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CENTERS OF PERFECTOID PURITY

BY ANNE FAvOLLE

AssTracT. — We introduce a mixed characteristic analog of log canonical centers in character-
istic 0 and centers of F-purity in positive characteristic, which we call centers of perfectoid
purity. We show that their existence detects (the failure of) normality of the ring. We also show
the existence of a special center of perfectoid purity that detects the perfectoid purity of the
ring, analogously to the splitting prime of Aberbach and Enescu, and investigate its behavior
under étale morphisms.

Résumi (Centres de pureté perfectoide). — Nous introduisons un objet analogue en caractéris-
tique mixte des centres log canoniques en caractéristique 0 et des centres de pureté de Frobenius
en caractéristique positive. Nous le nommons centre de pureté perfectoide. Nous prouvons qu’un
anneau intégralement clos n’admet pas de centre non trivial. Nous démontrons également ’exis-
tence d’un centre de pureté perfectoide spécial qui détecte la pureté perfectoide de I’anneau,
de maniére analogue & ’idéal premier de scindage d’Aberbach et Enescu. Enfin, nous étudions
le comportement de ces centre sous les morphismes étales.
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1. INnTRODUCTION

Let R be a commutative Noetherian ring of characteristic p > 0. Since the late
sixties, the singularities of the ring R have been studied using Frobenius; see [Kun69,
HH90, Hoc07, HH89, Smi97, MR85] to mention a few. These are broadly known as
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Keyworps. F-singularities, centers of F-purity, perfectoid singularities, log canonical center.
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1382 A. FavoLLe

F-singularities and have been linked to singularities of the Minimal Model Program
[Sch09, Smi97, Smi00b]. Of particular importance in this theory are the centers of
F-purity [Sch10], a special type of compatible ideal [MR85]. They tell us where the
ring fails to be (strongly) F-regular. These are related to log canonical centers, an
important object in the study of singularities of the Minimal Model Program [Amb11].
The aim of this paper is to define an analogous object in mixed characteristic.

Although there is no Frobenius in mixed characteristic, we have a good analog
of perfection: perfectoidization [Sch12, BS22]. Our strategy is then to express what
centers of F-purity are in terms of perfection in positive characteristic before writing
an analog definition in mixed characteristic via perfectoidization. This strategy has
been used successfully to define analogs of test ideals, F-signature, and F-purity in
mixed characteristic [MS18, CLM 22, BMP*24a).

Suppose that R is reduced and let F: R — R'Y? be the Frobenius map on R.
Assume furthermore that RY/? is a finite R-module and that the natural map
R — RY? is pure. An ideal a of R is said to be uniformly compatible if p(a'/?") C a
for all e € N, ¢ € Homp(RYP",R). Let Rperr = U, R?" and apert = U, a/P".
Then, a is uniformly compatible if and only if 1 (apers) C a for all ¢ € Hompg(Rpers, R)
(see Corollary 2.19). When a is prime, we say that it is a center of F-purity of R.

Now, let (R, m) be a complete Noetherian local ring with perfect residue field k of
characteristic p > 0. Suppose that R is a finite A-algebra where A := W (k)[x1, ..., z4]
(for instance a Noether normalization). Denoting by perfd the perfectoidization of a
ring or an ideal (see [BS22, §10] or Definition 2.2), we define

Rfo — (R B4 W(k) [pl/p“”z}/px,... ,z(li/poo] [x1,... ,:L’d]]Ap)perfd'

Note that if R itself has characteristic p then Rfo = Rpert (Corollary 2.19). Let a C R
be an ideal and fix ¢ € Homp (R4, R). We say that a is p-compatible if

© ((aRfo)perfd) Ca.

If this holds for every possible choice of ¢ € Homg(RA4 , R), we say that a is uniformly
perfectoid compatible. This does not depend on the choice of A by Corollary 2.29.
Moreover, like in positive characteristic, these are closed under sums, intersections,
and minimal primes, see Proposition 2.34, Proposition 2.37. This allows us to prove
the following theorem:

Tueorem A (Corollary 2.40). Let (R, m) be a complete Noetherian local ring with
residue field of characteristic p > 0. If R is perfectoid pure, there are only finitely
many uniformly perfectoid compatible ideals.

In fact, there are finitely many ¢-compatible ideals for a surjective ¢ (Corol-
lary 2.39). If R is perfectoid pure and p is a uniformly perfectoid compatible prime
ideal of R, we say that it is a center of perfectoid purity of R. Not only are there finitely
many of them but we actually have a bound thanks to [ST10], see Remark 2.41. In pos-
itive characteristic, log canonical centers are centers of F-purity [Sch10]. The same
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holds true in mixed characteristic when R is quasi-Gorenstein (that is, when R has a
canonical module that is free of rank 1):

Tueorem B (Theorem 4.12, Corollary 4.14). — Let (R,m) be a complete Noetherian
normal quasi-Gorenstein local ring with residue field of characteristic p > 0. If R is
perfectoid pure then,

(a) The multiplier ideal § of R is a uniformly perfectoid compatible ideal of R.
(b) The ideals defining log canonical centers of R are centers of perfectoid purity.
(¢) If R has no uniformly perfectoid compatible ideal, then it is kit.

An important aspect of the theory in positive characteristic is that compatible
ideals detect whether the ring is normal: if a ring of characteristic p > 0 has no uni-
formly compatible ideal, it must be normal. This is also true in mixed characteristic:

Tueorem C (Proposition 5.2, Remark 5.3). — Let (R, m) be a complete Noetherian
local ring with residue field of characteristic p > 0. Then, the conductor ideal ¢ of R
is a nonzero uniformly perfectoid compatible ideal of R. In particular, if R has no
uniformly perfectoid compatible ideal, then it is normal.

We also show the existence of a special uniformly perfectoid compatible ideal
B(R) C R that detects perfectoid purity, analogous to the splitting prime of Aberbach
and Enescu [AE05]. This is defined in Definition 6.6 and has the following property.

Tueorem D (Proposition 6.7). Let (R, m) be a complete Noetherian local ring with
perfect residue field of characteristicp > 0. Then, f(R) # R if and only R is perfectoid
pure. In that case, B(R) is a prime and is the largest center of perfectoid purity of R.
In particular, R/B(R) is normal.

We then generalize this construction to create an analog of the Cartier core map
[Bad21, Bro23, CRF24] in Section 6.3. We also show that this map behaves well under
étale morphisms in Section 7.

Acknowledgements. — 1 would like to thank my advisor, Karl Schwede, for his con-
stant support and generous help during the preparation of this paper. His many
insights can be found throughout this work. I would like to thank Linquan Ma for his
help in improving and correcting a previous version of this paper. Thanks also to the
anonymous referee for valuable comments and suggestions.

2. DEFINTTIO\I AND FIRST PROPERTIES

Noration 2.1. For this whole paper, all rings are assumed to be commutative with
unity. If (R, m) is a local ring and M is an R-module, then M or M" is the classical
m-adic completion of M. If a is any other ideal of R, M”® is the classical a-adic
completion of M unless explicitly stated otherwise. Denoting by p the characteristic
of R/m, if S is an R-algebra, and a C S is an ideal, then a~ is the p-adic closure of a
in S.

JE.P. — M., 2095, tome 12



1384 A. FavoLLe

2.1. GENERALITIES ABOUT PERFECTOID RINGS AND IDEALS
Dermvimion 2.2 ([BS22, §10]). — Let R be a perfectoid ring and a C R an ideal.

We say that a is a perfectoid ideal if R/a is also perfectoid. If b C R is any ideal,
we define bperfq == ker(R — (R/b)perta) and b is perfectoid if and only if b = bpeyq.

We write down a couple of facts about perfectoid ideals. These are well-known to
experts but will be useful throughout the paper.

Prorosition 2.3. — Let f: R — S be a morphism between perfectoid rings. Then,
ker f is a perfectoid ideal of R.

Proof. — As the kernel of a map of two p-complete rings, ker f is also p-complete.
In particular, R/ker f is semiperfectoid so it surjects onto its perfectoidization by
[BS22, Th.7.4]. On the other hand, R/ker f < S factors through (R/ker f)perta SO
R/ker f — (R/ker f)perfa must be injective, hence an isomorphism. |

Prorosirion 2.4 ([DI24, Prop. 2.8]). Let R be a perfectoid ring and a C R an ideal
containing p. Then, a is perfectoid if and only if it is radical.

Prorosition 2.5 ([BS22, Ex.7.9], [CLM*22, Lem.2.4.3]). — Let R be a perfectoid
ring and f € R be such that f has a compatible system of p-th power roots, which we
denote by {f*/P™}. Then, (f)perfa = (f1/P7)~.

Prorosition 2.6. — Let R be a perfectoid ring and {a;};cr be a set of perfectoid ideals.
Then, ;e @ is a perfectoid ideal of R. Moreover, if I is a finite set and {b;};cs are
p-complete ideals of R, then (,(b;)perta = (), 0i)pertd-

Proof. — By [BIM19, Ex. 3.8 (8)], the product
H R/CIZ
el

is perfectoid. Now,

ﬂ a; :ker<R—> HR/C%)

el icl
so the result follows from Proposition 2.3. For the second part, since sheafification
commutes with finite limits, [BS22, Cor. 8.11] gives

(H R/bi) o H(R/bi)perfd~

[S)
icl P

In particular,

N(6:)perta = ker(R — 11 (R/bi)perfd) — ker <R — (H R/bi)perfd),

g iel i€l
which is precisely ([, 0i) jorsqr @8 desired. O
Prorosition 2.7. — Let R be a perfectoid ring and a and b be two perfectoid ideals

of R. Then, a+ b is also a perfectoid ideal of R.

JIEP. — M., 2095, tome 12



CENTERS OF PERFECTOID PURITY 1385

Proof. — We have an exact sequence

(2.7.1) 0— R/(anb) — R/a® R/b — R/ (a+b) — 0,

which we claim implies R/ (a + b) is also perfectoid. Indeed,
V(@)UV (b)UV (a+b) — Spec(R/anb)

is a universal topological epimorphism onto its image so it is an arc cover by [BM21,
Prop. 2.6] and [Ryd10, Th. 2.8]. Taking the sheafification in the arc topology and using
[BS22, Cor.8.11] and [BS17, Th.2.9], we see that the above sequence remains exact
after perfectoidization i.e., the sequence

0— R/(anb) — R/a® R/b — (R/(a+b)),eqq — 0
is exact. In particular,
R/(a+b6) — (R/(a+0))

must be an isomorphism. O

perfd

Cororrary 2.8. — Let R be a perfectoid ring and a = (1, ...,x,) a finitely generated
ideal. Assume furthermore that each x; has a compatible system of p-power roots in R.

Then7 Aperfd = (xl)perfd +-- 4+ (zn)perfd == (\/ Il)i + -+ (\/x )7'

Proof. — The first equality is a direct consequence of Proposition 2.7. The second
one is Proposition 2.5. O

Prorosirion 2.9 (cf. [CLM'22, Lem.2.4.3]). Let R — S be a p-completely flat
morphism between perfectoid rings. Let a = (h1,...,h.) be a finitely generated ideal
of R. Then,

r

(aS)perfd = Z ((hiR)perde)_ = ((aR)perde)_~

i=1
Proof. — By Proposition 2.7, it suffices to show this in the case a is principal, gener-
ated by h € R. This was proved in [CLM 22, Lem. 2.4.3]. O
2.2. COMPATIBLE IDEALS AND CENTERS OF PERFECTOID PURITY. — We are ready to define

the main object of study of this paper.

Norarion 2.10. — Let (R, m, k) be a complete Noetherian local ring with residue field
of characteristic p > 0. Fix a Cohen ring (a complete unramified mixed characteristic
DVR with residue field k) Ci, C R. Fix once and for all an inclusion Cy — W (k'/P7).
There is A = Ck[z1,...,z4], such that R is a module-finite A-algebra and Cj in A
maps to Cj in R (e.g. A a Noether—Cohen normalization or A — R). Let A be the
p-adic completion of

(Aééckw(kl/poo)) [pl/pm’x}/]o”7 . 733;/%0} ,
which is perfectoid by [BIM19, Ex. 3.8 (4)]. Now, let
Réo = (R XA Aoo)perfda

JE.P. — M., 2095, tome 12



1386 A. FavoLLe

which is a perfectoid R-algebra by [BS22, Th.10.11]. We write A for the class of all
A = Cixy,...,2q4] with R a module finite A-algebra such that Cy in A maps to Cj
in R.

Remark 2.11. Note that A, and therefore R;‘O, depend on the choice of a regular
system of parameter for A.

Derinition 2.12 ([BMP*24a]). — Let R, A be as in Notation 2.10. We say that R is
perfectoid pure if the natural map R — RZ is pure. By [BMP*24a, Lem. 4.23], this
does not depend on the choice of A.

Derinirion 2.13. — In the setting of Notation 2.10, let a C R be an ideal and ¢ be
in Hompg (R4, R). We call the data of (R, ¢) a pair. Let

Cléo = (aRéO) perfd”

If g@(afo) C a, we say that a is @-compatible. If B is any perfectoid R-algebra,
we say that a is B-compatible if for all ¢ € Hompg(B, R), ¢((aB)pera) C a. If a
is R4 -compatible for all choices of A € A, we say that a is uniformly perfectoid
compatible.

Remark 2.14. — Since R is complete, for any R-module M, a map R — M is pure if
and only if it is split by [Fed83, Lem. 1.2]. This is something we often use, especially
when dealing with a perfectoid pure R since this gives us the existence of a pair (R, ¢)
with ¢ surjective.

Remark 2.15. — In Proposition 2.31, we show that being uniformly perfectoid com-
patible does not depend on the choices of embeddings Cy C R and Cj, C W(kl/ poc).
Moreover, if k is perfect, there is no choice to be made since an embedding Cy, C R
is equivalent to choosing a p-basis for k and a lift of that p-basis to R (see [Hocl4,
Th. 23]). This justifies that the name uniformly perfectoid compatible does not have
a reference to the choices we made in Notation 2.10.

Derinition 2.16. — Let (R, ) be a pair with ¢ surjective. If p € SpecR is a
p-compatible ideal, we say that p is a center of perfectoid purity of (R, ). Simi-
larly, if p € Spec R is a uniformly perfectoid compatible ideal of R then we say that p
is a center of perfectoid purity of R if R is perfectoid pure.

We show that our notion of uniformly perfectoid compatible ideal agrees with the
classical notion of a compatible ideal when R is of characteristic p > 0, F-finite, and
F-pure.

Lemva 2.17. — Let R be a reduced local ring of positive characteristic p > 0 and
assume that it is F-finite. Let Ryert be the perfection of R i.e., Rpers = U, RYP" . Let
f € R, Then, the map R — FSfR, 1 — FZf is split if and only if there is a map
Rpers = R sending fl/”e to 1.

JIP. — M., 2095, tome 12



CENTERS OF PERFECTOID PURITY 1387

Proof. The backwards direction is straightforward as one can just restrict said
splitting to R'/?" to get a splitting of R — R'/P° = F¢R. Suppose, then, that R is e-th
Frobenius split along f, say by 11 : R'/?" — R and let ¢ = 1 0 (-fl/pe) : RYP" 5 R.
This is a splitting of the inclusion map R — RY?" (see e.g. [SS24, Prop.1.4.6)).
We define 9: Rperr — R as follows: for j > 1, let

e(i—1)

;2 RMPY — R/

ej e e(i—1)
PP s (p(r/P ))1/1’ !

and
P P s gy oy 0o (PP,

We need to show that it is well-defined i.c., that o ((r?")1/?") = $(r/P“7). This
follows from the fact that

Gi (PP = (7))

which is equal to 1/ PV We also have that 1 is an R-module homomorphism as it
is the composition of R-module homomorphisms and is a splitting since 1 (f1/7°) = 1
by definition so we are done. O

e(i—1) e(i—1 e(i—1
VP ()T = (1)) P

Remark 2.18. — Note that the proof implies that as long as R is F-pure, for any
e > 0, every map in Hompg(RY/?, R) extends to a map in Hompg(Rpert, R).

Cororrary 2.19. — Let R be as in Notation 2.10 and assume further that it has char-
acteristic p > 0, is F-finite, and F-pure. Then, Ryers = R4 Let a C R be an ideal.
It is uniformly compatible with the classical definition if and only if is also uniformly
perfectoid compatible with our definition. Moreover, our notion of compatible ideal of
pairs agrees with the classical notion when working with surjective maps. Indeed, let
Y1: RYPY — R be surjective, say ¢y (fY/?°) =1 for some f € R. Let 1: Ryt — R
be the corresponding splitting as in Lemma 2.17. Then, a is y-compatible if and only
if it is ¥y compatible i.e., ¥y (a*/P") C a.

Proof. — The first part follows from the definitions and Lemma 2.17 since
W (EYP™) /p = kM7

If Y(apers) C @, then 1 (al/?") = ¥(a'/?") C (aperr) C a. On the other hand,
if 41 (al/P) C a, letting 1; and ¢ be as in Lemma 2.17 for j > 0, we have

e . eG-1) e 1e e(i—1) el
(0= (ol ) = )
By induction, w(al/pEj) C a 50 P(aperr) C a. O

Prorosition 2.20. — Let (R,¢) be a pair and a C R be an ideal. Then, a is
@-compatible if and only if o descends to a map B: (R/a)? — R/a i.e., if and only

JE.P. — M., 2095, tome 12



1388 A. FavoLLe

if the diagram below commutes:

RA_—% LR

(2.20.1) l J

(R/0)4 ~— R/a

and the corresponding result also holds for uniformly perfectoid compatible ideals.
Moreover, there is a bijection between the p-compatible ideals of R containing a and
the B-compatible ideals of R/a.

Proof. — The ideal a is p-compatible if and only if the composition map
R4 23 R— R/a

factors through (R/a)? = R4 /aZ. The second part of the statement follows from
the isomorphism theorems. O

Lemma 2.21. Let (R, m, k) be a complete local Noetherian ring of residue charac-
teristic p > 0 and let B be any R-algebra. Let ¢ € Hompg(B, R) be arbitrary. Let
a C B and b C R be ideals. Then, p(a) C b if and only if p(@) C b where @ is the
p-adic closure of a in B.

Proof. — We only need show the “only if” direction. We know that b is p-adically
closed since R is p-adically complete and Noetherian. Then, b = [, o (b+(p™)). Now,
let x €a=),cy(a+(p")). We have
p(x) e N ela)+o((p") C N b+p e (B)C () (b+(p")) =0,
neN neN neN
as desired. ]

Prorostrion 2.22 (cf. [Sch10, Lem. 5.1]). — Let (R,¢) be a pair and let a C RZ and
b C R be ideals. The following are equivalent:
(a) ¢ (a) Cb.

(b) For any x € a, the composition
Xx

A A
R, — R, — R — R/b
18 zero.
(c) For any x € a, the composition

Homp(R, B) 2201, fom , (R4, R) Mometetd),

Homp (Rfo, R)
— Homp(R,R) &2 R

has image in b.

(d) For any = € a, the composition

(

Erjy — En — Bpop RA 22209, poop pA 1999, g

is zero, where ER is the injective hull of the residue field k of R over R and Eg/y is
the injective hull of k over R/b.

Furthermore, if it holds for a = b2 then b is p-compatible.

JIEP. — M., 2095, tome 12
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Proof. — The equivalence of (a) and (b) readily follows from the definition. The
implication (b) implies (c) is direct whereas if we do not have (a) then for some
x € al, ¢(x) ¢ b so (c) does not hold. The equivalence between (d) and (c) is a
standard application of Matlis duality. O

A similar result holds for uniformly perfectoid compatible ideals.

Proprosition 2.23 (cf. [Sch10, Lem.5.1]). — Let (R,m,k) be a complete Noetherian
local ring and let B be an R-algebra. Let a C B and b C R be ideals. The following
are equivalent:

(a) a gets sent to b under all maps ¢ € Homp (B, R).
(b) For any x € a and ¢ € Homp(B, R) the composition

BX% B2y R— R/b

18 zero.
(¢) For any x € a, the composition

Hompg(Xz,R)
_—

Hompg (B, R) Hompg (B, R) — Homg(R,R) 2 R — R/b

18 zero.
(d) For any x € a, the composition

id@R(XI)
E——

ER/b — Er — Er®r B Er®r B

is zero, where Eg is the injective hull of k of R over R and Eg/y is the injective hull
of k over R/b.

If R has residue characteristic p > 0 and one (equivalently all) of these hold for B
a perfectoid R-algebra, a = (bB)perta, we have that b is B-compatible. In particular,
keeping the notation of Notation 2.10, if this holds for B = R% for all possible choices
of A € A and for a = b%, we have that b is uniformly perfectoid compatible.

o0
Proof. — Same as Proposition 2.22. O
2.3. NEW CHARACTERIZATIONS OF UNIFORM PERFECTOID COMPATIBILITY. — In this sec-

tion, we show that uniform perfectoid compatibility can be checked on any choice of
A e AM and that it does not depend on the embedding choices that we made in
Notation 2.10.

This next lemma is well-known to experts but the author does not know a good
reference.

Lemma 2.24. — Let (R,m, k) be a Noetherian local ring with residue characteristic
p > 0. If A — B is a p-completely faithfully flat map of R-modules and E 1is the
injective hull of k over R, then AQr F — B ®g E is injective. In particular, if R is

(DThis proof was suggested by Karl Schwede and the author is very grateful to be able to include
it here.

JE.P. — M., 2095, tome 12



1390 A. FavoLLe

m-adically complete, Hompg(B, R) — Hompg (A, R) is surjective. Moreover, if A =R,
then A — B is pure.

Proof. — We use the same technique as in the proof of [BMP*24a, Lem. 4.5]. We know
that A/p™ — B/p" is pure for every n. Let E be the injective hull of R/m over R. For
every finitely generated submodule N of E, N is p"-torsion for some n. Therefore,
A®r N — B®pg N can be identified as A/p" @ g N — B/p" ®r N, which is injective
by the purity of A/p™ — B/p™. By taking a direct limit over all such N, we find
that A®gr E — B ®pg E is injective. The surjectivity of Hompg (A, R) — Hompg (B, R)
follows from Matlis duality. The last statement follows by [HR74, Prop. 6.11]. |

Lemma 2.25. Let (R,m, k) be a complete Noetherian local ring with residue char-
acteristic p > 0 and let a C R be any ideal. Let B — C' be a p-completely faithfully
flat morphism of perfectoid R-algebras. Then, a is B-compatible if and only if it is
C-compatible.

Proof. — By Lemma 2.24, we have a surjection Homp(C, R) — Hompg(B, R) and by
Proposition 2.9, (aC)perta = ((aB)pertaC) . Suppose that a is C-compatible and let
¢ € Homp (B, R). There is vy € Hompg(C, R) that extends ¢ to C. Then,

@((aB>Perfd) C dj((aB)Perfd) - w«aC)Perfd) ca,

so a is B-compatible. Now, suppose that a is B-compatible. By Lemma 2.21, it suffices
to show that (aB)pertaC gets sent to a under any map in Hompg(C, R). By Propo-
sition 2.23, it suffices to show that for any x € (aB)perta, ¥ € C, the following
composition is 0:

Homp(xzy,R)
_—

Hompg (C, R) Hompg (C, R) — Hompg(R,R) 2 R — R/a.

Since R — C' factors through R — B, the following diagram commutes:

Homp(xzy,R)

Hompg(C, R) Homp(C,R) ——— Homg(R,R) @ R

lHomR( Xy,R) l /

_

Hompg(B, R) T—— Hompg(B, R)

but by Proposition 2.23, the composition through the bottom has image in a, so we
are done. 0

Prorosition 2.26. Let (R,m, k) be a complete Noetherian local ring with residue
characteristic p > 0 and a C R be an ideal. Let B be a perfectoid R-algebra. Then,
there is a perfectoid B-algebra C' that contains a compatible system of p-th power
roots of a given subset of elements of R such that a is B-compatible if and only if it
is C-compatible. In fact, we can even assume that C' is absolutely integrally closed.
We can also assume that C' is m-adically complete.

JEP. — M., 2095, tome 12
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Proof. — The first part follows from Lemma 2.25 and André’s flatness lemma
[And18b, Th.2.5.1], [BS22, Th.7.14]. The second part follows from the facts that
C — C is faithfully flat and that C is perfectoid [BIM19, Ex. 3.8]. |

Lemva 2.27. — Let R and A € A be as in Notation 2.10. Let hy,...,h, € R be
arbitrary. Let B == Aly1,...,yr] and make R into a B-algebra by sending y; to h;.
Then, the natural morphism R — RE is p-completely faithfully flat.

Proof. — There are natural ring maps
(2.27.1) R— R®4 As — R®4 Boo — R®p Bow — RE,

so by the universal property of perfectoidization, the map R — RZ factors through
R4 . By André’s flatness lemma ([And18b, Th.2.5.1], [BS22, Th.7.14]), there is a
perfectoid R;“o—algebra, say C, such that Rg‘o — C is p-completely faithfully flat
and C' contains a compatible system of p-th power roots for each of the h;s. This
gives a map A, to C and then a map B, — C by sending the yl-l/pes to the p°-th
power root of the h;s in C' in a compatible way. We also have a natural map R — C
and therefore maps from all the rings in (2.27.1) to C that commute with each other.
This gives us a factorization R — R4 — RE — C so the map R4 — RZ is also
p-completely faithfully flat. O

Prorosition 2.28. — Let R and A € A be as in Notation 2.10. Let a C R be an ideal
and let hy,..., h, be arbitrary elements of R. Let B = Alyi,...,yr] and make R
into a B-algebra by sending y; to h;. Then, a is RA -compatible if and only if it is
RE -compatible.

Proof. — This is direct from Lemma 2.27 and Lemma 2.25. O

Cororrary 2.29. — Let R be as in Notation 2.10 and a C R an ideal. Fiz any A € A.
If a is compatible with all maps in Homgr(RA, R), then a is uniformly perfectoid
compatible. That is, one can test uniform perfectoid compatibility on only one A € A.

Proof. — Let B be any other ring in A. There is a regular local ring C' with
C=Alzy,...,z] = Bly1,---,ys]

for some r,;s € N such that the maps A — R and B — R factor through C — R.
Here, we are using that the Cohen ring C) for k that we fixed is in A and B and
maps to the same C} in R. By Proposition 2.28, a is R2 -compatible if and only if it
is RS -compatible if and only if it is RZ -compatible. O

Lemva 2.30. — Let R be as in Notation 2.10, a be an ideal with generators hy, ..., h,.
Let B be a perfectoid R-algebra that has a compatible system of p-th power roots for
hi,...,h,. We denote these roots by {x;.} where :Ufe = h;. If for alle > 0, i =
1,...,7, ¢ € Hompg(B, R), we have ¢(z; ) C a, then a is B-compatible. In the special
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case where a = p is a prime ideal, it suffices to check that for alle >0, i=1,...,r,
the map
R, — B,
(2.30.1)
1+— Tie

is not pure. In particular, if B = R4 for some A € A, then a is uniformly perfectoid
compatible.

Proof. — By Corollary 2.8, we know that (aB)perta = (3i_; D (2ie)) . Suppose
that a is not compatible with ¢ € Hompg(B, R). Using Lemma 2.21, this means that

w(é ;m;a) ¢ a.

In particular, there must be i and e with ¢((x;.)) ¢ a so there is y € B with
o(yzie) ¢ a. By letting ¢ == o(y - —), we have that ¢(z;.) ¢ a, a contradiction.
If a = p is a prime ideal then the above would imply that 1), is a splitting of the map
R, — B, sending 1 — x; ., also a contradiction. The last statement follows directly
from Corollary 2.29. O

Prorosition 2.31. — Let R be as in Notation 2.10 and let a C R be any ideal. Then, a
is uniformly perfectoid compatible if and only if for every perfectoid R-algebra B, a is
B-compatible. In particular, for any ideal a C R, being uniformly perfectoid compatible
does not depend on the choices of embeddings Cj, — R and Cj, — W (k'/?7).

Proof. — We only need to show that if a is uniformly perfectoid compatible, then
for any perfectoid R-algebra B, a is B-compatible. We show the contrapositive, so
let B be any perfectoid R-algebra and suppose that there is ¢ € Hompg(B, R) with
¢((aB)perta) ¢ a. By Proposition 2.26, we can assume that B is m-adically com-
plete and has a compatible system of p-th power roots for all the elements of R.
By Lemma 2.30, we can assume that there is x € a with a p°-th root y € B such
that ¢(y) ¢ a. By the proof of [BMP*24a, Lem.4.23|, for any A € A, there is a
map A, — B making B into an A.-algebra that agrees with the map R — B
when restricted to (the image of) A. Now, make R into an A[z]-algebra by sending
z to x. By sending the p-th power roots of z in A [zl/poc] to a compatible system
of p-th power roots of x in B that has y as its p®-th root, we extend A, — B to
Alz]o — B. By the universal properties of tensor products and perfectoidization,
this gives a ring map i: Rfo[[zﬂ — B. Let ¥ :=pou1: Rfoﬂz]] — R. Denoting by w the
p°-th root of z in R4 that goes to y in B, we have ¢(z) ¢ a so a is not uniformly
perfectoid compatible. O

2.4. INTERSECTIONS, SUMS, AND ASSOCIATED PRIMES. — In this section we show that,

just like in positive characteristic, compatible ideals behave well under basic ideal
operations.
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Prorosition 2.32 ([BMP*24a, Lem. 4.29]). If R is perfectoid injective, in particu-
lar if R is perfectoid pure, then R is reduced and weakly normal.

Cororrary 2.33. Let (R,¢) be a pair and a C R a p-compatible ideal. If ¢ is
surjective, then a is radical. In particular, if R is perfectoid pure, then the uniformly
perfectoid compatible ideals of R are radical.

Proof. — The surjectivity of ¢ implies that of 7: R2 /a? — R/a as in Proposi-
tion 2.20. But @ being surjective implies that R/a is perfectoid pure so we are done
by Proposition 2.32. The statement about uniformly perfectoid compatible ideals
then follows from the fact that R is complete so there is a splitting p: R2 — R for
some/any A € A. O

Prorosition 2.34. — Let (R, ) be a pair and {a;};cr be p-compatible ideals. Then,
Nicr @i and Y, a; are -compatible. The corresponding result also holds for uni-
formly perfectoid compatible ideals.

Proof. — By Proposition 2.6, (,c;(a;)4, is perfectoid. Then,
A
P((Na)l) co(N@d) c Ne (@) c Na
iel iel iel il

s0 (V;er @i is ¢ compatible. Since we are in a Noetherian ring, any sum of ideals is
finite. In particular, to show . ; a; is ¢-compatible, it suffices to show that if a and
b are two @-compatible ideals, then so is a + b. Using Proposition 2.7,

p((a+b)%) o (ak +b5) = (a%) + ¢ (05) Ca+b,
so a+ b is also compatible. O

To show that compatible ideals of pairs are closed under associated primes, we will
first need the corresponding statement about uniformly perfectoid compatible ideals.

Prorosition 2.35. Let R be as in Notation 2.10. Let a C R be a uniformly perfec-
toid compatible ideal. Then, the minimal primes q1,...,q, are also uniformly perfec-
toid compatible ideals.

Proof. Without loss of generality, it suffices to show that q; =: q is uniformly
perfectoid compatible. Let {hi,...,hs} be a set of generators for q. Let A € A be
such that RZ has a compatible system of p-th power roots for the h;s which we denote
by {zj.} where zfc = h;. By Corollary 2.29, it suffices to show that g is compatible
with all ¢ € Hompg(RZ, R). Fix w in ((;2; ;) ~ q and ¢ € Hompg(R%, R). We have

we (2, RE) = ¢ (wzjRe) C o (a) Cacq.
The first containment follows from noting that (wz; )" C = wP h; € a and the fact

that perfectoid ideals are radical. Since q is prime and w ¢ g, we must have that
© (zj,eRfo) C q. Now,

A A
qoo = (Z (ijeRoo)) )
Jre
so we are done by Lemma 2.21. |
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Cororrary 2.36. Let R be as in Notation 2.10. Then, the minimal primes of R
are uniformly perfectoid compatible.

Prorosrrion 2.37. Let (R, @) be a pair and a C R a compatible ideal. Then, the
minimal primes q1,...,q, of a are also w-compatible.

Proof. — By Proposition 2.20, ¢ descends to a map %: (R/a)? — R/a. By Corol-
lary 2.36, the associated primes of R/a are uniformly perfectoid compatible hence
p-compatible. But these are the images of the g; in R/a so by Proposition 2.20, the
q;s are w-compatible. ]

We now recall a classical result of Enescu and Hochster.

Prorosition 2.38 ([EH08, Cor. 3.2]). A family of radical ideals in an excellent local
ring closed under sum, intersection, and primary decomposition is finite.

Cororrary 2.39. — Let (R, ) be a pair. If ¢ is surjective, then there are finitely
many p-compatible ideals.

Proof. — This is immediate from Proposition 2.38, Proposition 2.37, and Proposi-
tion 2.34. O

Cororrary 2.40. — Let R be as in Notation 2.10 and assume further that it is perfec-
toid pure. Then, there are only finitely many uniformly perfectoid compatible ideals.

Proof. — This follows from Corollary 2.39. O

Remark 2.41. — In fact, if n is the embedding dimension of R and R is perfectoid
pure, [ST10, Th. 4.2], says that there are at most ('}) centers of perfectoid purity of R
of height d. Similarly for the centers of perfectoid purity of (R, ) for a surjective .

3. PERFECTOID PURITY ALONG ELEMENTS

In this section, we study a variant of perfectoid purity and link it to compatible
ideals.

Derinrion 3.1 (cf. [Ram91], [Smi00a]). — Let R be a Noetherian ring admitting a
perfectoid algebra B, and let = be an element of B. If the R-module map R — B
sending 1 to x is pure, we say that R is perfectoid pure along x.

We now state a well-known fact about pure maps in our specific situation since we
will repeatedly use it.

Lemva 3.2, — Let R be a Noetherian ring with p in its Jacobson radical, B a per-
fectoid R-algebra, and C be a perfectoid B-algebra. Let b € B and ¢ € C' be such that
the R-module map R — C' sending 1 to c¢ factors through the R-module map R — B
sending 1 to b. If R is perfectoid pure along c, then it is perfectoid pure along b.
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Prorosition 3.3 (cf. [BMP*24a, Lem. 4.5]). Let R be a Noetherian ring with p in
its Jacobson radical, r € R, and B a perfectoid R algebra. Suppose that for some
e € Nyg, r has an p°-th root in B, which we denote by x. If R is perfectoid pure
along x, then there is a perfectoid B-algebra B’ that contains all the p-th power roots
of v such that R is perfectoid pure along xrp: where xg/ is the image of x in B’'.
In fact, we can even assume that B’ is absolutely integrally closed. Moreover, if B
already contains some other p-th power root y of r that is compatible with x, we can
choose B’ that has a compatible system of p-th power roots of y that is also compatible
with x.

Proof. — The proof of [BMP*24a, Lem. 4.5] works mutadis mutandis here. O

Prorosirion 3.4 (cf. [BMP*24a, Lem.4.8]). — Let (R, m) be a Noetherian local ring of
residue characteristic p > 0, r € R, n € N5 0. Then, there is a perfectoid R-algebra B
that contains an n-th root x of r such that R is perfectoid pure along x if and only if
there is a perfectoid R algebra B’ that contains an m-th root xg of r such that R is
perfectoid pure along g .

Proof. — Again, the proof is essentially the same as in [BMP*24a, Lem. 4.8]. Suppose
that there is a perfectoid R-algebra B that contains an n-th root z of r with R
perfectoid pure along x. Then, by [CS24, Prop. 2.1.11 (e)], Bisa perfectoid E—algebra
and the completion of the pure map R — B, 1 — x is pure: E = E(f{/m) =
E(R/m) >  E®R BXE® B is injective. On the other hand, suppose that there is
a perfectoid ﬁ—algebra B’ containing an n-th root xp: of r with R perfectoid pure
along xp/. Since the map R — Ris faithfully flat, it is pure, so the composition map
R — B', 1+ xp is pure. O

Prorosirion 3.5 (cf. [BMP*24a, Lem. 4.23], [Yos25, Prop.2.9]). — Let R be as in
Notation 2.10. Let h € R be any element, e € Nsg, and suppose that there is a
perfectoid R-algebra B such that h has a p°-th root, say x, in B such that R is
perfectoid pure along x. Then, there is a choice of A € A such that ROAO has a p®-th
root of x, say y, and R is perfectoid pure along y.

Proof. By Proposition 3.3 and Proposition 3.4, we can assume that B is absolutely
algebraically closed and m-adically complete. By the proof of Proposition 2.31, there
is an A € A such that RY has a p°-th root y of h and R — B factors through
i: RZ — B with i(y) = 2. The result then follows from Lemma 3.2. O

Prorosirion 3.6. — Let (R,m) be as in Notation 2.10. If m is a uniformly perfectoid
compatible ideal of R, then for all h € m and n € Ny, there are no perfectoid
R-algebra B with an n-th root x of h such that R is perfectoid pure along x.

Proof. — Let B be any perfectoid R-algebra. The ideal m contains p so (mB)pera =
vmB by Proposition 2.4. If m is uniformly perfectoid compatible, then by Proposi-
tion 2.31 for any ¢ € Hompg(B, R),

w(\/nﬁ) cm,
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so for no root = of an element of m, the map R — B sending 1 to x is split. Since R
is complete, this means that it is never pure by [Fed83, Lem. 1.2]. g

CoroLLARY 3.7. Let R be as in Notation 2.10, p € Spec R with p € p. If pﬁp is a
uniformly perfectoid compatible ideal of Ry then p is a uniformly perfectoid compatible
ideal of R.

Proof. — This follows from Proposition 3.6, Proposition 3.4, [BIM19, Ex. 3.8 (7)], and
Lemma 2.30. O

4. CONNECTION WITH LOG CANONICAL CENTERS

In this section, we prove that the log canonical centers of a perfectoid pure ring
are centers of perfectoid purity. Many of the statements and proofs in this section are
adaptations of the ones in [BMP*24a].

Derinition 4.1. — Let X be a normal Noetherian integral scheme with a dualizing
complex w¥ and a canonical divisor Kx. Let A be an effective divisor on X with
coefficients < 1. We say that (X, A) is log canonical if Kx + A is Q-Cartier and for
every proper birational map 7: Y — X with Y normal, we have that the coefficients of
Ky —7*(Kx + A) are > —1. Equivalently, for every proper birational map 7: ¥ — X
with Y normal and reduced exceptional divisor E, we have that

See for instance [KM98, Cor. 2.31].

Remark 4.2. — If X =Spec R is affine with R local and quasi-Gorenstein (so Kx ~0),
then (4.1.1) is implied by 7, (wy (E — |7*(A)])) = wx.

DeriNiTION 4.3, Let X = Spec R be a normal Noetherian integral scheme with a
dualizing complex w¥ and a canonical divisor Kx. A log canonical center Z C X is
a closed subscheme of X such that X is log canonical at the generic point of Z and
for any f € Jz, the ideal of R defining Z, and any 1 > ¢ > 0, the pair (X, ediv(f))
is not log canonical at the generic point of Z. We will abuse notation and say Jz is a
log canonical center of R.

Lemva 4.4 (cf. [BMP*24a, Lem.5.3]). — Let R, A be as in Notation 2.10. Let h € R
and assume that for some y in a reqular system of parameter of A, y — h. In par-
ticular, we can assume that Rfo contains a compatible system of p-th power roots
for h, which we denote by {z.} where zP° = h for e € Nsg. Fiz e € Nug and let
S = R[x]/2P" — h. Let m: Y — X = Spec S be a birational map. Let Z be the subset
of X outside of which m is an isomorphism and set E = 7= (Z)eq. Let A := divz
on'Y and C* be the following pullback in the (unbounded) derived oco-category of
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S-modules

C* —— 5 RI(Y,0y)

| |

RINZ,0;) —— RI(E,Op).
Then, the map R — R4, 1+ z, factors as
R—S—C"— R,

where the first map is multiplication by x and the second is the natural map S — C*.

Proof. — We need to show that C* maps to RZ. The (ring) morphism R — R4
extends to a morphism S — RZ by sending # — z.. By [BMP*24a, Lem. 5.3], there
is a map C* to Sperta. By the universal property of perfectoidization, there is a map
Spertd —* Rfo and the result follows. O

Levva 4.5 (cf. [BMP*24a, Prop.5.15]). — Let (R,m) be a Noetherian normal quasi-
Gorenstein domain with a dualizing compler wy. Let h € R be arbitrary and let
S = R[x]/zP" — h for some e > 0. Note that S is Sy and quasi-Gorenstein. Let
f: SpecS — Spec R be the induced map. Suppose that for any birational p:Y —
Spec S such that

(a) p is an isomorphism outside a set V(J) C Spec S of codimension > 2,

(b) Y is Gy and Ss,

(¢) if F = pu=Y(V(J))red, then F has pure codimension 1 and Y is reqular at each
generic point of F' (that is, F' can be viewed as a divisor),

we have that the composition
(4.5.1) futts (- Homy (Ip,wy)) — fu(z - ws) — wr

induced by the map R — S, 1 — x is surjective. Then, if |1/p¢divh] is 0 on R, the
pair (R,1/p®div h) is log canonical.

Proof. — This is essentially the same proof as [BMPT24a, Prop. 5.15]. Let m: X —
Spec R be a blowup with X normal and which is an isomorphism over U = X \ 7(D)
for some (exceptional) divisor D on X. Let I C R be an ideal whose blowup produces
m: X — SpecR. Let Yy — SpecS denote the blowup of IS and note we have a
finite map Yy — X. Let V' C Y be the inverse image of U and note that it is quasi-
Gorenstein since it is an open subset of Spec S. Let i: V' — Y} be the inclusion. Let C
be the integral closure of Oy, in .0y ie., C = O{\fo N 1,0y where the intersection is
taken in the fraction field of Y. Let Y := Specy, (C). Then, Y is Gy and S, and has a
finite map to Yy since our base is excellent. Therefore, there is a finite map g: ¥ — X
and the induced map Y — Spec S is an isomorphism over V. Let E and F denote
the reduced exceptional sets of the maps X — Spec R and Y — Spec S, respectively.
By [BMP*24a, Th.5.14, Prop.5.15], F' is a divisor in the sense of [Kol13]. We have

JE.P.— M., 2095, tome 12



1398 A. FavoLLe

the following commutative diagram

F—" +E

[ [

y — 7 X

[ |-

Spec S *f» Spec R

where all the horizontal maps are finite, by construction. This induces the following
diagram of canonical modules

0 Wy gewy (F) — howp

| l

OEOX(Kx)g)Ox(KX—FE);)wE

where the notation Homy (Jp,wy ) = wy (F) = Oy (Ky + F) is reasonable as Y is Gy
and Ss.

Craim 4.6. The image of g.(z - wy (F')) = Ox(Kx + E) is contained in the sheaf
Ox(KX + FE — |_1/pe div hJ)

Proof. — Since all sheaves are Sa, we can check this in codimension 1. On V, we can
reduce to the affine case and there is nothing to show. At the generic points of F', Y
is normal and the result follows from our choice of rounding. ]
By pushing forward to R, we get a map
TG (T - wy (F)) — m(Ox(Kx + E — |1/p®divh])) — R = wpg.
But this can also be factored as
fatts(z - Homy (Ip,wy)) — fu(z - ws) — wr,

which we assumed to be surjective. Then, m,(Ox(Kx + F — [1/p¢divh])) — wg is

surjective and since X was arbitrary, R is log canonical. (|

Remark 4.7. Note the proof actually shows that it suffices to check (4.5.1) for all
birational maps ¥ — Spec S built from a blowup 7: X — Spec R with X normal as
in the proof.

Levva 4.8 (cf. [BMP*24a, Claim5.5]). — Let R, h, e, and S be as in Lemma 4.4.
Let X — Spec R be a blowup with X normal. Let wy be a dualizing complex for R and
let D denote Grothendieck duality RHompg(—,wy). Constructing Y as in Lemma 4.5
and C* from the birational map p:' Y — Spec S, as in Lemma 4.4, we have

H™4(D(C*)) = (Y, wy (F))

for F the reduced exceptional divisor of . The corresponding map I'(Y,wy (F)) — wr
factors through T'(Y, z - wy (F)). Here, we interpret wy (F) as in Lemma 4.5.

Proof. — This follows from [BMP*24a, Claim 5.5] and the choice of map R — C*. [
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Before our next lemma, we need a result about pure maps in the derived category,
which we state for the convenience of the reader.

Levva 4.9 ([BMP*24a, Prop.2.11]). — Let R be a Noetherian ring, a C R an ideal,
and let f: M — N be a pure map in D(R) in the sense of [BMP'24a, §2.1]. Then,
H'RI' M — H'RI N is injective for all i.

Prorosirion 4.10 (cf. [BMP*24a, Prop.5.4], [KSS10]). — Let R, A, h, e be as in
Lemma 4.4. Let p € Spec R be a prime that contains p. If R is quasi-Gorenstein and
e is such that |1/p®divh] is 0 on R, the map R, — R;“om sending 1 to h'/?" is pure,
then (Ry,1/p°div h) is log canonical.

Proof. — By taking the p-adic completion of R, and Rfo)p and using Proposition 3.4,
we can reduce to the case where p is the maximal ideal. Let C* be as in Lemma 4.8.
The map R — C* is pure by Lemma 4.4 so HL(R) — HZ(RI'(X,C"*)) is injective by
Lemma 4.9. Then, the dual map f.pu.(z - wy (F)) = wx is surjective for f and p as
in Lemma 4.5 and the result follows from Lemma 4.5. (|

Prorosirion 4.11 (cf. [BMP*24a, Prop.5.4], [KSS10]). — Let R, A, h, e, S, and z
be as in Lemma 4.4. Let p € Spec R be a prime that does not contain p and assume
that h € p. If R is quasi-Gorenstein, e € Nsg is such that [1/p®divh] is 0 on R, and
the map Ry, — Rfom sending 1 to h'/?" is pure, then the pair (Rp,1/p°div h) is log
canonical.

Proof. Let m,: X, — Spec R, be a blowup, say of the ideal I/ C R, and let
m: X — Spec R be the blowup of Spec R at the ideal I N R. Assume that both X
and X, are normal. Keeping the notation of Lemma 4.5 applied to 7 and construct
S, C* as in Lemma 4.4 and Y, F with maps f: SpecS — Spec R and u: Y — Spec S
as in Lemma 4.5. Let C} := C* ®g Ry,. Note that C} is the following pullback in the
(unbounded) derived oco-category of Sy-modules

Cy —— RI(Y}, Oy,)

| J

RI(Zy,0z,) — RI(Fy, Op,).

where X,, Y}, and F}, are the base changes of X, Y and F, respectively, from Spec R
to Spec Ry,. Let pp: Y, — Spec Sy and f,: Spec S, — Spec R, be the corresponding
maps. Since the proof of Lemma 4.8 (cf. [BMP*24a, Claim 5.5]) did not make use of
the p-completeness of R, letting wkp be a normalized dualizing complex for R, and D
denote Grothendieck duality RHompg(—, w;%p), we have

H™"(D(C")) =T(Yp, wy, (Fy))
for r = dim R,. Since the multiplication-by-z map R, to C} is pure, by Lemma 4.9,

the corresponding map Hyp (R,) — Hyp (Cy) is injective and its dual is surjective.
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Then, the map
(fo)w(ptp)s( - Wy, (Fp)) — WR,

is surjective and by Lemma 4.5 and Remark 4.7, we are done. (|

Tueorem 4.12 (cf. [Sch10, Th.6.7]). — Let R be as in Notation 2.10 and assume
further that it is quasi-Gorenstein and normal. Let p € Spec R be a log canonical
center of R. Then, p is uniformly perfectoid compatible. In particular, if R has no
uniformly perfectoid compatible ideal, it must be klt.

Proof. — By Lemma 2.30, it is enough to show that for A € A with a subset of a
system of parameters mapping to generators {hy,...,h,} of m, the maps R — R%,

1+ hg/pe are not pure for e > 0. Since none of the pairs (R,div(h'/?")) are log
A

00,p?
Proposition 4.11 so we are done. O

canonical, the maps R, — R 1 — h'P° are not pure by Proposition 4.10 and

We believe that the following lemma well-known to experts but we could not find
a reference.

Lemma 4.13. — Let R be a normal Q-Gorenstein log canonical ring and suppose that
it has finitely many log canonical centers. Then, the multiplier ideal § C R is an
intersection of ideals of log canonical centers of R.

Proof. — Let f: Y — X := Spec R be a proper birational map. Using that R is log
canonical, we can write [Ky — f*Kx] as > a;FE; — > b;jF; where each E;, F} is a
prime divisor, a; > 0 and b; = 1. Then,

L(Y,0y([Ky — fKx])) =T(Y,0y (=X Fj)) = NL(Y, 0y (- E)),

J

which is a finite intersection of ideals of log canonical centers. Taking the intersection
over all proper birational maps f: Y — X gives the desired result. ]

Corovrrary 4.14. — Let R be as in Notation 2.10 and assume further that it is perfec-
toid pure, quasi-Gorenstein and normal. Then, the multiplier ideal J C R is uniformly
perfectoid compatible.

Proof. — Since R is perfectoid pure, it has finitely many log canonical centers by
Theorem 4.12; Corollary 2.40 so we are done by Lemma 4.13, Theorem 4.12, and
Proposition 2.34. O

Remark 4.15. — Based on the positive characteristic result [Sch10], we expect this

to hold even when R is not quasi-Gorenstein. A first step could be to generalize this
to the Q-Gorenstein case with index not divisible by p as in [BMP*24a, Cor. 5.11].
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5. NormMALITY

In this section, we show that the conductor ideal is uniformly perfectoid compatible,
implying that the presence of compatible ideals detects (the failure of) normality.
We use this to deduce various properties of perfectoid pure rings.

Lemma 5.1. — Let R and A be as in Notation 2.10 and RN be the normalization
of R. Let ¢ be the conductor ideal of R i.e., the largest ideal of R that is also an ideal
of RN . Then, cfo is an ideal both of Rfo and (RN ®4 Aco)pertd = RQA.

Proof. — We first show that R ®4 A, ¢ ®4 As, and RN ®4 A, are all derived
p-complete A-modules. Note that R, ¢, and RY are all finitely presented A-modules
since R is excellent hence N-1 and Noetherian. This implies that R®4 Ao, RY ®4 Aoe,
and c® 4 Ay are all finitely presented A,,-modules. Since a finitely presented module
over a derived p-complete ring is derived p-complete (see, e.g., [Ked24, Cor.6.3.2]),
we are done. Now, by [BS22, Cor. 8.12], we have a pullback diagram

A N,A
ROO ROO

J J

((R/¢) ®4 Asc)perta — (RN /¢) ®4 AOO)pcrfd

which we claim implies that ¢Z is both an ideal of R4 and RY:4. Indeed, the diagram
can be rewritten as
R4 ——— RNA

Rf}/cg o <RN£>;.
Since this is a pullback diagram, we have that
R% = {(z,y) € R&/eso x RUM i(w) = n(y) },
where the map R4 — RZ /¢4 is the projection onto the first coordinate. In particular,
% = {(0.y) € RY /eh x R | m(y) = 0}
Then, the image of ¢2 in RY>4 is exactly the kernel of the quotient RY-4 — (RN /¢)4,

as desired. O

Prorosirion 5.2 (cf. [BK05, Exer.1.2.4 (E)]). Let (R, ) be a pair and ¢ C R be
the conductor ideal. Then, ¢ is @-compatible for all maps ¢ € Homgr(R2, R). In par-
ticular, if there are no non-trivial p-compatible ideals, R is normal.

Proof. By Lemma 5.1, if s € RV then scZ C ¢Z where we abuse notation and

think about all these elements as part of RY . Then, if W is the set of nonzero divisors
of R and
ow =@ @ridyw-15: R @ W'R — R@r W IR,
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seeing R as a subset of W IR~ Ropr W IR viar — r ®g 1 gives

sp(clh) = spw () = pw(sca) C ow(c) = p(clh),

s0 ¢(c2) C ¢ hence ¢ is compatible. Now, since ¢ = Anng (RN /R), it is generically K
hence nonzero. In particular, if R has no nontrivial compatible ideals, ¢ = R so R is
normal. (|

Remark 5.3. Note that this is not dependent on the choice of ¢ (nor on the choice

of A € A) so the conductor is uniformly perfectoid compatible. In particular, if R has
no uniformly perfectoid compatible ideals then it is normal.

Remark 5.4. — It is well-known that
¢ = Im(Homp, (RY, R) 2222, ).

This is a specific case of a trace ideal, which are known to be compatible in positive
characteristic (see for instance [PS23, Lem. 2.2]). It is a natural question to ask if this
is also true in mixed characteristic. That is, if R — S is a finite extension of complete
local Noetherian rings, is

Im (HomR(S, R) £, R)

a uniformly perfectoid compatible ideal of R? Unfortunately, it is not true in this
generality. Indeed, let R = Z,[z,y,2]/2® + y> + z* with p = 1 mod 3. This is a
perfectoid pure ring by [BMP'24a, Ex.7.3] since going modulo p is the (z,y, 2)-
adic completion of the cone over an ordinary elliptic curve. Then, all the uniformly
perfectoid compatible ideals have to be radical by Corollary 2.33. Let S = R with
map R — S induced by multiplication by p™ on the elliptic curve. By [BMP123,
Ex. 4.14], the image of the trace map is the ideal (p™,x,y,z) which is not radical
and therefore not compatible. In fact, even its radical, (p,z,y, 2), is not uniformly
perfectoid compatible. Indeed, since R/p is F-pure, the perfectoid pure threshold of
(R,div(p)) is 1 by [Yo0s25, Rem. 2.10]. In particular, there is a perfectoid R-algebra B
such that the map R — B, 1 — p is pure so p is not in any uniformly perfectoid
compatible ideal.

Cororrary 5.5 (cf. [Sch10, Prop.7.11], [BKO05, Exer. 1.2.E (4)]). — Let ¢: RY — R
be an R-linear map and RYN be the normalization of R. If R is reduced, ¢ has a unique
extension o~ : RN:A — RN . In particular, (RN, ) is perfectoid pure if so is (R, ¢).

Proof. — Let a € ¢ be a nonzero divisor and K be the total ring of fraction of R.
We define ¢™: RYA — K as ¢V (x) = ¢(xa)/a. We first show that this is an
RN-linear map. Let W be the set of nonzero divisors of R, oy = ¢ ®p idy -1, and
s, © € RN. Then,

)= s w(zfa) _ @w((lxa) _ ww(axas) _ @(ﬂ;sa) _ N
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N,A
Moreover, for z,y € Ro;“,

o (ot y) = w(m: ya) _ p(za) ;L plya) w(za) n w(za) — @) + N ().

We want to show that the image of ¢V lands in RY. For any c € «,
co™(x) = N (cx) € ¢ C R.

More generally,
n n—1 n—1
c(@M(@)" = (@) (¢" (@) (M (@),

which implies ¢ (™ (2))" C ¢ (wN(x))n_l, and so by induction ¢ (™ (2))" C ¢ C R.
If R is a domain then by [HS06, Prop. 2.4.8], ¢ (z) is integral over R, as desired. Else,
let py,...,p, be the minimal primes of R. By Proposition 2.35, each p; is uniformly
compatible so by Proposition 2.20, ¢ descends to a map ¢;: (R/p;)4 — R/p;. Since a
was chosen to not be a zero divisor, it is not in any of the p;s. Moreover, for any
x € (R/p;)N, using the fact that

RY = (R/p1)N x -+ x (R/pa)Y

(see e.g. [HS06, Cor. 2.1.13]), we see that ax € R/p,. In particular, the above reasoning
can be used to extend ¢; to a map ¢ (R/p;)No4 — (R/p;)". By the proof of Proposi-
tion 2.6, we have that R4 = [T, (R/p;)4,. We claim that the extension we are looking
for is ¢ = [[; ¢V Since R is reduced, we have an inclusion R < R/p; X - -+ X R/py,.
For r € R4,

v(r) = [[ ¥ ) = [Teitar)fa=T[ ) modp.

so 1(r) is precisely the image of ¢(r) in [], R/p;, as wanted. It remains to show the
uniqueness of such map. Suppose ¢} and ¢} are both extensions of ¢ to RY>4. Then,
for any ¢ € ¢ a nonzero divisor,

et (x) = 7 (ze) = p(ac) = 3 (we) = cpy (x)
and since ¢ is a nonzero divisor, we must have oI () = @& (z). In particular, the
definition of ¢ does not depend on the chosen a € c. O

We can also use the compatibility of the conductor ideal to show that perfectoid
pure rings are (WN1). When R has char p > 0 and is F-split, this was shown by
Schwede and Zhang in [SZ13]. The mixed characteristic proof follows their strategy.

Derintrion 5.6 ([CM81]). — Let (R, m) be a reduced local weakly normal ring. We say
that (R, m) is (WN1) if the normalization morphism R — R" is unramified in codi-
mension 1. That is, for every prime ideal q of height 1 in RV, and p = q N R,
pRY = qRY and R,/pR, C RY /qRY is separable.

Prorosition 5.7 (cf. [SZ13, Th.7.3]). — Let (R, ) be a pair and suppose that ¢ is
surjective. Then, R is (WN1). In particular, if R is a perfectoid pure complete local
Noetherian ring, then it is (WN1).
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Proof. By Proposition 2.32, we only need to show that R — R is unramified in
codimension 1. Localization commutes with normalization so we may assume with-
out loss of generality that (R, m) is local of dimension 1 and so RY is semilocal of
dimension 1. Note that R (and therefore RY) may now have characteristic 0. Let
(S, 1) be the localization of RY at one of its maximal ideals (which has to lie over m).
Since R is perfectoid pure, the conductor is radical in R and R by Corollary 2.33,
Proposition 5.2, and Corollary 5.5. In particular, ¢ = m and ¢S = mS is also radical
and therefore must be equal to n. It remains to show that R/m — S/n is separable.
If R/m has characteristic 0, there is nothing to show so assume it has characteristic
p>0ie., p€m=c We have a commutative diagram

N,A /A N
RYJeA ——— R/c
and since p € ¢, this can be rewritten as

(RN/C)perf B— RN/C

]

(R/¢)pert — R/c.

Notice that (R/c)'/? c (RN /¢)'/P so restricting the maps from the bottom left to
(R/¢)Y/P and localizing (RN /¢)'/P — RN /c at n N RN gives the following diagram

(S/m)/P ——— S/n

]

(RN /c)'/P —— RN /¢

L]

(R/¢)/P —— R/c.

The horizontal maps are surjective hence nonzero which implies that R/c — S/n is
separable by [ST14, Ex. 5.1]. |

6. S PLITTING PRIME

In this section, we give an explicit description of the largest uniformly perfectoid
compatible ideal of a ring R and show that it detects the perfectoid purity of R,
analogously to the splitting prime of Aberbach and Enescu [AE05]. We also generalize
the idea to get a compatible core of an ideal, analogous to the Cartier core of [Bad21,
Bro23, CRF24].
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6.1. THE POSITIVE CHARACTERISTIC CASE. We first start by expressing the positive
characteristic splitting prime in terms of the perfection of R.

Derinirion 6.1 ([AE05]). — Let (R, m) be a local ring of char p > 0. Suppose further
that R is F-finite and let ¢ € Hompg (Rl/pe,R). The splitting prime of (R, ¢) is

B(R.o)= N {reR|e"(r'/*"" RY"™) Cm},
n>0

where ¢" is defined as the composition

1/pe(n—1 e(n—2) e(n—3)

) ,
Rl/pe'n. ) Rl/pc(nfl) pl/P e(n—2) /P

Ri/P N

In the special case (1) = 1, we are able to express B(R,¢) in terms of Rpey.
Indeed,

B(R, o) = {r €R

U cp"(rl/pean/pen) C m}.
n>0
Moreover, since

(T)perf = U rl/mel/pma
n>0

letting 1 be the map from the proof of Lemma 2.17 constructed only from ¢, we have
B(R,p) ={r € R|¢((r)pert) C m}.

6.2. THE MIXED CHARACTERISTIC CASE. Let (R, ) be a pair. The above discussion
would lead us to try to define the splitting prime of (R, ¢) as

B(R, @) ={reR|¢((r)i) Cm}

at least when (1) = 1. Unfortunately, it is not clear to the author whether such an
ideal is p-compatible. This brings us to our actual definition.

DeriNiTioN 6.2. Let (R, ) be a pair. Let Bo(R,¢) :=m and

Bi(R,p) ={reR|o((r) CBi-1}
for ¢ > 0. We then define the splitting prime (R, ) as

ﬁ(R? 90) = ﬂ Bl(R7 90)'
i>0
Remark 6.3. When ¢ is surjective, we can show that B;(R,¢) D Bi+1(R,p): let
r ¢ Bi(R,p) and € RZ such that ¢(z) = 1. Then, r = ¢(rz) € ¢ ((r)4) so r is
not in B;41(R, ¢), which shows the desired inclusion. Although it is not clear whether
this inclusion is strict or not, it explains why we take the intersection over all the f3;s.
Importantly, this inclusion is not strict in positive characteristic. In particular, this

definition agrees with the positive characteristic one when ¢ is surjective.

Prorosition 6.4. — With notation as in Definition 6.2, B(R, ) # R if and only if ¢
is surjective and, in that case, B(R, ) is the largest p-compatible ideal of R.
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Proof. — We first show that B(R, ) is ¢-compatible:

# ((BIR9))z) = ¢ ((ﬂ ﬁi<R’¢>):)

>0

A
Cy <ﬂ (Bi(R. ) )
i>0 o0
A
C VDO‘p((Bi(Ra ©)s)
i>0
where the first containment follows from Proposition 2.6. Let a C R be a ¢-compatible
ideal and suppose that a C 3;(R, ¢). Then,

¥ (a?o) CacC BZ(R) QD)?

$0 a C Piq1. Since a C m = Bo(R, ), we must have
acC m BZ(Ra (P) = B(R7SD)’
i>0
so B(R,p) is indeed the largest @-compatible ideal. It remains to show that
B(R,p) # R if and only if ¢ is surjective. Notice that B(R, ) # R if and only if
B1(R, ) # R. The backwards direction is clear so suppose that B1(R, ) = R. Then,
we must have B2(R,p) = R hence B3(R,¢) = R and so on. Now, ¢ is surjective if
and only if ¢ ((1)4,) = R if and only if 1 ¢ B1(R, ) if and only if B(R,¢) # R. O

This construction indeed defines a prime.

Cororrary 6.5. — With notation as in Definition 6.2, if ¢ is surjective, then (R, )
is a prime ideal. In particular, it is the largest perfectoid pure center of (R, ) and
R/B(R, p) is a normal domain.

Proof. — By Proposition 2.20, the pair (R/B(R,¢),®) has no p-compatible ideals.
By Proposition 5.2 R/B (R, ¢) must be a normal local ring so it is a domain. O

Derintrion 6.6. Let R and A € A be as in Notation 2.10. We define the splitting
prime of R as

B(R) = N B(R, )

peHompg (R4 ,R)

and write 3 when there is no confusion on the ring.

Prorosition 6.7. — With notation as in Definition 6.6, B(R) # R if and only if R
is perfectoid pure, in which case it is the largest uniformly perfectoid compatible ideal
of R. Moreover, R/B has no uniformly perfectoid compatible ideal and is a normal
domain.

Proof. — Tt all readily follows from Proposition 6.4, Corollary 6.5, and Corollary 2.29.
O
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6.3. COMPATIBLE CORES AND A TEST IDEAL. We can can generalize the idea of split-
ting prime to find the largest compatible ideal contained inside a given ideal, similar
to the Cartier core construction of [Bad21, Bro23, CRF24].

Derinirion 6.8. — Let (R, ¢) be a pair and a C R be any ideal. We define B4(R, ¢),
the compatible core of a as
Ba(Ra S0> = _ﬂo Ba,i(R7 (p)?
1>

where 340(R,¢) = a and

Bai(R, o) ={reR|e((rN%) C Bai-1(R,¢)}
for 7 > 0.

Prorosirion 6.9 (cf. [Bro23, Cor.3.14], [CRF24, Prop. 4.5]). Let (R, ) be a pair
and a C R be a radical ideal. If for all minimal primes p of a, Im(p) ¢ p, then
Ba(R,p) is the largest p-compatible ideal contained in a.

Proof. — The proof is the same as Proposition 6.4. 0

Prorosition 6.10 (cf. [Bro23, Th. 3.3], [CRF24, Prop.4.14]). — Let (R, ) be a pair.
If W= SpecR ~\ V(Imyp) and p € U, then By(R,p) is a prime ideal and the map
B(r): U— U given by

B(rp): pr— Bp(R, )

is continuous in the Zariski topology.

Proof. — Sincep € U, B, (R, ¢) is radical. Indeed, /P, (R, ¢) C p and is p-compatible
by Proposition 2.34 and Proposition 2.37. Now, all the the minimal primes of 3, (R, ¢)
are also compatible and at least one of them must be contained in p. By Proposi-
tion 6.9, this implies that B, (R, ) must be prime. To show that it is continuous in
the Zariski topology, we follow the proof of [Bro23, Th.3.23]. Let a C R be an ideal.
We show that the inverse image of V' := V'(a) "'U under B, is also closed. In fact,
we claim
Biip (V) =V(0)NY,

where

b:= ﬂ B(R,LP) (p)

PEU,Bp (R,p)EV

Indeed, if p € (3(_1% w)(V), Bp(R,¢) C p and since b C By(R, ), b C p. On the other
hand, since a C b, if p € V(b)) NU then a C b C By(R,¢) Cpsop e V(a)NU. O

Not only is this map continuous but we can actually describe the fibers explic-
itly when ¢ is surjective. However, we first need to define one more object. Let
(R, @) be a pair with ¢ surjective. By Corollary 2.39, there are only finitely many
p-compatible ideals. In particular, if p is a compatible prime, there are only finitely
many ¢-compatible ideals not contained in that prime. The intersection of all these is
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therefore a nonzero ideal which is the smallest p-compatible ideal not contained in p.
This leads us to our next definition.

Derintrion 6.11 (cf. [Tak10, Smo20]). — Let (R, ¢) be a pair with ¢ surjective. Let p
be a compatible prime of (R, ¢). We define t,(R, ) to be the smallest p-compatible
ideal not contained in p and call it the test ideal along p. If p = 0, we write T(R, ©)
and call it the test ideal of (R, ). If R is not a domain, then we let T(R, ) be the
smallest p-compatible ideal not contained in any of the minimal primes of R.

Prorosition 6.12 (cf. [CRF24, Prop. 4.20]). Let (R, ) be a pair with ¢ surjective
and let p € Spec R be a p-compatible prime. Then, [3(_1% o (p) =V (Tp(R, NNV (p).

Proof. — Let q € 6(1%,@ (p). If T, (R, ¢) C q, then by Proposition 6.9,

TP(Ra 50) C Bq(R’ ()0) = BP(Rv Qa)v

a contradiction. On the other hand, if g € V(t,(R, ) N V(p) then p C B4(R, p).
If this were a strict inequality, we would have B4(R, ) D T,(R, ¢), a contradiction.
U

As usual, this can also be done for uniformly perfectoid compatible ideals.

Derinition 6.13. — Let R be as in Notation 2.10 and fix A € A. Let a C R be any
ideal. We define B4(R), the compatible core of a as

Ba(R) = N Bal(R, ).

p€Hompg (R ,R)

Prorosition 6.14 (cf. [Bro23, Cor.3.14]). — Let R be as in Notation 2.10 and fix
A € A. Let a C R be a radical ideal. If for all minimal primes p of a and ¢ €
Hompg (Rfo,R), Im(p) ¢ p, then Bqa(R) is the largest -compatible ideal contained
n a.

Proof. — This follows from Proposition 6.9. O
Prorosition 6.15 (cf. [Bro23, Th.3.3]). — Let R be as in Notation 2.10 and fit A € A.

Let

U= U Spec R~ V(Im )
p€Homp (R4 ,R)

and p € U. Then, By(R) is a prime ideal and the map Br: U — U given by
Br:pr— Bp(R)
is continuous in the Zariski topology.

Proof. — Same as Proposition 6.10 O

Derinrion 6.16 (cf. [Tak10, Smo20]). — Let R be as in Notation 2.10 and assume
further that it is perfectoid pure. Let p be a uniformly perfectoid compatible prime
of R. We define 1,(R) to be the smallest uniformly perfectoid compatible ideal not
contained in p and call it the test ideal along p. If p = 0, we write T(R) and call it
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the test ideal of R. If R is not a domain, then we let T(R) be the smallest uniformly
perfectoid compatible ideal not contained in any of the minimal primes of R.

Prorosirion 6.17 (cf. [CRF24, Prop.4.20]). Let R be as in Notation 2.10 and
assume further that it is perfectoid pure. Let p be a uniformly perfectoid compati-
ble prime of R. Then, BR'(p) = V(tp(R)) NV (p).

Proof. — Same as Proposition 6.12. O

Lemva 6.18. — Let A C R be a Noether normalization and let h,g € A be arbitrary.
Let Mg, a(R) = 3 etomp(RA ,R)‘P((g)fo)- Let B := Aly] and make R and A into

B-algebras by sending y to h. Then, Ay a(R) = A\g B(R) := Z@GHomR(Ri,R) e ((9)4).

Proof. — By Lemma 2.27, we have a surjection Homg(RE , R) — Homg(R%, R) and
the inclusion C follows. For the other inclusion, fix ¢» € Homgz(RZ, R), = € (g)% and
z € REB. Let p: RZ — R be the composition of the maps xz: R4 — RZ and .
Then, v (zz) = ¢(z) € A\, 4. This implies that ¢ ((g)2 RZ) C Ay 4. By Lemma 2.21
and Proposition 2.9 we get 1((g)Z) C Ay 4 as desired. O

Remark 6.19. — The hope would be that T(R) is equal to other mixed characteristic
test ideals (see [MS18, HLS24, BMP+23, BMP+24b, Mur23, Rob22, ST25, PR21]).
In this generality, this is far beyond the scope of this paper. However, if R is normal
Q-Gorenstein and A C R is a Noether normalization, by [CLM*22, Lem. 5.1.6], we are
are able to describe the BCM-test ideal Tra (RR) as

Tra (R) = S ellon),
pEHomp (R4 ,R)

where g € A is such that A[g~!] — R[g~!] is étale. It is not clear to the author if
such an ideal is compatible. Interestingly, by Lemma 6.18, for a fixed g € R, the ideal
ZgaeHomR(Rg‘o,R) ¢ ((9)4) does not depend on the choice of A € A which is hinting
at it being uniformly perfectoid compatible. Let T1(R, A) == Tga (R),

Ti(Ra A) = Z ¥ (Ti—l(Rv A)éo)
p€Homp (R4 ,R)

for 2 > 1 and

J = Ti(R,A).
i, A

Then J is a nonzero uniformly perfectoid compatible ideal. It is equal to T(R) if and
only if there is € T(R) with Alx~!] — R[z 1] étale. Since for any = € T(R), zg has
that property, we see that J = t(R). In particular, 7ga (R) C T(R) and a normal
Q-Gorenstein BCM-regular ring has no uniformly perfectoid compatible ideals. If R
is perfectoid pure, Corollary 4.14 gives us that after inverting p we have containments

(6.19.1) Tra [1/p] C T(R)[1/p] C I(R[1/p]),
where J(R[1/p]) is the multiplier ideal of R[1/p]. When R furthermore satisfies the
hypotheses of [BMP*24b, Th.B] (that is, R is a flat Gorenstein domain and the
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completion of a ring of finite type over a DVR), the first and third ideals of (6.19.1)
are equal and therefore our test ideal also agrees with them after inverting p.

7. BEHAVIOR UNDER ETALE MORPHISMS

In this section, we show that compatible ideals behave well under étale morphisms.
This relies heavily on the almost purity theorem of Bhatt—Scholze, which we now
state. Other versions of the almost purity theorem can be found in [Fal02, Sch12,
KL15, And18a].

Tueorem 7.1 ([BS22, Th.10.9]). — Let R be a perfectoid ring and a a finitely gen-
erated ideal of R. Let S be a finitely presented finite R-algebra such that SpecS —
Spec R is finite étale outside V(a). Then, Speria s discrete and a perfectoid ring and
the map S — Sperfa 15 an isomorphism away from V(a). In particular, a finite étale
cover of a perfectoid ring is perfectoid.

Now, let (R, ¢) be as in Notation 2.10 and (S, n) be an R-algebra such that R — S'is
finite étale. By stability under base change, R% ®r S is finite étale over R} ®p R =
RA

00

in particular it is perfectoid. In fact, it is isomorphic to SZ by the universal
properties of perfectoidization and tensor product. This gives us the following setting.

SerrinG 7.2. Let (R,m) be a complete local Noetherian ring. Let (S,n) be an
R-algebra such that R — S is finite étale. By [BMP*24a, Lem. 4.6, Lem. 4.15], R is
perfectoid pure if and only if S is. Take any unramified regular local ring A such
that R (and therefore S) is a module finite A-algebra. Fix ¢ € Homg (R4, R). Let
Y= p®pgS: 8L — S sois an extension of ¢ to SZ4. We have a commutative
diagram

s4- Y .5

(7.2.1) ] T

©
RY ——R
where the vertical arrows are inclusions. The data (R, ¢) — (5,%) as above is what
we now call an étale morphism of pairs.

Levva 7.3. — Let R — S be as in Setting 7.2 and a C R be an ideal. If a’T is
the perfectoidization of a in R2, then a® @p S = ayS is the perfectoidization of a
n Sg‘o.

Proof. — Note that R2 /a’b® @p S is finite étale over RY /af ®@r R = R/abF s
is itself perfectoid. In particular, a @z S is a perfectoid ideal of 5. D

Provosirion 7.4. — Let (R,) — (S,v) be as in Setting 7.2 and assume further
that ¢ is surjective. Then, B(R,p) = B(S,¥) N R and B(S,v) = B(R,»)S. More
generally, if a is any ideal of S, then Banr(R,») = Ba(S,¥) N R. Moreover, for all

radical ideals b C R, Bp(R,p)S = \/W B 55(S:¥) = Bos(S,¢)-
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Proof. — The inclusion Banr(R, ) D Baq(S, 1) N R follows directly from (7.2.1) since
the contraction of a i-compatible ideal must be ¢-compatible. For “C”, we proceed
by induction. Let r € R. By Lemma 7.3, (r)’4® ®@p S is the perfectoidization of (r)
in 4. Ifre B(anr),1(R,¢) for an ideal a of S. Then,

G2 erS) =o((NE) @rS C(anNR)@r S C a
This implies that r € Bq,1(S,%) hence Banr),1 (R, ¢) C Ba,1(S,%). Suppose that we
know that B(aﬂR),i(Ra (p) - Bu,i(svw) and let r € B(aﬂR)7i+1(R7 80) Then7
V(X @R S) = o((NZ") ©r S C Branm)i(R, @) ©r S C Ba,i(S,v)-

This implies that 7 € Bq,i11(5, %) hence Banr),i+1(R,©) C Ba,i+1(S;¢). The impli-
cation to the last statement follows as in [CRF24, Def.-Prop. 5.5] but we write it here
for the sake of completeness. The first and third equalities follow from the fact that
an extension of a radical ideal under an étale morphism is radical. We therefore only
need to show the middle equality. Let b C R be a radical ideal. We have

B\/ﬁ(svw): ﬂRBq(Sﬂ/f)

bCqn
and
V Bb(R7@) = ﬂ q,
qeC

where € is the set of primes q € Spec S with By (g,,) C N R. Therefore, to show that

Bo(R,»)S C B gg(R,¢), it suffices to show that b C q N R for some q € Spec S
implies By (R, ) C Bq(S,9¥) N R. But b C qN R implies

Bb(Rv 90) - BqﬁR(Ra QD) = Bq N R7
which is what we wanted. For the other containment, it suffices to show this in case
b = p is a prime since the  construction commutes with taking intersections and
we are working in a flat extension. Then, let q € Spec S such that B, (R, ) C qN R.
We want to show that B 45(S,%) C q. By going-down, there is q' C q lying over 3,
and by going up there is ¢ D ¢’ lying over p so that /pS C q”. We have
Bq” (Saw) NR= Bq”ﬁR(Ra (P) = BP(Ra 90) = B[Sp(R,Lp)(R? SD) = Bq’ﬁR(Ra 90)
= Bq’(Sa 1/1) NR.

Since q' C q”, By (S,¢) C Bqr(S,1) so, by incomparability, these must be equal.
Using now that v/pS C q”, we get B 45(S,%) C q' C g, which is what we wanted. [

Cororrary 7.5. — Let (R,p) — (S,9) be as in Setting 7.2 and assume further that
they are domains. Let T(R, ), T(S,v) be the respective nonzero smallest compatible
ideals. If ¢ is surjective, then T(R, ) = t(S,%) N R and ©(R,¢)S = t(S, ).

Proof. — 7(S,¥) N R is compatible so it contains T(R, ¢). Extending to (S,v) gives
T(R,p)S C (t(S,¢¥) N R)S C (S, ),
but since these are all compatible ideals, we must have
(R, ¢)S O (S, ¢),

so this is an equality.
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To show that T(R, ¢) = t(S, ) N R, note that B5'(0r) C B5'(0s) N R. Indeed, let
q € Spec S be such that ¢ N R = p with B,(R, ¢) = 0. By Proposition 7.4,
Bq(57¢) NR= BqﬂR(Ra 90) = 07
50 B4(S,%) = 0. Then, by Proposition 6.12, V(T(R,¢)) C V(t(S,%)) N R, which
implies T(S,19) N R C T(R, y). Since the other inclusion is automatic, T(S,¢) N R =
(R, ). O

As usual, these also hold for uniformly perfectoid compatible ideals.

Prorosirion 7.6. — Let R — S be as in Setting 7.2 and assume R (equivalently S) is
perfectoid pure. Let b C S be a radical ideal. Then, Bp(S) N R = Bonr(R). Moreover,
if a C R is a radical ideal then, B4(R)S = Bas(S).

Proof. — Take any unramified regular local ring A such that R (and therefore S) is
a module finite A-algebra. Let b C S be a radical ideal and let a := b N R. Then,
Bo(S) N R is a uniformly perfectoid compatible ideal of R: if p € Hompg (R4, R), then
©®r S € Homg(S4,S) and

((Bo(S)NRIL)C (2((Be(S) N R)L) @R S) N R C By(S)N R

This shows B5(S) N R C Ba(R). For the other inclusion, we proceed by induction. Let
7 € Ba1(R). Then, for any = € (1) the composition

Homp (BA, R) 2222000, promp (R4, R) — Homp(R, R) 2 R — R/a
is zero. Tensoring with S and using the fact that aS C b, we get that the composition
Homg (52, 8) 222525, fomg (84, 5) — Homs(S, ) 2 S —» S/b

is zero. Precomposing with multiplication by any element of S4 on S2 would keep
the composition 0 so for any 1) € Homg(SZ4,S), ¥((rS)4) C b hence r € Bp.1(S)NR.
Now, suppose that we know that Bq;(R) C Pp:(S) N R and let r € Bq41(R) and
x € (r)4E. The composition

Homp, (B4, R) 2222000, fromp (R4, R) — Homp(R, R) 2 R — R/B,.i(R)

is zero so, tensoring with S and using the fact that f4;(R)S C Bp,:(S), we get that
the composition

Homg (5’;, S)

Homg(xz,S)
e

Homg (waS) — Homg(S,5) =S — S/Po:(5)

is zero. Precomposing with multiplication by any element of S2 on S4 would keep
the composition 0. Then, for any ¢ € Homg(S4,5S), ¥((rS)4) C Bp.i(S) hence
7 € Boi+1(S) N R. This shows f4(R) = Bp(S) N R. The implication about B under
extensions follows as in Proposition 7.4. O

Cororrary 7.7. — Let R — S be as in Setting 7.2 and assume further that they are
domains. Let T(R) and T(S) be the respective nonzero smallest compatible ideals. If R
(equivalently S) is perfectoid pure, then T(R) =71(S)N R and T©(R)S = t(9).

Proof. — Same as Corollary 7.5. O
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