Arithmetic and birational properties of linear spaces on intersections of two quadrics
[Propriétés arithmétiques et birationnelles des espaces linéaires sur les intersections de deux quadriques]
Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1161-1196.

We study rationality questions for Fano schemes of linear spaces on a smooth complete intersection $X$ of two quadrics, especially over a non-closed field. Our approach is to study hyperbolic reductions of the pencil of quadrics associated to $X$. We prove that the Fano schemes $F_r(X)$ of $r$-planes are birational to symmetric powers of hyperbolic reductions, generalizing results of Reid and Colliot-Thélène–Sansuc–Swinnerton-Dyer, and we give several applications to rationality properties of $F_r(X)$.

For instance, we show that if $X$ contains an $(r+1)$-plane over a field $k$, then $F_r(X)$ is rational over $k$. When $X$ has odd dimension, we show a partial converse for rationality of the Fano schemes of second maximal linear spaces, generalizing results of Hassett–Tschinkel and Benoist–Wittenberg. When $X$ has even dimension, the analogous result does not hold, and we further investigate this situation over the real numbers. In particular, we prove a rationality criterion for the Fano schemes of second maximal linear spaces on these even-dimensional complete intersections over $\mathbb{R}$; this may be viewed as extending work of Hassett–Kollár–Tschinkel.

Nous étudions des questions de rationalité pour les schémas de Fano d’espaces linéaires sur une intersection complète et lisse $X$ de deux quadriques, en particulier sur un corps non clos. Notre approche consiste à étudier les réductions hyperboliques du pinceau de quadriques associé à $X$. Nous prouvons que les schémas de Fano $F_r(X)$ des $r$-plans sont birationnels aux puissances symétriques des réductions hyperboliques, généralisant des résultats de Reid et de Colliot-Thélène, Sansuc et Swinnerton-Dyer, et nous donnons plusieurs applications aux propriétés de rationalité de $F_r(X)$.

Par exemple, nous montrons que si $X$ contient un $(r+1)$-plan sur un corps $k$, alors $F_r(X)$ est rationnel sur $k$. Lorsque $X$ est de dimension impaire, nous montrons une réciproque partielle pour la rationalité des schémas de Fano des espaces linéaires sous-maximaux, généralisant des résultats de Hassett et Tschinkel et de Benoist et Wittenberg. Lorsque $X$ est de dimension paire, le résultat analogue n’est plus valable, et nous étudions cette situation sur les nombres réels. En particulier, nous prouvons un critère de rationalité pour les schémas de Fano des espaces linéaires sous-maximaux sur ces intersections complètes de dimension paire sur $\mathbb{R}$ ; ceci peut être considéré comme une extension des travaux de Hassett, Kollár et Tschinkel.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.308
Classification : 14E08, 14G20, 14C25, 14D10
Keywords: Rationality, intermediate Jacobians, quadric fibrations
Mots-clés : Rationalité, jacobiennes intermédiaires, fibrations en quadriques

Lena Ji 1 ; Fumiaki Suzuki 2

1 Department of Mathematics, University of Illinois Urbana-Champaign, 273 Altgeld Hall, 1409 W. Green Street, Urbana, IL 61801, USA
2 Institute of Algebraic Geometry, Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2025__12__1161_0,
     author = {Lena Ji and Fumiaki Suzuki},
     title = {Arithmetic and birational properties of linear spaces on intersections of two~quadrics},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1161--1196},
     publisher = {\'Ecole polytechnique},
     volume = {12},
     year = {2025},
     doi = {10.5802/jep.308},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.308/}
}
TY  - JOUR
AU  - Lena Ji
AU  - Fumiaki Suzuki
TI  - Arithmetic and birational properties of linear spaces on intersections of two quadrics
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2025
SP  - 1161
EP  - 1196
VL  - 12
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.308/
DO  - 10.5802/jep.308
LA  - en
ID  - JEP_2025__12__1161_0
ER  - 
%0 Journal Article
%A Lena Ji
%A Fumiaki Suzuki
%T Arithmetic and birational properties of linear spaces on intersections of two quadrics
%J Journal de l’École polytechnique — Mathématiques
%D 2025
%P 1161-1196
%V 12
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.308/
%R 10.5802/jep.308
%G en
%F JEP_2025__12__1161_0
Lena Ji; Fumiaki Suzuki. Arithmetic and birational properties of linear spaces on intersections of two quadrics. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1161-1196. doi : 10.5802/jep.308. https://jep.centre-mersenne.org/articles/10.5802/jep.308/

[ABB14] A. Auel, M. Bernardara & M. Bolognesi - “Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems”, J. Math. Pures Appl. (9) 102 (2014) no. 1, p. 249-291 | DOI | Zbl

[ACMV17] J. D. Achter, S. Casalaina-Martin & C. Vial - “On descending cohomology geometrically”, Compositio Math. 153 (2017) no. 7, p. 1446-1478 | DOI | Zbl

[Bau91] S. Bauer - “Parabolic bundles, elliptic surfaces and SU (2)-representation spaces of genus zero Fuchsian groups”, Math. Ann. 290 (1991) no. 3, p. 509-526 | DOI | MR | Zbl

[BG14] M. Bhargava & B. H. Gross - “Arithmetic invariant theory”, in Symmetry: representation theory and its applications, Progress in Math., vol. 257, Birkhäuser/Springer, New York, 2014, p. 33-54 | DOI | Zbl

[BGW17] M. Bhargava, B. H. Gross & X. Wang - “A positive proportion of locally soluble hyperelliptic curves over have no point over any odd degree extension”, J. Amer. Math. Soc. 30 (2017) no. 2, p. 451-493, With an appendix by Tim Dokchitser and Vladimir Dokchitser | DOI | MR | Zbl

[BSD75] B. J. Birch & H. P. F. Swinnerton-Dyer - “The Hasse problem for rational surfaces”, J. reine angew. Math. 274/275 (1975), p. 164-174 | DOI | MR | Zbl

[BW20] O. Benoist & O. Wittenberg - “The Clemens-Griffiths method over non-closed fields”, Algebraic Geom. 7 (2020) no. 6, p. 696-721 | DOI | MR | Zbl

[BW23] O. Benoist & O. Wittenberg - “Intermediate Jacobians and rationality over arbitrary fields”, Ann. Sci. École Norm. Sup. (4) 56 (2023) no. 4, p. 1029-1086 | DOI | MR | Zbl

[Cas15] C. Casagrande - “Rank 2 quasiparabolic vector bundles on 1 and the variety of linear subspaces contained in two odd-dimensional quadrics”, Math. Z. 280 (2015) no. 3-4, p. 981-988 | DOI | MR | Zbl

[Com13] A. Comessatti - “Fondamenti per la geometria sopra le superficie razionali dal punto di vista reale”, Math. Ann. 73 (1913), p. 1-72 | DOI | MR | Zbl

[CT24] J.-L. Colliot-Thélène - “Retour sur l’arithmétique des intersections de deux quadriques”, J. reine angew. Math. 806 (2024), p. 147-185, avec un appendice par A. Kuznetsov | DOI | MR | Zbl

[CTC79] J.-L. Colliot-Thélène & D. Coray - “L’équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques”, Compositio Math. 39 (1979) no. 3, p. 301-332 | Numdam | MR | Zbl

[CTSSD87a] J.-L. Colliot-Thélène, J.-J. Sansuc & P. Swinnerton-Dyer - “Intersections of two quadrics and Châtelet surfaces. I”, J. reine angew. Math. 373 (1987), p. 37-107 | Zbl

[CTSSD87b] J.-L. Colliot-Thélène, J.-J. Sansuc & P. Swinnerton-Dyer - “Intersections of two quadrics and Châtelet surfaces. II”, J. reine angew. Math. 374 (1987), p. 72-168 | DOI | MR | Zbl

[CZ24] S. Chen & Z. Zhang - “Weak approximation of symmetric products and norm varieties”, Bull. London Math. Soc. 56 (2024) no. 5, p. 1734-1747 | DOI | MR | Zbl

[DIK00] A. Degtyarev, I. Itenberg & V. Kharlamov - Real Enriques surfaces, Lect. Notes in Math., vol. 1746, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[DK81] H. Delfs & M. Knebusch - “Semialgebraic topology over a real closed field. II. Basic theory of semialgebraic spaces”, Math. Z. 178 (1981) no. 2, p. 175-213 | DOI | MR | Zbl

[DM98] O. Debarre & L. Manivel - “Sur la variété des espaces linéaires contenus dans une intersection complète”, Math. Ann. 312 (1998) no. 3, p. 549-574 | DOI | MR | Zbl

[Don80] R. Donagi - “Group law on the intersection of two quadrics”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980) no. 2, p. 217-239 | Numdam | MR | Zbl

[DR77] U. V. Desale & S. Ramanan - “Classification of vector bundles of rank 2 on hyperelliptic curves”, Invent. Math. 38 (1976/77) no. 2, p. 161-185 | DOI | MR | Zbl

[EKM08] R. Elman, N. Karpenko & A. Merkurjev - The algebraic and geometric theory of quadratic forms, Amer. Math. Soc. Colloquium Publ., vol. 56, American Mathematical Society, Providence, RI, 2008 | DOI | MR | Zbl

[FJ24] S. Frei & L. Ji - “A threefold violating a local-to-global principle for rationality”, Res. Number Theory 10 (2024) no. 2, article ID 39 | DOI | MR | Zbl

[FJS + 24] S. Frei, L. Ji, S. Sankar, B. Viray & I. Vogt - “Curve classes on conic bundle threefolds and applications to rationality”, Algebraic Geom. 11 (2024) no. 3, p. 421-459 | DOI | MR | Zbl

[Fog68] J. Fogarty - “Algebraic families on an algebraic surface”, Amer. J. Math. 90 (1968), p. 511-521 | DOI | MR | Zbl

[Gau55] L. Gauthier - “Footnote to a footnote of André Weil”, Rend. Sem. Mat. Univ. Politec. Torino 14 (1954/55), p. 325-328 | MR | Zbl

[HKT22] B. Hassett, J. Kollár & Y. Tschinkel - “Rationality of even-dimensional intersections of two real quadrics”, Comment. Math. Helv. 97 (2022) no. 1, p. 183-207 | DOI | MR | Zbl

[HT21a] B. Hassett & Y. Tschinkel - “Cycle class maps and birational invariants”, Comm. Pure Appl. Math. 74 (2021) no. 12, p. 2675-2698 | DOI | MR | Zbl

[HT21b] B. Hassett & Y. Tschinkel - “Rationality of complete intersections of two quadrics over nonclosed fields”, Enseign. Math. (2) 67 (2021) no. 1-2, p. 1-44, With an appendix by Jean-Louis Colliot-Thélène | DOI | MR | Zbl

[HT22] B. Hassett & Y. Tschinkel - “Equivariant geometry of odd-dimensional complete intersections of two quadrics”, Pure Appl. Math. Q 18 (2022) no. 4, p. 1555-1597 | MR | Zbl

[IP22] J. N. Iyer & R. Parimala - “Period-Index problem for hyperelliptic curves”, 2022 | arXiv | Zbl

[JJ24] L. Ji & M. Ji - “Rationality of real conic bundles with quartic discriminant curve”, Internat. Math. Res. Notices (2024) no. 1, p. 115-151 | DOI | MR | Zbl

[KM17] J. Kollár & M. Mella - “Quadratic families of elliptic curves and unirationality of degree 1 conic bundles”, Amer. J. Math. 139 (2017) no. 4, p. 915-936 | DOI | MR | Zbl

[Kne15] A. Knecht - “Degree of unirationality for del Pezzo surfaces over finite fields”, J. Théor. Nombres Bordeaux 27 (2015) no. 1, p. 171-182 | DOI | Numdam | MR | Zbl

[Kol99] J. Kollár - “Rationally connected varieties over local fields”, Ann. of Math. (2) 150 (1999) no. 1, p. 357-367 | DOI | MR | Zbl

[Kra11] V. A. Krasnov - “Real four-dimensional biquadrics”, Izv. Ross. Akad. Nauk Ser. Mat. 75 (2011) no. 2, p. 371-394 | DOI | Zbl

[Kra18] V. A. Krasnov - “On the intersection of two real quadrics”, Izv. Ross. Akad. Nauk Ser. Mat. 82 (2018) no. 1, p. 97-150 | DOI | MR

[KS99] A. King & A. Schofield - “Rationality of moduli of vector bundles on curves”, Indag. Math. (N.S.) 10 (1999) no. 4, p. 519-535 | DOI | MR | Zbl

[KS04] D. Krashen & D. J. Saltman - “Severi-Brauer varieties and symmetric powers”, in Algebraic transformation groups and algebraic varieties, Encyclopaedia Math. Sci., vol. 132, Springer, Berlin, 2004, p. 59-70 | DOI | Zbl

[KS18] A. Kuznetsov & E. Shinder - “Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics”, Selecta Math. (N.S.) 24 (2018) no. 4, p. 3475-3500 | DOI | MR | Zbl

[Kuz24] A. Kuznetsov - “Quadric bundles and hyperbolic equivalence”, Geom. Topol. 28 (2024) no. 3, p. 1287-1339 | DOI | MR | Zbl

[Lee84] D. B. Leep - “Systems of quadratic forms”, J. reine angew. Math. 350 (1984), p. 109-116 | DOI | MR | Zbl

[Lee07] D. B. Leep - “The Amer–Brumer Theorem over arbitrary fields”, https://www.ms.uky.edu/~leep/Amer-Brumer_theorem.pdf, 2007

[Lee13] D. B. Leep - “The u-invariant of p-adic function fields”, J. reine angew. Math. 679 (2013), p. 65-73 | DOI | MR | Zbl

[Man86] Y. I. Manin - Cubic forms, North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986 | Zbl

[Mat69] A. Mattuck - “On the symmetric product of a rational surface”, Proc. Amer. Math. Soc. 21 (1969), p. 683-688 | DOI | MR | Zbl

[Mor59] L. J. Mordell - “Integer solutions of simultaneous quadratic equations”, Abh. Math. Sem. Univ. Hamburg 23 (1959), p. 126-143 | DOI | MR | Zbl

[Mur85] J. P. Murre - “Applications of algebraic K-theory to the theory of algebraic cycles”, in Algebraic geometry (Sitges 1983), Lect. Notes in Math., vol. 1124, Springer, Berlin, 1985, p. 216-261 | DOI | MR | Zbl

[New75] P. E. Newstead - “Rationality of moduli spaces of stable bundles”, Math. Ann. 215 (1975), p. 251-268 | DOI | MR | Zbl

[New80] P. E. Newstead - “Correction to: “Rationality of moduli spaces of stable bundles” [Math. Ann. 215 (1975), 251–268]”, Math. Ann. 249 (1980) no. 3, p. 281-282 | DOI | MR | Zbl

[PS10] R. Parimala & V. Suresh - “The u-invariant of the function fields of p-adic curves”, Ann. of Math. (2) 172 (2010) no. 2, p. 1391-1405 | DOI | MR | Zbl

[PS14] R. Parimala & V. Suresh - “Period-index and u-invariant questions for function fields over complete discretely valued fields”, Invent. Math. 197 (2014) no. 1, p. 215-235 | DOI | MR | Zbl

[Ram81] S. Ramanan - “Orthogonal and spin bundles over hyperelliptic curves”, Proc. Indian Acad. Sci. Math. Sci. 90 (1981) no. 2, p. 151-166 | DOI | MR | Zbl

[Rei72] M. Reid - The complete intersection of two or more quadrics, Ph. D. Thesis, Trinity College, Cambridge, 1972, https://mreid.warwick.ac.uk/3folds/qu.pdf

[Ryb05] S. Rybakov - “Zeta functions of conic bundles and Del Pezzo surfaces of degree 4 over finite fields”, Moscow Math. J. 5 (2005) no. 4, p. 919-926 | DOI | MR | Zbl

[SD64] H. P. F. Swinnerton-Dyer - “Rational zeros of two quadratic forms”, Acta Arith. 9 (1964), p. 261-270 | DOI | MR | Zbl

[Tyu75] A. N. Tyurin - “On intersections of quadrics”, Russian Math. Surveys 30 (1975) no. 6, p. 51 | DOI | Zbl

[Wan18] X. Wang - “Maximal linear spaces contained in the base loci of pencils of quadrics”, Algebraic Geom. 5 (2018) no. 3, p. 359-397 | DOI | MR | Zbl

[Wit37] E. Witt - “Theorie der quadratischen Formen in beliebigen Körpern”, J. reine angew. Math. 176 (1937), p. 31-44 | DOI | MR | Zbl

[Wit08] O. Wittenberg - “On Albanese torsors and the elementary obstruction”, Math. Ann. 340 (2008) no. 4, p. 805-838 | DOI | MR | Zbl

Cité par Sources :