Centers of perfectoid purity
[Centres de pureté perfectoïde]
Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1381-1415.

We introduce a mixed characteristic analog of log canonical centers in characteristic $0$ and centers of $F$-purity in positive characteristic, which we call centers of perfectoid purity. We show that their existence detects (the failure of) normality of the ring. We also show the existence of a special center of perfectoid purity that detects the perfectoid purity of the ring, analogously to the splitting prime of Aberbach and Enescu, and investigate its behavior under étale morphisms.

Nous introduisons un objet analogue en caractéristique mixte des centres log canoniques en caractéristique $0$ et des centres de pureté de Frobenius en caractéristique positive. Nous le nommons centre de pureté perfectoïde. Nous prouvons qu’un anneau intégralement clos n’admet pas de centre non trivial. Nous démontrons également l’existence d’un centre de pureté perfectoïde spécial qui détecte la pureté perfectoide de l’anneau, de manière analogue à l’idéal premier de scindage d’Aberbach et Enescu. Enfin, nous étudions le comportement de ces centre sous les morphismes étales.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.313
Classification : 14G45, 14F18, 14B05, 13A35
Keywords: $F$-singularities, centers of $F$-purity, perfectoid singularities, log canonical center
Mots-clés : Singularités de Frobenius, centre de pureté de Frobenius, singularités perfectoïde, centre log canonique

Anne Fayolle 1

1 Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2025__12__1381_0,
     author = {Anne Fayolle},
     title = {Centers of perfectoid purity},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1381--1415},
     publisher = {\'Ecole polytechnique},
     volume = {12},
     year = {2025},
     doi = {10.5802/jep.313},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.313/}
}
TY  - JOUR
AU  - Anne Fayolle
TI  - Centers of perfectoid purity
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2025
SP  - 1381
EP  - 1415
VL  - 12
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.313/
DO  - 10.5802/jep.313
LA  - en
ID  - JEP_2025__12__1381_0
ER  - 
%0 Journal Article
%A Anne Fayolle
%T Centers of perfectoid purity
%J Journal de l’École polytechnique — Mathématiques
%D 2025
%P 1381-1415
%V 12
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.313/
%R 10.5802/jep.313
%G en
%F JEP_2025__12__1381_0
Anne Fayolle. Centers of perfectoid purity. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1381-1415. doi : 10.5802/jep.313. https://jep.centre-mersenne.org/articles/10.5802/jep.313/

[AE05] I. M. Aberbach & F. Enescu - “The structure of F-pure rings”, Math. Z. 250 (2005) no. 4, p. 791-806 | DOI | MR | Zbl

[Amb11] F. Ambro - “Basic properties of log canonical centers”, in Classification of algebraic varieties (Schiermonnikoog, Netherlands, May 2009), European Mathematical Society, Zürich, 2011, p. 39-48 | MR | Zbl

[And18a] Y. André - “Le lemme d’Abhyankar perfectoide”, Publ. Math. Inst. Hautes Études Sci. 127 (2018), p. 1-70 | DOI | Numdam | MR | Zbl

[And18b] Y. André - “La conjecture du facteur direct”, Publ. Math. Inst. Hautes Études Sci. 127 (2018), p. 71-93 | DOI | Numdam | MR | Zbl

[Bad21] W. Badilla-Céspedes - “F-invariants of Stanley-Reisner rings”, J. Pure Appl. Algebra 225 (2021) no. 9, article ID 106671, 19 pages | DOI | MR | Zbl

[BIM19] B. Bhatt, S. B. Iyengar & L. Ma - “Regular rings and perfect(oid) algebras”, Comm. Algebra 47 (2019) no. 6, p. 2367-2383 | DOI | MR | Zbl

[BK05] M. Brion & S. Kumar - Frobenius splitting methods in geometry and representation theory, Progress in Math., vol. 231, Birkhäuser Boston Inc., Boston, MA, 2005 | DOI | MR | Zbl

[BM21] B. Bhatt & A. Mathew - “The arc-topology”, Duke Math. J. 170 (2021) no. 9, p. 1899-1988 | DOI | MR | Zbl

[BMP + 23] B. Bhatt, L. Ma, Z. Patakfalvi, K. Schwede, K. Tucker, J. Waldron & J. Witaszek - “Globally +-regular varieties and the minimal model program for threefolds in mixed characteristic”, Publ. Math. Inst. Hautes Études Sci. 138 (2023), p. 69-227 | DOI | MR | Zbl

[BMP + 24a] B. Bhatt, L. Ma, Z. Patakfalvi, K. Schwede, K. Tucker, J. Waldron & J. Witaszek - “Perfectoid pure singularities”, 2024 | arXiv | Zbl

[BMP + 24b] B. Bhatt, L. Ma, Z. Patakfalvi, K. Schwede, K. Tucker, J. Waldron, J. Witaszek & R. Datta - “Test ideals in mixed characteristic: a unified theory up to perturbation”, 2024 | arXiv | Zbl

[Bro23] A. Brosowsky - “The Cartier core map for Cartier algebras”, J. Algebra 630 (2023), p. 274-296 | DOI | MR | Zbl

[BS17] B. Bhatt & P. Scholze - “Projectivity of the Witt vector affine Grassmannian”, Invent. Math. 209 (2017) no. 2, p. 329-423 | DOI | MR | Zbl

[BS22] B. Bhatt & P. Scholze - “Prisms and prismatic cohomology”, Ann. of Math. (2) 196 (2022) no. 3, p. 1135-1275 | MR | Zbl

[CLM + 22] H. Cai, S. Lee, L. Ma, K. Schwede & K. Tucker - “Perfectoid signature, perfectoid Hilbert-Kunz multiplicity, and an application to local fundamental groups”, 2022 | arXiv | Zbl

[CM81] C. Cumino & M. Manaresi - “On the singularities of weakly normal varieties”, Manuscripta Math. 33 (1981), p. 283-313 | DOI | MR | Zbl

[CRF24] J. Carvajal-Rojas & A. Fayolle - “On tame ramification and centers of F-purity”, J. London Math. Soc. (2) 110 (2024) no. 4, article ID e12993, 42 pages | DOI | MR | Zbl

[DI24] D. Dine & R. Ishizuka - “Tilting and untilting for ideals in perfectoid rings”, Math. Z. 307 (2024) no. 4, article ID 66, 16 pages | DOI | MR | Zbl

[EH08] F. Enescu & M. Hochster - “The Frobenius structure of local cohomology”, Algebra Number Theory 2 (2008) no. 7, p. 721-754 | DOI | MR | Zbl

[Fal02] G. Faltings - “Almost étale extensions”, in Cohomologies p-adiques et applications arithmétiques, II, Astérisque, vol. 279, Société Mathématique de France, Paris, 2002, p. 185-270 | Numdam | Zbl

[Fed83] R. Fedder - “F-purity and rational singularity”, Trans. Amer. Math. Soc. 278 (1983) no. 2, p. 461-480 | MR | Zbl

[HH89] M. Hochster & C. Huneke - “Tight closure and strong F-regularity”, in Colloque en l’honneur de Pierre Samuel (Orsay, 1987), Mém. Soc. Math. France (N.S.), vol. 38, Société Mathématique de France, Paris, 1989, p. 119-133 | Numdam | MR | Zbl

[HH90] M. Hochster & C. Huneke - “Tight closure, invariant theory, and the Briançon-Skoda theorem”, J. Amer. Math. Soc. 3 (1990) no. 1, p. 31-116 | MR | Zbl

[HLS24] C. Hacon, A. Lamarche & K. Schwede - “Global generation of test ideals in mixed characteristic and applications”, Algebraic Geom. 11 (2024) no. 5, p. 676-711 | DOI | MR | Zbl

[Hoc07] M. Hochster - “Foundations of tight closure theory”, 2007, http://www.math.lsa.umich.edu/~hochster/711F07/fndtc.pdf

[Hoc14] M. Hochster - “Lecture notes on the structure theory of complete local rings”, https://dept.math.lsa.umich.edu/~hochster/615W14/Struct.Compl.pdf, 2014

[HR74] M. Hochster & J. L. Roberts - “Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay”, Adv. Math. 13 (1974), p. 115-175 | DOI | Zbl

[HS06] C. Huneke & I. Swanson - Integral closure of ideals, rings, and modules, London Math. Soc. Lect. Note Series, vol. 336, Cambridge University Press, Cambridge, 2006 | MR | Zbl

[Ked24] K. S. Kedlaya - “Notes on prismatic cohomology”, 2024

[KL15] K. S. Kedlaya & R. Liu - Relative p-adic Hodge theory: foundations, Astérisque, vol. 371, Société Mathématique de France, Paris, 2015 | Zbl

[KM98] J. Kollár & S. Mori - Birational geometry of algebraic varieties, Cambridge Tracts in Math., vol. 134, Cambridge University Press, Cambridge, 1998 | DOI | MR | Zbl

[Kol13] J. Kollár - Singularities of the minimal model program, Cambridge Tracts in Math., vol. 200, Cambridge University Press, Cambridge, 2013 | DOI | MR | Zbl

[KSS10] S. J. Kovács, K. Schwede & K. E. Smith - “The canonical sheaf of Du Bois singularities”, Adv. Math. 224 (2010) no. 4, p. 1618-1640 | DOI | MR | Zbl

[Kun69] E. Kunz - “Characterizations of regular local rings for characteristic p, Amer. J. Math. 91 (1969), p. 772-784 | DOI | MR | Zbl

[MR85] V. B. Mehta & A. Ramanathan - “Frobenius splitting and cohomology vanishing for Schubert varieties”, Ann. of Math. (2) 122 (1985) no. 1, p. 27-40 | DOI | MR | Zbl

[MS18] L. Ma & K. Schwede - “Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers”, Invent. Math. 214 (2018) no. 2, p. 913-955 | DOI | MR | Zbl

[Mur23] T. Murayama - “Uniform bounds on symbolic powers in regular rings”, 2023 | arXiv | Zbl

[PR21] F. Pérez & R. R. G. - “Characteristic-free test ideals”, Trans. Amer. Math. Soc. Ser. B 8 (2021), p. 754-787 | DOI | MR | Zbl

[PS23] T. Polstra & K. Schwede - “Compatible ideals in -Gorenstein rings”, Proc. Amer. Math. Soc. 151 (2023) no. 10, p. 4099-4112 | DOI | MR | Zbl

[Ram91] A. Ramanathan - “Frobenius splitting and Schubert varieties”, in Proceedings of the Hyderabad conference on algebraic groups (Hyderabad, December 1989), Manoj Prakashan, Madras, 1991, p. 497-508 | MR | Zbl

[Rob22] M. Robinson - “Big Cohen-Macaulay test ideals on mixed characteristic toric schemes”, J. Commut. Algebra 14 (2022) no. 4, p. 591-602 | DOI | MR | Zbl

[Ryd10] D. Rydh - “Submersions and effective descent of étale morphisms”, Bull. Soc. math. France 138 (2010) no. 2, p. 181-230 | DOI | Numdam | MR | Zbl

[Sch09] K. Schwede - “F-injective singularities are Du Bois”, Amer. J. Math. 131 (2009) no. 2, p. 445-473 | DOI | MR | Zbl

[Sch10] K. Schwede - “Centers of F-purity”, Math. Z. 265 (2010) no. 3, p. 687-714 | DOI | MR | Zbl

[Sch12] P. Scholze - “Perfectoid spaces”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 245-313 | DOI | Numdam | MR | Zbl

[Smi97] K. E. Smith - “F-rational rings have rational singularities”, Amer. J. Math. 119 (1997) no. 1, p. 159-180 | DOI | MR | Zbl

[Smi00a] K. E. Smith - “Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties”, Michigan Math. J. 48 (2000), p. 553-572 | MR | Zbl

[Smi00b] K. E. Smith - “The multiplier ideal is a universal test ideal”, Comm. Algebra 28 (2000) no. 12, p. 5915-5929 | DOI | MR | Zbl

[Smo20] D. Smolkin - “A new subadditivity formula for test ideals”, J. Pure Appl. Algebra 224 (2020) no. 3, p. 1132-1172 | DOI | Zbl

[SS24] K. Schwede & K. E. Smith - “Singularities defined by the Frobenius map”, https://github.com/kschwede/FrobeniusSingularitiesBook, 2024

[ST10] K. Schwede & K. Tucker - “On the number of compatibly Frobenius split subvarieties, prime F-ideals, and log canonical centers”, Ann. Inst. Fourier (Grenoble) 60 (2010) no. 5, p. 1515-1531 | DOI | Numdam | MR | Zbl

[ST14] K. Schwede & K. Tucker - “On the behavior of test ideals under finite morphisms”, J. Algebraic Geom. 23 (2014) no. 3, p. 399-443 | DOI | MR | Zbl

[ST25] K. Sato & S. Takagi - “Arithmetic and geometric deformations of F-pure and F-regular singularities”, Amer. J. Math. 147 (2025) no. 2, p. 561-596 | DOI | MR | Zbl

[SZ13] K. Schwede & W. Zhang - “Bertini theorems for F-singularities”, Proc. London Math. Soc. (3) 107 (2013) no. 4, p. 851-874 | DOI | MR | Zbl

[Tak10] S. Takagi - “Adjoint ideals along closed subvarieties of higher codimension”, J. reine angew. Math. 641 (2010), p. 145-162 | DOI | MR | Zbl

[Yos25] S. Yoshikawa - “Computation method for perfectoid purity and perfectoid BCM-regularity”, 2025 | arXiv | Zbl

[ČS24] K. Česnavičius & P. Scholze - “Purity for flat cohomology”, Ann. of Math. (2) 199 (2024) no. 1, p. 51-180 | DOI | MR | Zbl

Cité par Sources :