)−R(η∗(u1))
u2 − η∗(u1)

= 0
}
.

(The division in Equation (5.6) makes sense since the numerator and the denominator
can be viewed as points of pC.) The first and second coordinate projection maps πα

1

and πβ
2 from Cα,β onto pCα and pCβ define a holomorphic (in fact, algebraic) corre-

spondence from pCα onto pCβ (cf. [DS06]):

Cα,β

pCα
pCβ .

πα
1

πβ
2

Combining all these holomorphic correspondences for various α, β ∈ I, we obtain
a holomorphic correspondence on U defined by the reducible curve

∑
α,β Cα,β .

We denote this correspondence by C∗.
In order to capture the mating structure of the correspondence, we need to pass to

a quotient of U. To this end, we endow U with the following finite equivalent relation:

For z ∈ S̃α ⊂ pCα and w ∈ S̃β ⊂ pCβ , (z, α) ∼w (w, β) ⇐⇒ Rα(z) = Rβ(w).

(See Section 4.4 for the definition of S̃α.) The fact that Dom(F ) is the quotient of D
by a finite lamination (see Proposition 4.1) and that Rα|∂Dα

is injective (for all α ∈ I)
imply that

W := U/∼w

has the structure of a compact, simply connected, nodal Riemann surface. By defini-
tion, the map R : U→ pC descends to a map

qR : W −→ pC.

Note that qR is also a degree np branched covering. Abusing notation, we denote the
image of a set X ⊂ U (respectively, a point p ∈ U) under the quotient map U → W

by X (respectively, p).

Lemma 5.11. — The homeomorphism η∗ : U → U descends to a homeomorphism
qη : W→W.
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Proof. — Let us suppose that (z, α) ∼w (w, β); i.e., z ∈ S̃α, w ∈ S̃β , and Rα(z) =

Rβ(w). We need to show that η∗(z, α) ∼w η∗(w, β).
To this end, note that

η∗(z, α) = (η(z), κ(α)) ∈ S̃κ(α), and η∗(w, β) = (η(w), κ(β)) ∈ S̃κ(β)

(by Lemma 4.13). Now, Rκ(α)(η(z)) = F (Rα(z)) = F (Rβ(w)) = Rκ(β)(η(w)), and
hence η∗(z, α) ∼w η∗(w, β). □

Thus, the correspondence C∗ on U also descends to a correspondence on W.
We denote this correspondence by C.

Remark 5.12. — Recall that for each of the two conformal matings F considered in
Section 3.3, the domain of definition Dom(F ) is a union of two closed Jordan disks
touching at a single point. Thus, the associated correspondence C is defined on a nodal
sphere with a unique node; i.e., the nodal surface W has precisely two non-singular
components, and both of them are Riemann spheres.

In the quadratic example of Section 3.3.1, the mating F preserves the boundary of
each of the two Jordan disks comprising intDom(F ), and hence the involution qη of
Lemma 5.11 leaves each of the two Riemann spheres in W invariant.

In the cubic example of Section 3.3.2, the mating F swaps the boundaries of the
two Jordan disks forming intDom(F ), so the involution qη carries the two Riemann
spheres in W to each other.

5.2.1. Dynamical partition for C. — As in Section 5.1.1, we define

K̃ := qR−1(K), T̃ := qR−1(T).

The proof of Proposition 5.1 applies mutatis mutandis to the current setting and
implies the following result.

Proposition 5.13

(1) qη(T̃) = T̃, and qη(K̃) = K̃.
(2) Let (u1, u2) ∈ C. Then u1 ∈ T̃ (respectively, u1 ∈ K̃) if and only if u2 ∈ T̃

(respectively, u2 ∈ K̃).

5.2.2. Group structure in C. — Thanks to the description of the critical points of qR

in qR−1(T) ∖ D given in Proposition 4.16, the arguments of Sections 5.1.2 and 5.1.3
apply mutatis mutandis to the general situation and imply the following results.

Proposition 5.14

(1) T̃ is the union of p disjoint topological disks U0, . . . , Up−1, where each Ui con-
tains a unique critical point (of multiplicity n − 1) of qR and is mapped onto T with
degree n.

(2) There exists a conformal automorphism τ of T̃ such that

τnp = id, and qR−1( qR(z)) = {z, τ(z), . . . , τnp−1(z)} ∀z ∈ T̃.

J.É.P. — M., 2025, tome 12



1488 M. Mj & S. Mukherjee

Hence, the forward branches of C on T̃ are given by the conformal automorphisms
τ ◦ qη, . . . , τnp−1 ◦ qη.

(3) The dynamics of C on T̃ is equivalent to the action of the group

⟨qη⟩ ∗ ⟨τ⟩ ∼= Z/2Z ∗ Z/(np)Z

of conformal automorphisms of T̃.
(4) The group ⟨qη⟩ ∗ ⟨τ⟩ acts properly discontinuously on T̃. Moreover, the quotient

orbifold T̃/⟨qη⟩ ∗ ⟨τ⟩ is biholomorphic to Σ = D/pΓ.

5.2.3. Polynomial structure in C. — We set

S̃ :=
⊔
α∈I

S̃α.

Note that qη maps D onto W ∖ D, and preserves S̃. As in Section 5.1.4, we set
K̃1 := K̃ ∩D and K̃2 := K̃ ∖ D.

Lemma 5.15. — We have that K̃2 = qη(K̃1), and K̃1 ∩ K̃2 = S̃.

Proof. — The first statement follows from the fact that qη(K̃) = K̃. For the second
statement, first observe that

K̃1 ∩ K̃2 = {u ∈ ∂D : qR(u) ∈ K}.

The result is now a consequence of the fact that qR(S̃) = SF ⊂ K and qR(∂D ∖ S̃) =

∂Dom(F )∖ SF ⊂ T. □

Finally, Proposition 5.10 naturally generalizes to the current setting.

Proposition 5.16
(1) K̃2 is forward invariant, and hence, K̃1 is backward invariant under C.
(2) C has a forward branch carrying K̃1 onto itself with degree np − 1, and this

branch is conformally conjugate to P : K(P )→ K(P ).
(3) C has a backward branch carrying K̃2 onto itself with degree np − 1, and this

branch is also conformally conjugate to P : K(P )→ K(P ).

Proof. — The proof is similar to that of Proposition 5.10. We only give a proof of the
second statement.

The forward branch of C carrying K̃1 onto itself (with degree np− 1) acts as

b : (z, α) 7−→
((
Rβ |Dβ

)−1(
Rκ(α)(η(z))

)
, β

)
,

where (z, α) ∈ K̃1, and Rκ(α)(η(z)) ∈ Ωβ . It is easy to see from the construction
that qR : K̃1 → K is a homeomorphism. We claim that qR|

K̃1
is a conjugating map

between b and F |K. To this end, note that

F ( qR(z, α)) = F (Rα(z)) = Rκ(α)(η(z)),

and
qR (b(z, α)) = qR

((
Rβ |Dβ

)−1 (
Rκ(α)(η(z))

)
, β

)
= Rκ(α)(η(z)).
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It follows that qR|
K̃1
◦ b = F ◦ qR|

K̃1
. To complete the proof, we note that F |K is

conformally conjugate to P |K(P ) via the mating conjugacy XP . □

We summarize the above results in the following theorem.

Theorem 5.17. — The correspondence C on W defined by Equation (5.6) is a mating
of P and Σ := D/pΓ in the following sense.

(1) The dynamics of C on T̃ is equivalent to the action of a group

⟨qη⟩ ∗ ⟨τ⟩ ∼= Z/2Z ∗ Z/(np)Z

of conformal automorphisms of T̃. Here, τ is a conformal automorphism of T̃ of
order np such that τp induces an order n conformal automorphism on each component
of T̃.

Moreover, the above group action is properly discontinuous, and the quotient orb-
ifold T̃/C is biholomorphic to Σ.

(2) The correspondence C has a forward branch carrying K̃ ∩ D onto itself with
degree np−1, and this branch is topologically conjugate to P : K(P )→ K(P ), with the
conjugacy being conformal on the interior. On the other hand, C has a backward branch
carrying K̃ ∖ D onto itself with degree np − 1, and this branch is also topologically
conjugate to P : K(P )→ K(P ), with the conjugacy being conformal on the interior.

Proof. — The first statement is the content of Proposition 5.14 and the second one
is the content of Proposition 5.16. □

We are now ready to prove a slightly more general version of Theorem B announced
in the introduction.

Theorem 5.18. — Let Σ be a hyperbolic orbifold of genus zero with arbitrarily many
(at least one, but finite) punctures, at most one order two orbifold point, and at most
one order ν ⩾ 3 orbifold point. Further, let P be a polynomial in a real-symmetric
hyperbolic component of degree 1−2ν ·χorb(Σ) (respectively, 1−2χorb(Σ)) polynomials
if Σ has (respectively, does not have) an order ν orbifold point.

Then, there exist a holomorphic, hence algebraic correspondence C on a compact,
simply connected, (possibly noded) Riemann surface W and a C-invariant partition
W = T̃ ⊔ K̃ such that the following hold.

(1) On T̃, the dynamics of C is orbit-equivalent to the action of a group of conformal
automorphisms acting properly discontinuously. Further, T̃/C is biholomorphic to Σ.

(2) K̃ can be written as the union of two copies K̃1, K̃2 of K(P ) (where K(P )

is the filled Julia set of P ), such that K̃1 and K̃2 intersect in finitely many points.
Furthermore, C has a forward (respectively, backward) branch carrying K̃1 (respec-
tively, K̃2) onto itself with degree np− 1, and this branch is conformally conjugate to
P : K(P )→ K(P ).
In particular, if P lies in a principal hyperbolic component, then W = pC; i.e., C is an
algebraic correspondence on the Riemann sphere.
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Proof. — Let us assume that Σ has δ1 ⩾ 1 punctures, δ2 ∈ {0, 1} order two orbifold
points, and δ3 ∈ {0, 1} order ν ⩾ 3 orbifold points. The condition that Σ is hyperbolic
is equivalent to the requirement that

χorb(Σ) = 2− δ1 −
δ2
2
− δ3

(
1− 1

ν

)
< 0.

We set

n =

{
1 if δ3 = 0,

ν if δ3 = 1.

Further, we set

p =

{
2(δ1 − 1) if δ2 = 0,

2δ1 − 1 if δ2 = 1.

Note that when δ3 = 0, then

1− 2χorb(Σ) = 1− 2
(
2− δ1 −

δ2
2

)
= 2δ1 + δ2 − 3 = p− 1 = np− 1,

(as n = 1 in this case). On the other hand, when δ3 = 1, then

1− 2ν · χorb(Σ) = 1− 2ν
(
1− δ1 −

δ2
2

+
1

ν

)
= 2νδ1 + νδ2 − 2ν − 1 = νp− 1 = np− 1

(as n = ν in this case). Moreover, the restriction on χorb(Σ) implies that np ⩾ 3.
By construction, D/pΓΓΓn,p is homeomorphic to Σ (as orbifolds). It follows that there

exists ΓΣ ∈ Teich(pΓΓΓn,p) such that D/ΓΣ is biholomorphic to Σ. The result now follows
by applying Theorems 5.3 and 5.17 on the pair ΓΣ, P . □

6. A character variety and a simultaneous uniformization locus

In this section, we will put the results of the previous sections together to jus-
tify the diagram (Figure 2) furnished in the introduction. Along the way, we will
put an algebraic structure on the moduli space of our correspondences in terms of
the coefficients of the uniformizing rational maps. The construction of this space of
correspondences will lay the foundation for the proof of Theorem C (see Section 7).

We recall that n, p are positive integers with np ⩾ 3, and d := np − 1. For
(ρ : Γn,pΓn,pΓn,p → Γ) ∈ Teichω(Γn,pΓn,pΓn,p), the conformal mating of AfBS

Γ and P ∈ Hd is denoted
by F : Ω → pC. The associated mating semi-conjugacies are denoted by XP and XΓ

(see Definition 3.1). Further, let R,D be as in Corollary 4.12.

6.1. Moduli space of marked matings. — Recall from Theorem 3.2 that the confor-
mal mating F : Ω → pC of AfBS

Γ and P is unique up to Möbius conjugacy. A marked
conformal mating is a pair (F = AfBS

Γ ⊥⊥P,XΓ(1)). Two such pairs are equivalent if
there is a Möbius map that conjugates the conformal matings respecting the marked
fixed points. The collection of equivalence classes of marked conformal matings will
be referred to as the moduli space of marked matings associated with Teichω(Γn,pΓn,pΓn,p)

and Hd. We denote this space by

M ≡M(Teichω(Γn,pΓn,pΓn,p),Hd).
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We have a natural map
Ξ1 : Teichω(Γn,pΓn,pΓn,p)×Hd −→M

(Γ, P ) 7−→ [F := AfBS
Γ ⊥⊥P,XΓ(1)].

Let us now fix a conformal mating F = AfBS
Γ ⊥⊥P : Ω → pC. By Corollary 4.12,

there exist a Jordan domain D (with η(∂D) = ∂D) and a degree (d + 1) rational
map R of pC that maps D injectively onto Ω, such that F |Ω ≡ R◦η ◦ (R|D)−1. Clearly,
conjugating F by a Möbius map amounts to post-composing R with the same Möbius
map. We will now show that when a particular F is chosen, the associated rational
map R is essentially unique.

We denote the centralizer of η in PSL2(C) by C(η).

Proposition 6.1. — Let F : Ω → pC be a conformal mating of AfBS
Γ and P . Suppose

further that there exist pairs (R1,D1), (R2,D2) with the following properties.
(1) Di a Jordan domain with η(∂Di) = ∂Di,
(2) Ri|Di

is injective,
(3) Ri(Di) = Ω, and
(4) F |Ω ≡ Ri ◦ η ◦ (Ri|Di

)−1, for i ∈ {1, 2}.
Then, there exists a Möbius map M ∈ C(η) such that M(D1) = D2 and R1 ≡ R2◦M .

Proof. — We define

M : pC −→ pC, z 7−→

{
(R2|D2

)−1 ◦R1(z) if z ∈ D1,

η ◦ (R2|D2
)−1 ◦R1 ◦ η(z) if z ∈ pC∖D1.

Since (R2|∂D2
)−1 ◦ R1 : ∂D1 → ∂D2 conjugates η|∂D1

to η|∂D2
, it follows that the

piecewise definitions of M agree continuously, and hence M is a homeomorphism of
the Riemann sphere that commutes with η. Moreover, M is conformal away from the
Jordan curve ∂D1.

The facts that ∂Ω∖ SF is a union of finitely many non-singular analytic arcs (see
Section 4.4) and that R1 has no critical point on ∂D1 ∖ (R1|∂D1)

−1(SF ) (by Corol-
lary 4.18) together imply that ∂D1 is a piecewise non-singular analytic curve. In par-
ticular, ∂D1 is conformally removable. It now follows that M is a Möbius map
commuting with η. Moreover, the definition of M implies that M(D1) = D2 and
R1 ≡ R2 ◦M . □

After possibly pre-composing with z 7→ −z, we can and will assume that R(1) =
XΓ(1).

6.2. Space of correspondences as character variety. — Let us consider the space C

of all correspondences of the form

(6.1) (z, w) ∈ C ⇐⇒ R(w)−R(η(z))
w − η(z)

= 0,

where R ∈ Ratd+1(C). Such a correspondence C has bi-degree d:d; the d for-
ward (respectively, backward) branches of C send a point z to the d points in the set
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R−1(R(η(z)))∖{η(z)} (respectively, to the d points in the set η(R−1(R(z)))∖{η(z)}).
Note that the space C , which is parametrized by the quasi-projective variety
Ratd+1(C), defines an ambient space in which the correspondences produced by
Theorem 5.3 live.

Definition 6.2 (cf. [BP94, §2]). — We say that two correspondences C1,C2 in C are
equivalent if there exists M ∈ C(η) (where C(η) is the centralizer of η in PSL2(C))
such that

(z, w) ∈ C1 ⇐⇒ (Mz,Mw) ∈ C2.

Remark 6.3. — Suppose that the correspondences C1,C2 are equivalent in the sense
of Definition 6.2. If φ is a local holomorphic branch of C1, then M ◦φ◦M−1 is a local
holomorphic branch of C2. Thus, the branches of two equivalent correspondences are
Möbius conjugate.

A routine computation using Equation (6.1) and Definition 6.2 shows that two
distinct correspondences C1,C2 ∈ C defined by R1, R2 ∈ Ratd+1(C) are equivalent if
and only if R1 ≡ R2 ◦M , for some M ∈ C(η). On the other hand, replacing R by
M ◦R, for M ∈ PSL2(C), produces the same correspondence C.

Therefore, the space of equivalence classes of correspondences in C is parametrized
by the quotient Ratd+1(C)/∼ under the equivalence relation

R ∼M2 ◦R ◦M1,

where R ∈ Ratd+1(C),M2 ∈ PSL2(C), and M1 ∈ C(η). The space Ratd+1(C)/∼,
with its algebraic structure, can be regarded as an analog of the character variety for
surface groups (the algebraic structure comes from a GIT quotient construction, see
[MFK94]; compare [Kap01, §4.3], [LM85] for related constructions of moduli spaces).

6.3. A simultaneous uniformization locus of correspondences. — According to
Section 6.1, the rational maps R associated with the conformal matings in M are well-
defined only up to pre-composition with Möbius maps in C(η) and post-composition
with arbitrary Möbius maps. In light of the discussion in Section 6.2, each marked
conformal mating in the moduli space M defines an equivalence class of correspon-
dences in Ratd+1(C)/∼ via Equation (6.1), where R is the rational uniformizing map
of Corollary 4.12 normalized so that R(1) = XΓ(1). Thus, we have a well-defined
map

Ξ2 : M −→ Ratd+1(C)/∼

[F = AfBS
Γ ⊥⊥P,XΓ(1)] 7−→ [C].

We denote the image of Ξ2 in the ‘character variety’ Ratd+1(C)/∼ by

C ≡ C(Teichω(Γn,pΓn,pΓn,p),Hd),

and call it the moduli space of correspondences associated with Teichω(Γn,pΓn,pΓn,p) and Hd.
Note that the space C can be seen as a locus of simultaneous uniformizations of marked
groups in Teichω(Γn,pΓn,pΓn,p) and polynomials in Hd.
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6.4. Intrinsic description of the mating structure of correspondences

Let C ∈ C. By construction, there exists (Γ, P ) ∈ Teichω(Γn,pΓn,pΓn,p) × Hd such that
Ξ2 ◦Ξ1(Γ, P ) = C. Let R be a rational map generating the correspondence C. By our
normalization, R(1) = XΓ(1).

Recall that while the correspondence C was defined solely in terms of the rational
map R (via Equation (6.1)), the dynamical partition for C was given in terms of F =

AfBS
Γ ⊥⊥P , or equivalently, in terms of the rational map R and the Jordan domain D

(recall the relation F |Ω ≡ R ◦ η ◦ (R|D)−1 from Corollary 4.12). We will now expound
how the complete dynamical structure of C (including the limit, tiling, and non-
escaping sets of C and the domain D) can be recovered directly from R.

Since the iterated F -preimages of XΓ(1) are dense in the limit set Λ of F (this
follows from the fact that the iterated P -preimages of any point on J(P ) are dense in
J(P )), it follows that the grand orbit of 1 under the correspondence C is dense in the
limit set Λ̃ of C (see Figure 12). Hence, the limit set of C can be recovered from R

(without knowledge of the domain D).
The tiling set T̃ of C can now be recognized as the union of the connected compo-

nents of pC ∖ Λ̃ on which C acts properly discontinuously (with torsion points, when
n > 1). The closures of the other two components of pC ∖ Λ̃ comprise K̃. On one of
these two components, the map R is injective, while R maps the other component
with degree d. The closure of the former (respectively, the latter) component is K̃1

(respectively, K̃2).
Thanks to the description of the closure of T̃ given in Lemma 5.2, we know that the

components U0, . . . , Up−1 of T̃ are Jordan domains, and they form a chain such that
neighboring components touch at critical points of R that lie on Λ̃. We now consider
the Jordan curve J obtained by connecting the critical points of R on Λ̃ consecutively
by hyperbolic geodesics in the components Ui. By the proof of Proposition 5.7, the
map R is injective on one of the complementary components of J, and this component
coincides with D (see Figure 12).

Thus, we can reconstruct D, K̃, T̃, and Λ̃ from the rational map R. Clearly, the set
T̃ 0 ⊂ T̃ (which is the union of the rank zero tiles in the tiling set of C) and hence the
set T̃ 0

U0
= T̃ 0 ∩ U0 can also be reconstructed from the above data.

The proof Proposition 5.7 also shows that when the topological disk U0 is uni-
formized by the unit disk, the set T̃ 0

U0
corresponds to an ideal np-gon P in D that

admits the rotation Mω as a symmetry. Moreover, pulling back a sector of angle
2π/n in P (with geodesic boundary) under this uniformization yields a fundamental
domain S for the C-action on T̃ equipped with side-pairing transformations. This
defines a marking on the quotient T̃/C. This marked Riemann surface is biholomor-
phic to

• a sphere with p/2 + 1 punctures and an order n orbifold point for p even, and
• a sphere with (p+ 1)/2 punctures, an order two orbifold point and an order n

orbifold point for p odd.
In other words, the correspondence C determines a unique element of Teich(pΓΓΓn,p) ∼=

Teichω(Γn,pΓn,pΓn,p).
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Finally, by Proposition 5.10, an appropriate branch of C on K̃1 is conformally
conjugate to the action of a polynomial in Hd on its filled Julia set. In fact, such a
polynomial is uniquely determined when we require that the conjugacy sends the fixed
point 1 of this correspondence branch to the landing point of the external dynamical
ray at angle 0 for the polynomial.

The above recipe defines a map

Ξ3 : C −→ Teichω(Γn,pΓn,pΓn,p)×Hd

that is, by construction, the inverse of the map Ξ2◦Ξ1. This completes the justification
of the commutative diagram (Figure 2) presented in the introduction.

7. A Bers slice for genus zero orbifolds

We continue to use the notation of Section 6. Recall that in that section, we con-
structed a simultaneous uniformization locus C ≡ C (Teichω(Γn,pΓn,pΓn,p),Hd) in the ‘char-
acter variety’ Ratd+1(C)/∼ of bi-degree d:d algebraic correspondences on pC defined
by Equation (6.1). The space C is the analog of the quasi-Fuchsian space in our setup.
Our next goal is to manufacture a complex-analytic slice in this simultaneous uni-
formization locus such that the polynomial component is frozen to be PPP (z) := zd

(in Hd), while the marked groups run through Teichω(Γn,pΓn,pΓn,p). This is akin to Bers’
original construction of the Bers slice in the quasi-Fuchsian locus (cf. [Mar16, §5.10]).

7.1. The Bers embedding. — With the natural identification of Teichω(Γn,pΓn,pΓn,p) with
Teichω(Γn,pΓn,pΓn,p)× {PPP}, the map

Ξ2 ◦ Ξ1 : Teichω(Γn,pΓn,pΓn,p)× {PPP} −→ C

gives rise to a map
B : Teichω(Γn,pΓn,pΓn,p) −→ C

(See Sections 6.1, 6.2 for the definitions of Ξ1,Ξ2.)

Remark 7.1. — From the discussion in this section, it will follow that the map B can
be thought of as an analog of the ‘Bers embedding’ of Teich(pΓΓΓn,p) into the (analog of
the) ‘quasi-Fuchsian space’ C, where the latter sits inside the (analog of the) ‘character
variety’ Ratd+1(C)/∼ .

We will now show that the image of the map B can be identified with a subset
of CL, where

L := dimC (Teichω(Γn,pΓn,pΓn,p)) = dimC(Teich(pΓΓΓn,p)).

Suppose that a correspondence C defined by a degree (d+ 1) rational map R (via
Equation (6.1)) lies in the image of B. Then, by Corollary 4.18, the map R has p
critical points on ∂D, a critical point of multiplicity np − 2 in int K̃2, and p distinct
critical points, each of multiplicity n− 1, in T̃ ∖D.

Possibly after pre and post-composing R with elements of C(η) and PSL2(C)
(respectively), we can assume the following.
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(1) ∞ is the unique superattracting fixed point (of local degree d) of the corre-
sponding conformal mating F ,

(2) ∞ ∈ D with R(∞) =∞,
(3) R′(∞) = 1, and
(4) R′(1) = 0 with R(1) = XΓ(1).

As F maps ∞ to itself with local degree np− 1, it follows that R has an order np− 1

pole at the origin. The conditions R(∞) =∞ and R′(∞) = 1 now imply that R is of
the form

R(z) =
R1(z)

znp−1
,

where R1 is a monic polynomial of degree np. To obtain an explicit form of R1,
we need to consider various cases.

Punctured spheres without orbifold points. — In this case, n = 1 and p is an even
integer. We set p = 2q, for some q ⩾ 2. We first post-compose R with a translation
to write it as

R(z) = z +
a1
z

+ · · ·+ a2q−1

z2q−1
,

for a1, . . . , a2q−1 ∈ C. Note also that Corollary 4.18 forces the 2q critical points of R
on ∂D to be of the form

{1,−1, c1, 1/c1, . . . , cq−1, 1/cq−1},

for some c1, . . . , cq−1 ∈ C∗. Differentiating R, one sees that the degree 2q polynomial

Q(z) := z2q −
2q−1∑
j=1

jajz
2q−1−j

has {1,−1, c1, 1/c1, . . . , cq−1, 1/cq−1} as its roots. A routine application of Vieta’s
formula now shows that

(7.1) R(z) = z +
a1
z

+ · · ·+ aq−2

zq−2
+
aq
zq

+ · · ·+ a2q−3

z2q−3
+

1

(2q − 1) · z2q−1
,

where

(7.2) a2q−j−1 = − (j − 1)

(2q − j − 1)
aj−1, j ∈ {2, . . . , q − 1}.

We identify the rational maps in the image of B (where the normalization of these
rational maps is given by Equations (7.1) and (7.2)) with their q − 2 independent
complex coefficients a1, . . . , aq−2. Thus, the image of B can be identified with a subset
of Cq−2.

We also note that as D/pΓΓΓ1,2q is a (q + 1)-times punctured sphere, its Teichmüller
space has complex dimension q − 2.
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Genus zero orbifolds with exactly one orbifold point of order 2 and no orbifold point of
order ν ⩾ 3. — In this case, n = 1 and p is an odd integer. We set p = 2q + 1, for
some q ⩾ 2. As in the previous case, we can post-compose R with a translation to
write it as

R(z) = z +
a1
z

+ · · ·+ a2q
z2q

,

for a1, . . . , a2q ∈ C. Moreover, Corollary 4.18 implies that the 2q + 1 critical points
of R on ∂D are the form

{1, c1, 1/c1, . . . , cq, 1/cq},

for some c1, . . . , cq ∈ C∗. Differentiating R, one sees that the degree 2q polynomial

Q(z) := z2q+1 −
2q∑
j=1

jajz
2q−j

has {1, c1, 1/c1, . . . , cq, 1/cq} as its roots. Once again, a straightforward computation
using Vieta’s formula shows that

(7.3) R(z) = z +
a1
z

+ · · ·+ aq−1

zq−1
+
aq
zq

+ · · ·+ a2q−2

z2q−2
+

1

2q · z2q
,

where

(7.4) a2q−j = −
(j − 1)

(2q − j)
aj−1, j ∈ {2, . . . , q}.

Thus, with the identification of the rational maps in the image of B (normalized
by Equations (7.3) and (7.4)) with their q − 1 independent complex coefficients
a1, . . . , aq−1, the map B can be thought of as taking values in Cq−1.

Further, as D/pΓΓΓ1,2q+1 is a genus zero orbifold with (q+1) punctures and one order
two orbifold point, its Teichmüller space has complex dimension q − 1.

Genus zero orbifolds with exactly one orbifold point of order ν ⩾ 3 and at most one orbifold
point of order 2. — In this case, n = ν ⩾ 3 and p is odd (respectively, even) depending
on whether the orbifold has (respectively, does not have) an order two orbifold point.
Recall that by Corollary 4.18, in addition to the (np − 2)-fold critical point at the
origin, the map R has

• p distinct critical points on ∂D, of which one/two are fixed by η (depending on
whether p is odd/even) and the others form 2-cycles under η, and

• p distinct critical points, each of multiplicity n−1, in T̃∖D, and all these critical
points are mapped to a common critical value in T.
It will be convenient to post-compose R with a translation such that the critical value
of R in T is at the origin. Then R has precisely p distinct zeroes at a1, . . . , ap, each
of multiplicity n− 1. Therefore,

R(z) =
(z − a1)n · · · (z − ap)n

znp−1
.

J.É.P. — M., 2025, tome 12



Matings, correspondences, and a Bers slice 1497

In particular, the coefficients of R can be written in terms of the elementary symmetric
polynomials e1, . . . , ep in a1, . . . , ap. Using (logarithmic) differentiation, one now easily
sees that the p critical points of R on ∂D are roots of the equation

(7.5) n

( p∑
j=1

aj
z − aj

)
+ 1 = 0, i.e., Q(z) := zp +

p∑
j=1

(−1)jej(1− nj)zp−j = 0.

Since the roots of Q are of the form

{1,−1, c1, 1/c1, . . . , cq−1, 1/cq−1}

when p = 2q, and of the form

{1, c1, 1/c1, . . . , cq, 1/cq}

when p = 2q + 1, we are now reduced to the computations carried out in the pre-
vious two cases. In particular, it follows that if p = 2q (respectively, p = 2q + 1),
the polynomial Q has q − 1 (respectively, q) independent coefficients. Since the coef-
ficients of Q are multiples of the elementary symmetric polynomials e1, . . . , ep (see
Equation (7.5)), we conclude that only q − 1 (respectively, q) of these elementary
symmetric polynomials are unconstrained. Hence, the rational map R also has q − 1

(respectively, q) independent complex coefficients. As in the previous cases, the image
of B can therefore be identified with a subset of Cq−1 (respectively, of Cq). Finally,
we remark that Teich(pΓΓΓn,2q) (respectively, Teich(pΓΓΓn,2q+1)) has complex dimension
q − 1 (respectively, q).

Complex-analyticity of B. — The preceding analysis shows that the image of the
map B can be identified with a subset of CL, where L = dimC(Teich(pΓΓΓn,p)).

Recall that the Teichmüller space of an orbifold (or a Fuchsian group) can be
endowed with a complex structure via the Bers simultaneous uniformization theorem.
Specifically, in the statement below, we identify Teich(pΓΓΓn,p) with the Bers slice B(pΓΓΓn,p)

in the space of quasi-Fuchsian representations of pΓΓΓn,p (see [Mar16, §5.10]).

Proposition 7.2. — B : Teich(pΓΓΓn,p)→ CL is a biholomorphism onto its image.

Proof. — We recall the notation PPP (z) = znp−1. Let XPPP : D → pC and XΓn,pΓn,pΓn,p
: D → pC

be the mating conjugacies associated with the conformal mating FFF of PPP and AfBS
Γn,pΓn,pΓn,p

(see Definition 3.1).
Each representation (pρ : pΓΓΓn,p → pΓ) ∈ B(pΓΓΓn,p) (see Section 2.2) is given by

pρ(g) = ψρ ◦ g ◦ ψ−1
ρ , g ∈ pΓΓΓn,p,

where ψρ is a quasiconformal homeomorphism of pC that is conformal on D∗. More-
over, the quasiconformal maps ψρ depend complex-analytically on representations
pρ ∈ B(pΓΓΓn,p). We define the pΓΓΓn,p-invariant Beltrami coefficient µρ := ψ∗

ρ(µ0) (where µ0

is the trivial Beltrami coefficient), and note that µρ also depends complex-analytically
on pρ. We further push µρ forward to the dynamical plane of AfBS

Γn,pΓn,pΓn,p
, and continue to

call it µρ.
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It follows that the FFF -invariant Beltrami coefficients

µFFF,ρ :=

{
(XΓn,pΓn,pΓn,p

)∗(µρ) on XΓn,pΓn,pΓn,p
(D),

0 elsewhere,

depend complex-analytically on pρ ∈ B(pΓΓΓn,p). Consequently, the (normalized) qua-
siconformal maps φρ solving the Beltrami equation with coefficient µFFF,ρ depend
complex-analytically on pρ. Furthermore, the map φρ◦FFF ◦φ−1

ρ is the conformal mating
of PPP and AfBS

Γ with mating conjugacies φρ ◦XPPP and φρ ◦XΓn,pΓn,pΓn,p
◦ pψ−1

ρ , where pψρ is the
quasiconformal conjugacy between AfBS

Γn,pΓn,pΓn,p
and AfBS

Γ induced by ψρ.
Let RRR be the normalized rational map associated with the conformal mating FFF .

Let pφρ be a quasiconformal map solving the Beltrami equation with coefficient
RRR∗(µFFF,ρ). As the Beltrami coefficients RRR∗(µFFF,ρ) depend complex-analytically on pρ,
the same is true for the maps pφρ. By the proof of Proposition 4.11,

Rρ := φρ ◦RRR ◦ pφ−1
ρ

is a rational map associated with the conformal mating φρ◦FFF ◦φ−1
ρ . Since both families

of quasiconformal maps {φρ}
pρ∈B(pΓΓΓn,p)

and {pφρ}
pρ∈B(pΓΓΓn,p)

depend complex-analytically
on pρ, it follows that the coefficients of Rρ also depend complex-analytically on pρ.
Hence, the map B : B(pΓΓΓn,p)→ CL is complex-analytic.

The existence of the inverse map Ξ3 in Section 6.4 shows that the map B is injective.
Since the complex dimension of Teich(pΓΓΓn,p) ∼= B(pΓΓΓn,p) is L, it follows that B is a
biholomorphism onto its image (cf. [Ran86, Th. 2.14]). □

7.2. Proof of Theorem C. — Note that by construction, the map B sends each
representation pρ : pΓΓΓn,p → pΓ in the Bers slice B(pΓΓΓn,p) to a bi-degree (np− 1):(np− 1)

algebraic correspondence C on pC that is a mating of znp−1 and D/pΓ in the sense of
Theorem 5.3. The L complex coefficients of the normalized rational maps R defining
these correspondences C endow the resulting space of correspondences with a complex
manifold structure. By Proposition 7.2, the map B yields a biholomorphism between
the above complex manifold and the Bers slice B(pΓΓΓn,p). □

We conclude this section with the following question.

Question 7.3. — Let Σ ∈ S, and L := dimC(Teich(Σ)).
(1) Is the image B(Teich(Σ)) pre-compact in CL?
(2) Describe the dynamics of the correspondences that lie on the boundary of

B(Teich(Σ)). In particular, do Bers boundary groups not treated in [MM23a, §7]
arise?

8. Bullett-Penrose-Lomonaco correspondences

As mentioned in the introduction, in the special case n = 3 and p = 1, the cor-
respondences produced by Theorem B belong to the family of bi-degree 2:2 corre-
spondences studied by Bullett-Penrose-Lomonaco [BP94, BL20, BL24, BL22]. In this
section, we will derive explicit formulas for these correspondences using our conformal
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matings framework, and show that they can indeed be brought to the Bullett-Penrose
normal form (see [BP94, Eq. 1.1]).

Recall from Section 2.4 that the index three extension pΓΓΓ3,1 of Γ3,1Γ3,1Γ3,1 is Möbius
conjugate to the standard modular group PSL2(Z). In particular, Teichω(Γ3,1Γ3,1Γ3,1) ∼=
Teich(pΓΓΓ3,1) is a singleton. Further let P be a polynomial lying in a real-symmetric
hyperbolic component in the connectedness locus of degree np − 1 = 2 polynomials;
i.e., P is a quadratic polynomial in a real-symmetric hyperbolic component of the
Mandelbrot set. We denote the conformal mating of AfBS

Γ3,1Γ3,1Γ3,1
and P by F .

Since p = 1, it follows that the set Ap is a singleton, and hence the lamina-
tion LP is empty (see Section 4.1). Therefore, Ω := intDom(F ) is a Jordan domain.
By Proposition 4.11, there exist a cubic rational map R and a Jordan domain D with
η(∂D) = ∂D such that R carries D injectively onto Ω and F |Ω ≡ R◦η◦(R|D)−1. (The
Jordan domain D is depicted as the disk ∆st

J in [BL24, Fig. 4].) By Corollary 4.18,
the map R has a critical point c1 ∈ ∂D that is fixed under η. Moreover, the same
corollary says that R has a simple critical point c2 ∈ R−1(K)∖D and a double critical
point c3 ∈ R−1(T)∖D.

Also note that T̃ is a simply connected domain, and R : T̃ → T is a degree three
branched covering with a double critical point at c3. By Theorem 5.17, the action of
the associated correspondence C on T̃ is conformally conjugate to the action of the
modular group pΓΓΓ3,1 on D, and C is a mating of P and the modular surface D/pΓΓΓ3,1.

We will now bring the correspondence C to the Bullett-Penrose-Lomonaco normal
form. Let M1,M2 be Möbius maps such that

M1(c1) = 1, M1(c2) = −1, M1(c3) =∞,

and
M2(R(c1)) = −2, M2(R(c2) = 2, M2(R(c3) =∞.

We set R1 := M2 ◦ R ◦M−1
1 . Then, R1 has a double critical point at ∞ with the

associated critical value also at∞, and hence R1 is a cubic polynomial. An elementary
calculation using the facts that the two finite critical points of R1 are at ±1 and the
associated critical values are at ∓2 now shows that R1(u) = u3 − 3u. We also set

Ω1 =M2(Ω), η1 :=M1 ◦ η ◦M−1
1 , F1 ≡M2 ◦ F ◦M−1

2 ,

and observe that

F1|Ω1
≡M2 ◦R ◦ η ◦ (R|D)

−1 ◦M−1
2 ≡ R1 ◦ η1 ◦ (R1|M1(D))

−1.

Note that the involution η1 fixes 1 and a := M1(−1), and hence can be written as
η1(u) = (a+1)u−2a

2u−(a+1) . We will change coordinates so that η1 becomes the involution
z 7→ −z. To this end, we define R2 := R1 ◦M−1

3 , where M3(u) = (u− 1)/(a− u)
sends the fixed points 1, a of η1 to 0,∞, respectively. The conjugated involution η2 :=

M3 ◦ η1 ◦M−1
3 fixes 0,∞, and thus can be written as η2(z) = −z. Finally,

F1|Ω1
≡ R2 ◦M3 ◦ η1 ◦M−1

3 ◦ (R2|M3◦M1(D))
−1 ≡ R2 ◦ η2 ◦ (R2|M3◦M1(D))

−1.
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The associated correspondence (which is obtained by lifting F1 and its backward
branches by R2) is given by

(X,Y ) ∈ C ⇐⇒ R2(Y )−R2(η2(X)) = 0, Y ̸= η2(X)

⇐⇒ R1(M
−1
3 (Y ))−R1(M

−1
3 (−X)) = 0, Y ̸= −X

⇐⇒
(aY + 1

Y + 1

)3

− 3
(aY + 1

Y + 1

)
=

(−aX + 1

−X + 1

)3

− 3
(−aX + 1

−X + 1

)
,

Y ̸= −X

⇐⇒
(aY + 1

Y + 1

)2

+
(aY + 1

Y + 1

)(aX − 1

X − 1

)
+

(aX − 1

X − 1

)2

= 3.

Thus, the correspondence C belongs to the family of bi-degree 2:2 correspondences
a la Bullett-Penrose-Lomonaco [BP94, BL20, BL24].

Remark 8.1. — More generally, when p = 1 and n ⩾ 3, the uniformizing rational
maps R can be chosen as degree n polynomials. The associated correspondences C

are matings of degree (n− 1) polynomials P and the genus zero orbifold Σ = D/pΓΓΓn,1

with exactly one puncture, exactly one order two orbifold point, and exactly one
order n ⩾ 3 orbifold point. Note that pΓΓΓn,1 has an index two subgroup ΓΓΓ∗

n,1 that
uniformizes the genus zero orbifold Σ∗ with exactly one puncture, exactly two order
n ⩾ 3 orbifold points, and no other orbifold point. The correspondences C admit index
two subcorrespondences that are matings of P ◦2 (polynomials of degree (n−1)2) and
orbifolds Σ∗ double covering Σ (cf. [Bul00, §4.3]).
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