[Dérivations invariantes et bornes sur la trace]
About 20 years ago, J-P. Serre announced a bound on the trace of elements of compact Lie groups under the adjoint representation together with related results, provided indications of his proofs, and invited a better proof. This note provides a new, general method for proving such bounds; uses that method to derive Serre’s bounds; gives a second proof of Serre’s announced results that (we learned) closely follows his original argument; and provides lower bounds for traces of other representations of compact Lie groups and for Brauer characters of finite groups.
Il y a une vingtaine d’années, J-P. Serre annonçait une borne sur la trace des éléments des groupes de Lie compacts sous la représentation adjointe, ainsi que des résultats correspondants, fournissait des indications sur ses preuves et invitait à une meilleure démonstration. Cette note propose une nouvelle méthode générale pour prouver ces bornes ; utilise cette méthode pour dériver les bornes de Serre ; donne une seconde démonstration des résultats annoncés par Serre qui (nous l’avons appris) suit étroitement son argument initial ; et fournit des bornes inférieures pour les traces d’autres représentations de groupes de Lie compacts et pour les caractères de Brauer des groupes finis.
Accepté le :
Publié le :
Keywords: Invariant derivation, compact group, trace, Brauer character, adjoint
Mots-clés : Dérivation invariante, groupe compact, trace, caractère de Brauer, adjoint
Skip Garibaldi 1 ; Robert M. Guralnick 2 ; Eric M. Rains 3

@article{JEP_2025__12__1229_0, author = {Skip Garibaldi and Robert M. Guralnick and Eric M. Rains}, title = {Invariant derivations and trace bounds}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1229--1287}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.310}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.310/} }
TY - JOUR AU - Skip Garibaldi AU - Robert M. Guralnick AU - Eric M. Rains TI - Invariant derivations and trace bounds JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 1229 EP - 1287 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.310/ DO - 10.5802/jep.310 LA - en ID - JEP_2025__12__1229_0 ER -
%0 Journal Article %A Skip Garibaldi %A Robert M. Guralnick %A Eric M. Rains %T Invariant derivations and trace bounds %J Journal de l’École polytechnique — Mathématiques %D 2025 %P 1229-1287 %V 12 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.310/ %R 10.5802/jep.310 %G en %F JEP_2025__12__1229_0
Skip Garibaldi; Robert M. Guralnick; Eric M. Rains. Invariant derivations and trace bounds. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1229-1287. doi : 10.5802/jep.310. https://jep.centre-mersenne.org/articles/10.5802/jep.310/
[Ada85] - “The fundamental representations of ”, in Conference on algebraic topology in honor of Peter Hilton (Saint John’s, Nfld., 1983), Contemp. Math., vol. 37, American Mathematical Society, Providence, RI, 1985, p. 1-10 | DOI | MR | Zbl
[BCP90] - “The Magma algebra system I: the user language”, J. Symbolic Comput. 9 (1990), p. 677-698
[Ben91] - Representations and cohomology I: Basic representation theory of finite groups and associative algebras, Cambridge Studies in Advanced Math., vol. 30, Cambridge University Press, 1991 | Zbl
[Bor91] - Linear algebraic groups, Graduate Texts in Math., vol. 126, Springer-Verlag, New York, 1991 | Zbl
[Bou89] - Lie groups and Lie algebras: Chapters 1–3, Springer-Verlag, Berlin, 1989 | MR | Zbl
[Bou02] - Lie groups and Lie algebras: Chapters 4–6, Springer-Verlag, Berlin, 2002 | Zbl
[Bou05] - Lie groups and Lie algebras: Chapters 7–9, Springer-Verlag, Berlin, 2005 | Zbl
[Bur03] - “On an arithmetical theorem connected with roots of unity and its application to group characteristics”, Proc. London Math. Soc. 1 (1903), p. 112-116 | MR | Zbl
[Car72] - “Conjugacy classes in the Weyl group”, Compositio Math. 25 (1972) no. 1, p. 1-59 | Numdam | MR | Zbl
[Car89] - Simple groups of Lie type, Wiley, 1989 | MR | Zbl
[CCN + 85] - Atlas of finite groups, Oxford University Press, Eynsham, 1985 | Zbl
[CG21] - “A class of continuous non-associative algebras arising from algebraic groups including ”, Forum Math. Sigma 9 (2021), article ID e6 | DOI | MR | Zbl
[Con10] - “Answer to “Classification of (compact) Lie groups””, available at https://mathoverflow.net/questions/6079, 2010
[DG11] - Schémas en Groupes III: Structure des schémas en groupes réductifs, Documents Math., vol. 8, Société Mathématique de France, Paris, 2011, re-edition edited by Ph. Gille and P. Polo
[DMMV21] - “Coloring the Voronoi tessellation of lattices”, J. London Math. Soc. (2) 104 (2021), p. 1135-1171 | DOI | MR | Zbl
[dS56] - “Sur les groupes de Lie compacts non connexes”, Comment. Math. Helv. 31 (1956), p. 41-89 | DOI | MR | Zbl
[DV21] - “Non-associative Frobenius algebras for simply laced Chevalley groups”, Trans. Amer. Math. Soc. 374 (2021) no. 12, p. 8715-8774 | DOI | MR | Zbl
[EOR07] - “Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces”, Adv. Math. 212 (2007) no. 2, p. 749-796 | DOI | MR | Zbl
[ER25] - “Bounds for the asymptotic characters of simple Lie groups”, Indag. Math. (2025), online, arXiv:2405.10341 | DOI | Zbl
[FG98] - “Conjugacy classes of elements in the Borovik group”, J. Algebra 203 (1998), p. 226-243 | DOI | MR | Zbl
[Fre01] - “Conjugacy of and subgroups of ”, J. Group Theory 4 (2001), p. 277-323 | Zbl
[Gar22] - “Pictures of compact Lie groups (after Serre)”, 2022 | arXiv | Zbl
[GG15] - “Simple groups stabilizing polynomials”, Forum Math. Pi 3 (2015), article ID e3, 41 pages | DOI | MR | Zbl
[Gri95] - “Basic conjugacy theorems for ”, Invent. Math. 121 (1995), p. 257-277 | DOI | MR | Zbl
[Gui07] - “The representation ring of a simply connected Lie group as a -ring”, Comm. Algebra 35 (2007) no. 3, p. 875-883 | DOI | MR | Zbl
[Hal15] - Lie groups, Lie algebras, and representations: an elementary introduction, Graduate Texts in Math., vol. 222, Springer, 2015 | DOI | MR | Zbl
[Jac58] - “Composition algebras and their automorphisms”, Rend. Circ. Mat. Palermo (2) 7 (1958), p. 55-80, [#60 in Coll. Math. Papers, vol. 2] | DOI | MR | Zbl
[Jan03] - Representations of algebraic groups, Math. Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
[JLPW95] - The atlas of Brauer characters, London Math. Soc. Monographs, Oxford University Press, 1995 | Zbl
[Kac69] - “Automorphisms of finite order of semisimple Lie algebras”, Funct. Anal. Appl. 3 (1969), p. 252-254 | Zbl
[Kai06] - “Mean eigenvalues for simple, simply connected, compact Lie groups”, J. Phys. A 39 (2006), p. 15287-15298 | DOI | Zbl
[Kat04] - “Notes on , determinants, and equidistribution”, Finite fields and their applications 10 (2004), p. 221-269 | DOI | Zbl
[Kni73] - “Differentials on quotients of algebraic varieties”, Trans. Amer. Math. Soc. 177 (1973), p. 65-89 | DOI | Zbl
[Lac19] - “The distribution of the trace in the compact group of type ”, Arithmetic geometry: computation and applications (Contemp. Math.) 722, American Mathematical Society, Providence, RI (2019), p. 79-103 | DOI | Zbl
[Leh16] - “Subgroups of maximal rank of reductive groups”, in Autour des schémas en groupes III, Panoramas & Synthèses, vol. 47, Société Mathématique de France, Paris, 2016, p. 147-172 | Zbl
[Mil17] - Algebraic groups: the theory of group schemes of finite type over a field, Cambridge studies in Advanced Math., vol. 170, Cambridge University Press, 2017 | DOI | MR | Zbl
[MPS88] - “The Demazure-Tits subgroup of a simple Lie group”, J. Math. Phys. 29 (1988) no. 4, p. 777-796 | DOI | MR | Zbl
[OT13] - Arrangements of hyperplanes, Grundlehren Math. Wissen., vol. 300, Springer Science & Business Media, 2013 | MR
[OV90] - Lie groups and algebraic groups, Springer Series in Soviet Math., Springer, 1990 | DOI | MR | Zbl
[PS85] - “Inequalities defining orbit spaces”, Invent. Math. 81 (1985), p. 539-554 | DOI | MR | Zbl
[Ree10] - “Torsion automorphisms of simple Lie algebras”, Enseign. Math. (2) 56 (2010) no. 1–2, p. 3-47 | DOI | MR | Zbl
[Sch24] - A course in real algebraic geometry, Graduate Texts in Math., vol. 303, Springer Nature, 2024 | DOI | Zbl
[Ser77] - Linear representations of finite groups, Graduate Texts in Math., vol. 42, Springer, 1977 | DOI | MR | Zbl
[Ser04] - “On the values of the characters of compact Lie groups”, in Oberwolfach Reports, vol. 1, EMS Publishing House, Zürich, 2004, p. 666-667
[Ser06] - “Coordonnées de Kac”, in Oberwolfach Reports, vol. 3, EMS Publishing House, Zürich, 2006, p. 1787-1790
[Ser25] - “Zéros de caractères”, Enseign. Math. (2) 71 (2025), p. 433-457 | DOI | MR | Zbl
[Spr98] - Linear algebraic groups, Birkhäuser, 1998 | DOI | MR | Zbl
[Sta] - “On the extrema of Chebyshev polynomials of the second kind”, available at https://math.stackexchange.com/questions/2665518
[Sta18] - “Stacks Project”, https://stacks.math.columbia.edu, 2018
[Ste60] - “Invariants of finite reflection groups”, Canad. J. Math. 12 (1960), p. 616-618, [#11 in Collected Papers] | DOI | MR | Zbl
[Ste65] - “Regular elements of semisimple algebraic groups”, Publ. Math. Inst. Hautes Études Sci. (1965) no. 25, p. 49-80, [#20 in Collected Papers] | DOI | MR
[Tit66] - “Normalisateurs de tores. I. Groupes de Coxeter étendus”, J. Algebra 4 (1966), p. 96-116, [#66 in Œuvres–Collected Works, vol. II] | DOI | MR | Zbl
[Wei94] - An introduction to homological algebra, Cambridge Studies in Advanced Math., Cambridge University Press, 1994 no. 38 | DOI | MR | Zbl
Cité par Sources :