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ARITHMETIC AND BIRATIONAL PROPERTIES OF

LINEAR SPACES ON INTERSECTIONS OF

TWO QUADRICS

by Lena Ji & Fumiaki Suzuki

Abstract. — We study rationality questions for Fano schemes of linear spaces on a smooth
complete intersection X of two quadrics, especially over a non-closed field. Our approach is
to study hyperbolic reductions of the pencil of quadrics associated to X. We prove that the
Fano schemes Fr(X) of r-planes are birational to symmetric powers of hyperbolic reductions,
generalizing results of Reid and Colliot-Thélène–Sansuc–Swinnerton-Dyer, and we give several
applications to rationality properties of Fr(X).

For instance, we show that if X contains an (r+1)-plane over a field k, then Fr(X) is rational
over k. When X has odd dimension, we show a partial converse for rationality of the Fano
schemes of second maximal linear spaces, generalizing results of Hassett–Tschinkel and Benoist–
Wittenberg. When X has even dimension, the analogous result does not hold, and we further
investigate this situation over the real numbers. In particular, we prove a rationality criterion
for the Fano schemes of second maximal linear spaces on these even-dimensional complete
intersections over R; this may be viewed as extending work of Hassett–Kollár–Tschinkel.

Résumé (Propriétés arithmétiques et birationnelles des espaces linéaires sur les intersections de
deux quadriques)

Nous étudions des questions de rationalité pour les schémas de Fano d’espaces linéaires
sur une intersection complète et lisse X de deux quadriques, en particulier sur un corps non
clos. Notre approche consiste à étudier les réductions hyperboliques du pinceau de quadriques
associé à X. Nous prouvons que les schémas de Fano Fr(X) des r-plans sont birationnels
aux puissances symétriques des réductions hyperboliques, généralisant des résultats de Reid
et de Colliot-Thélène, Sansuc et Swinnerton-Dyer, et nous donnons plusieurs applications aux
propriétés de rationalité de Fr(X).

Par exemple, nous montrons que si X contient un (r + 1)-plan sur un corps k, alors Fr(X)
est rationnel sur k. Lorsque X est de dimension impaire, nous montrons une réciproque partielle
pour la rationalité des schémas de Fano des espaces linéaires sous-maximaux, généralisant des
résultats de Hassett et Tschinkel et de Benoist et Wittenberg. Lorsque X est de dimension
paire, le résultat analogue n’est plus valable, et nous étudions cette situation sur les nombres
réels. En particulier, nous prouvons un critère de rationalité pour les schémas de Fano des
espaces linéaires sous-maximaux sur ces intersections complètes de dimension paire sur R ; ceci
peut être considéré comme une extension des travaux de Hassett, Kollár et Tschinkel.
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1. Introduction

Over an arbitrary field k of characteristic ̸= 2, let X be a smooth complete inter-
section of two quadrics in PN . There is an extensive literature on the Fano schemes
Fr(X) of r-dimensional linear spaces on such complete intersections [Gau55, Rei72,
Tyu75, Don80, Wan18], and there have been many applications to arithmetic prob-
lems [CTSSD87a, BGW17, IP22, CT24], moduli theory [DR77, Ram81], and rational-
ity questions [ABB14, HT21b, BW23]. In this paper, we study birational properties
of the Fano schemes of linear spaces on X via hyperbolic reductions of the pencil
of quadrics Q → P1 associated to X, with an eye toward applications to rationality
questions over non-closed fields.

A variety over a field k is k-rational if it is birationally equivalent to projective
space over k. It is classically known that if a smooth complete intersection of two
quadrics X ⊂ PN contains a line defined over k, then X is k-rational by projection
from this line (see, e.g., [CTSSD87a, Prop. 2.2]). Our first result is a generalization of
this to Fano schemes of higher-dimensional linear spaces on X:

Theorem 1.1. — Over a field k of characteristic ̸= 2, let X be a smooth com-
plete intersection of two quadrics in PN . Let r be such that 0 ⩽ r ⩽ ⌊N/2⌋ − 2.
If Fr+1(X)(k) ̸= ∅, then Fr(X) is k-rational.

The Fano scheme Fr(X) is non-empty exactly for r such that 0 ⩽ r ⩽ ⌊N/2⌋ − 1,
and the Fano scheme of maximal linear subspaces F⌊N/2⌋−1(X) is always irrational.
So the range in Theorem 1.1 is optimal.

An immediate corollary of Theorem 1.1 over algebraically closed fields is that the
Fano schemes of non-maximal linear spaces on X are all rational (Corollary 3.5(1));
that is, Fr(X) is rational for all r such that 0 ⩽ r ⩽ ⌊N/2⌋ − 2. To the authors’
knowledge, this result was previously only known for r = 0 and r = ⌊N/2⌋ − 2 (the
latter case by combining works of [DR77, New75, New80, Bau91, Cas15]). For r such
that 0 < r < ⌊N/2⌋ − 2, only unirationality of Fr(X) for general X was previously
known by Debarre–Manivel [DM98].

One may wonder whether the converse of Theorem 1.1 holds. In general, the answer
to this question is no: counterexamples for (r,N) = (0, 4), (0, 6) are known over R by

J.É.P. — M., 2025, tome 12



Linear spaces on intersections of two quadrics 1163

[HT21b, Rem. 37] and [HKT22, Prop. 6.1 & 6.2]. We additionally show that there are
counterexamples for (r,N) = (g − 2, 2g) for any g ⩾ 2 (see Corollary 5.7(2)).

However, for (r,N) = (0, 5), the above question has a positive answer over any field.
In this case, Hassett–Tschinkel (over R) [HT21b] and Benoist–Wittenberg (over arbi-
trary k) [BW23] show that F0(X) = X ⊂ P5 is k-rational if and only if F1(X)(k) ̸= ∅.
In this case, lines are the maximal linear subspaces on the threefold X. More gener-
ally, when N = 2g + 1 is odd, the Fano schemes of linear subspaces on X encode a
lot of interesting arithmetic and geometric data. Over k, Weil first observed that the
Fano scheme Fg−1(X) of maximal linear subspaces is isomorphic to the Jacobian of
the genus g hyperelliptic curve obtained as the Stein factorization of Fg(Q/P1) → P1

[Gau55] (see also [Rei72, DR77, Don80]). Over k, Wang studied the torsor structure
of Fg−1(X) [Wan18]. For the second maximal linear subspaces, Fg−2(X) is isomorphic
over k to the moduli space of rank 2 vector bundles on the hyperelliptic curve [DR77].

The main result of this paper proves a partial converse to Theorem 1.1 in the
case when N = 2g + 1 and r = g − 2, generalizing Hassett–Tschinkel and Benoist–
Wittenberg’s results to arbitrary g ⩾ 2. To state this result, we first need to introduce
a definition. If Fr(X)(k) ̸= ∅, choose ℓ ∈ Fr(X)(k) and define Q(r) → P1 to be the
hyperbolic reduction of Q → P1 with respect to ℓ (see Section 2.2). The hyperbolic
reduction Q(r) → P1 is itself a quadric fibration and may be regarded as the rela-
tive Fano scheme of isotropic (r + 1)-planes of Q → P1 containing ℓ; moreover, the
k-birational equivalence class of Q(r) does not depend on ℓ (see Section 3.1 for these
and additional properties). We prove:

Theorem 1.2. — Over a field k of characteristic ̸= 2, fix g ⩾ 2, and let X be a smooth
complete intersection of two quadrics in P2g+1. Then Fg−2(X)(k) ̸= ∅ and Q(g−2) is
k-rational if and only if Fg−1(X)(k) ̸= ∅.

Here the hyperbolic reduction Q(g−2) is a smooth threefold with a quadric surface
fibration structure.

In every even dimension, the analogous statement to Theorem 1.2 fails (see Sec-
tion 1.1). The reason Theorem 1.2 gives a partial converse of Theorem 1.1 is the follow-
ing birational description of the Fano schemes, which relates Fr(X) to the hyperbolic
reduction Q(r):

Theorem 1.3. — Over a field k of characteristic ̸= 2, let X be a smooth complete inter-
section of two quadrics in PN . Let r be such that 0 ⩽ r ⩽ ⌊N/2⌋−1. If Fr(X)(k) ̸= ∅,
then one of the following conditions holds.

(1) Fr(X) is k-birational to Symr+1 Q(r).
(2) N = 2g and r = g − 1 for some g ⩾ 1. In this case, the subscheme of

Fg−1(X) parametrizing (g − 1)-planes on X disjoint from ℓ is k-isomorphic to the
subscheme of Symg Q(g−1) parametrizing g-tuples of distinct points of Q(g−1), and
they are 0-dimensional schemes of length

(
2g+1

g

)
.
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Two special cases of Theorem 1.3 were previously known. When N = 2g+1 ⩾ 5 is
odd, r = g−1, and the field is algebraically closed, Reid proved the birational equiva-
lence of Fg−1(X) and Symg C, where C is the genus g hyperelliptic curve obtained as
the Stein factorization of Fg(Q/P1) → P1 [Rei72, §4]. The other previously known case
is when N > 2 and r = 0: Colliot-Thélène–Sansuc–Swinnerton-Dyer proved that X
is k-birational to Q(0) [CTSSD87a, Th. 3.2].

Theorem 1.3 shows that Theorem 1.2 is a partial converse to Theorem 1.1 because
symmetric powers of k-rational varieties are also k-rational [Mat69]. However, it does
not give the full converse because, in general, it is possible for a symmetric power of
an irrational variety to be rational (see Remark 4.14) and thus k-rationality of Q(g−2)

may be stronger than that of Fg−2(X). For Theorem 1.1, we show that the statement
follows from Theorem 1.3 by proving that a k-point on Fr+1(X) gives a section of the
quadric fibration Q(r) → P1 and hence a k-rationality construction.

As another application of Theorem 1.3, we prove the following (separable)
k-unirationality criterion:

Theorem 1.4. — Over a field k of characteristic ̸= 2, fix N ⩾ 6, and let X be a
smooth complete intersection of two quadrics in PN . The following are equivalent:

(1) F1(X) is separably k-unirational;
(2) F1(X) is k-unirational;
(3) F1(X)(k) ̸= ∅.

In addition, if k = R is the real numbers, then the above result holds for all Fano
schemes of non-maximal linear subspaces. That is, for every r such that 0 ⩽ r ⩽
⌊N/2⌋ − 2, Fr(X) is R-unirational if and only if it has an R-point.

The bound on N in Theorem 1.4 is crucial because F1(X) is never k-unirational
for N ⩽ 5. Our result extends previous results for F0(X) = X due to Manin [Man86,
Th. 29.4 & 30.1], Knecht [Kne15, Th. 2.1], Colliot-Thélène–Sansuc–Swinnerton-Dyer
[CTSSD87a, Rem. 3.28.3], and Benoist–Wittenberg [BW23, Th. 4.8]. Using Theo-
rem 1.3, the proof of Theorem 1.4 is reduced to showing separable k-unirationality of
the hyperbolic reduction Q(1) (and, if k = R, for Q(r); here we use a result of Kollár
over local fields [Kol99]). Part of the difficulty in generalizing the result for higher r
from R to other fields lies in the discrepancy between k-points and 0-cycles of degree 1.

In Section 3.3, we also apply Theorems 1.1 and 1.3 to establish k-rationality results
for Fr(X) for certain fields k, extending earlier results that were previously known
only for X. More precisely, we prove results for Ci-fields, p-adic fields, totally imag-
inary number fields, and finite fields, generalizing results of Colliot-Thélène–Sansuc–
Swinnerton-Dyer [CTSSD87a, Th. 3.4]. Over algebraically closed fields, using work of
Ramanan [Ram81] relating Fano schemes of odd-dimensional X and moduli spaces
of certain vector bundles on hyperelliptic curves, we also prove rationality results
for these moduli spaces (Corollary 3.7), partially extending the work of Newstead
[New75, New80] and King–Schofield [KS99].
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1.1. Second maximal linear spaces on even-dimensional complete intersections
over R. — In the latter part of the paper, we focus on rationality over the field R of
real numbers. For a smooth complete intersection of two quadrics defined over R, The-
orem 1.1 implies that its Fano schemes of non-maximal linear spaces are C-rational.
One may further ask when these Fano schemes are rational over R.

The locus of real points encodes additional obstructions to rationality over R: if Y is
an R-rational smooth projective variety, then Y (R) is necessarily connected and non-
empty. In dimensions 1 and 2, this topological obstruction characterizes rationality
for C-rational varieties [Com13]. In higher dimensions, however, this fails in general:
in dimension ⩾ 3, there are C-rational varieties, with non-empty connected real loci,
that are irrational over R [BW20, Th. 5.7]. Among complete intersections of quadrics
X ⊂ P5, Hassett–Tschinkel showed that there exist examples that are irrational over R
despite X(R) being non-empty and connected [HT21b]. (See also [FJS+24, JJ24] for
other examples in dimension 3.)

Hassett–Kollár–Tschinkel studied R-rationality for even-dimensional complete
intersections of quadrics. In particular, they showed that a 4-fold X ⊂ P6 is
R-rational if and only if its real locus is non-empty and connected. We prove an
analogous result for the second maximal linear spaces on X ⊂ P2g:

Theorem 1.5 (Theorem 5.1). — Over the real numbers, fix g ⩾ 2, and let X be a
smooth complete intersection of two quadrics in P2g. Then Fg−2(X) is R-rational if
and only if Fg−2(X)(R) is non-empty and connected. Furthermore, this is equivalent
to R-rationality of the surface Q(g−2).

Thus, in this case, the aforementioned necessary condition for R-rationality is in
fact sufficient. Moreover, we show that this property is determined by the real isotopy
class of X (Section 5.3). One can apply Theorem 1.5 to construct examples in any even
dimension where Q(g−2) is R-rational but Fg−1(X)(R) = ∅ (see Corollary 5.7(2)),
contrasting the odd-dimensional case as shown by Theorem 1.2. Furthermore, the
analogue of Theorem 1.5 fails in every odd dimension (see Example 5.10).

As an application, in the case of 4-dimensional X ⊂ P6, combining Theorems 1.4
and 1.5 with earlier results in [CTSSD87a, HKT22], we completely determine R-
rationality and R-unirationality of the Fano schemes of non-maximal linear spaces
on a 4-fold complete intersection X of two real quadrics using an isotopy invariant
that was studied by Krasnov [Kra18] (see Section 5.2). This invariant, which was used
in the rationality classifications in [HT21b, HKT22], is defined using the signatures
of the quadrics in the associated pencil Q → P1. In particular, we show that these
R-(uni)rationality properties of Fr(X) for r = 0, 1 are controlled solely by the real
isotopy class of X, extending the results of [HKT22] on R-rationality of X:

Corollary 1.6. — Over the real numbers, let X be a smooth complete intersection of
two quadrics in P6.

(1) F1(X) is R-rational if and only if the Krasnov invariant is one of (1), (3),
(1, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1), (2, 1, 2, 1, 1), or (1, 1, 1, 1, 1, 1, 1).
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(2) F1(X) is R-unirational if and only if the Krasnov invariant is one of those
listed in (1), or is (3, 1, 1), (3, 2, 2), (3, 1, 1, 1, 1), or (2, 2, 1, 1, 1).

(3) [HKT22, Th. 1.1] X is R-rational if and only if the Krasnov invariant is one
of those listed in (2), or is (5), (4, 2, 1), or (3, 3, 1).

(4) X is R-unirational if and only if the Krasnov invariant is one of those listed
in (3) or is (5, 1, 1).

1.2. Outline. — In Section 2, we recall preliminary results on Fano schemes of
linear subspaces on complete intersections of quadrics, the definition and properties
of hyperbolic reductions, lemmas on pencils of quadrics from Reid’s thesis [Rei72],
and Benoist–Wittenberg’s codimension 2 Chow scheme for threefolds. In Section 3,
we describe the hyperbolic reduction of a pencil of quadrics. We prove Theo-
rems 1.1, 1.3, and 1.4 in this section, and as consequences, we derive rationality
results over certain fields in Section 3.3. Section 4, which is the most technical part
of the paper, is devoted to the proof of Theorem 1.2 on odd-dimensional complete
intersections. Finally, in Section 5 we turn to the case of even-dimensional complete
intersections over R. Here we prove Theorem 1.5 and Corollary 1.6, and we give
examples contrasting the behavior in the even- and odd-dimensional cases.

Notation. — Throughout k is a field of characteristic ̸= 2. For a variety X, we use
x ∈ X to denote a scheme-theoretic point. We say a variety X over k is k-rational to
emphasize that the rationality construction is defined over k; when we say rational
without specifying the ground field, we usually mean k-rational over an algebraically
closed field.

For a smooth variety X over k and i ⩾ 0, we let CHi(X) denote the Chow group of
codimension i cycles on X. We denote the subgroup of algebraically trivial cycles by
CHi(X)alg ⊂ CHi(X), and we denote the quotient by NSi(X) = CHi(X)/CHi(X)alg.
For smooth projective varieties X,Y, Z and correspondences Γ ∈ CHi(X × Y ) and
Γ′ ∈ CHj(Y × Z), we denote their composition by

Γ′ ◦ Γ := (πX×Z)∗((πX×Y )
∗Γ · (πY×Z)

∗Γ′) ∈ CHi+j−dimY (X × Z),

where πX×Y : X×Y ×Z → X×Y , πY×Z : X×Y ×Z → Y ×Z, and πX×Z : X×Y ×Z →
X ×Z are the projections. For a curve C over k, we use Pic(C) to denote the Picard
group over k, and PicC/k to denote the relative Picard scheme over k. For a variety X
over k and r ⩾ 0, SymrX denotes the rth symmetric power (over k).

If ℓ1, . . . , ℓr ⊂ Pn are linear subspaces, we denote their span by ⟨ℓ1, . . . , ℓr⟩. For
n ⩾ 0, we denote the n× n identity matrix by In.

Acknowledgements. — We thank Brendan Hassett and Jerry Wang for interesting
discussions. We thank Olivier Debarre for feedback on an earlier version of the paper,
and Jean-Louis Colliot-Thélène for comments, in particular for communicating to us
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the assumption that Fg−2(X)(k) ̸= ∅. We are also grateful to the anonymous referees
for their careful reading of this paper and helpful comments. This work started during
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a visit of the first author to UCLA, and she thanks Joaquín Moraga and Burt Totaro
for their hospitality and for providing a welcoming environment.

2. Preliminaries

2.1. Fano schemes of r-planes on a smooth complete intersection of two quadrics

Let X ⊂ PN be a smooth complete intersection of two quadrics. For non-negative
integers r ⩾ 0, Fr(X) denotes the Fano scheme of r-planes on X. In this section,
we recall some preliminary results about these Fano schemes Fr(X).

Lemma 2.1 ([CT24, Lem. A.3 & A.4]). — Over a field k of characteristic ̸= 2, let X
be a smooth complete intersection of two quadrics in PN . The following hold.

(1) If r > ⌊N/2⌋ − 1, Fr(X) is empty.
(2) If 0 ⩽ r ⩽ ⌊N/2⌋−1, Fr(X) is non-empty, smooth, projective, and of dimension

(r + 1)(N − 2r − 2).
(3) If 0 ⩽ r < N/2− 1 (or equivalently if dimFr(X) > 0), then Fr(X) is geomet-

rically connected.

For the sake of completeness, we add the following results, which will not be used
in the rest of the paper.

Theorem 2.2. — In the setting of Lemma 2.1, the following hold.
(1) If N = 2g and r = g − 1 for some g ⩾ 1, Fg−1(X) is a torsor under the finite

group scheme Pic0C/k[2], where C is a certain curve of genus g associated to X. The
curve C depends on the choice of two quadrics defining X, but Pic0C/k[2] does not
depend on this choice.

(2) If N = 2g+1 and r = g−1 for some g ⩾ 1, Fg−1(X) is a torsor under Pic0C/k,
where C is the curve of genus g obtained as the Stein factorization of Fg(Q/P1) → P1.

(3) If 0 ⩽ r ⩽ ⌊N/2⌋ − 2, Fr(X) is a Fano variety, i.e., the anti-canonical divisor
−KFr(X) is ample.

Proof. — (1), (2), and (3) respectively follow from [BG14, §6], [Wan18, Th. 1.1], and
[DM98, Rem. 3.2]. □

2.2. Quadric bundles and hyperbolic reductions. — In this section, we recall the
definition and basic properties of quadric fibrations and of the hyperbolic reductions
of a quadric fibrations; see, e.g., [Kuz24, §2], [ABB14, §1.3] for more details.

Let S be an integral separated Noetherian scheme over a field k of characteristic
̸= 2. A quadric fibration over S is a morphism Q → S that can be written as a
composition Q ↪→ PS(E) := Proj

S
Sym

•
(E∨) → S where E is a vector bundle and

Q ↪→ PS(E) is a divisor of relative degree 2 over S. A quadric fibration is determined
by a quadratic form q : Sym2 E → L∨ with values in a line bundle L, and we define the
degeneration divisor of the quadric fibration to be the zero locus of the determinant
of q.

J.É.P. — M., 2025, tome 12
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Lemma 2.3 ([ABB14, Prop. 1.2.5]). — Let S be a smooth scheme over a field of char-
acteristic ̸= 2, and let π : Q → S be a flat quadric fibration with smooth generic fiber.
Then the degeneration divisor of π is smooth over k if and only if Q is smooth over k
and π has simple degeneration (i.e., the fibers of π have corank at most 1).

A subbundle F ⊂ E is isotropic if q|F = 0 (or, equivalently, if PS(F) ⊂ Q).
An isotropic subbundle F ⊂ E is regular if, for every (closed) point s ∈ S, the
fiber PS(F)s is contained in the smooth locus of the fiber Qs. If F is regular isotropic,
then F is contained in the subbundle

F⊥ := Ker(E −→−→ F∨ ⊗ L∨)

of E. Moreover, F is in the kernel of the restriction q|F⊥ , so we have an induced
quadratic form on F⊥/F.

Definition 2.4. — The induced quadratic form q : Sym2(F⊥/F) → L∨ is the hyper-
bolic reduction of q : Sym2 E → L∨ with respect to the regular isotropic subbundle F.
We also say that Q := (q = 0) is the hyperbolic reduction of Q = (q = 0) with respect
to PS(F).

The process of hyperbolic reduction along a regular isotropic subbundle preserves
the degeneration divisor of a quadric fibration:

Lemma 2.5 ([ABB14, Cor. 1.3.9]). — Let S be a smooth scheme over a field of char-
acteristic ̸= 2, and π : Q → S be a quadric fibration with smooth generic fiber. Let
F ⊂ E be a regular isotropic subbundle, and π : Q → S be the hyperbolic reduction of Q
respect to PS(F). Then π and π have the same degeneration divisor.

Note that, more generally, hyperbolic reduction preserves the locus of corank ⩾ i

fibers for each i [KS18, Lem. 2.4].
Hyperbolic reduction can be described geometrically in terms of the linear projec-

tion of Q ⊂ PS(E) from the linear subbundle PS(F) ⊂ Q ⊂ PS(E) [KS18, Prop. 2.5].

2.3. Lemmas of Reid on pencils of quadrics. — Next, over algebraically closed fields,
we recall several results proved by Reid [Rei72] that we will use in the proof of Theo-
rem 1.3. In what follows, coordinate points p0, . . . , pN ∈ PN mean a choice of coordi-
nates for PN such that the N +1 points given by intersecting coordinate hyperplanes
are exactly p0, . . . , pN .

Lemma 2.6 ([Rei72, Lem. 2.2]). — Over an algebraically closed field of characteris-
tic ̸= 2, let X be a smooth complete intersection of two quadrics in PN , and let ℓ
be an r-plane on X. Then there exist coordinate points p0, . . . , pN ∈ PN such that
⟨p0, . . . , pr⟩ = ℓ and X is defined by two quadrics which correspond in these coordi-
nates to symmetric matrices of the form 0 Ir+1 0

Ir+1 0 0

0 0 IN−2r−1

 ,

 0 M ∗
M 0 ∗
∗ ∗ ∗

 ,

where M is a diagonal (r + 1)× (r + 1) matrix with distinct diagonal entries.
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Lemma 2.7 ([Rei72, Lem. 3.4]). — Over an algebraically closed field of charac-
teristic ̸= 2, let ℓ,m be disjoint r-planes in P2r+1 and choose coordinate points
p0, . . . , pr, q0, . . . , qr ∈ P2r+1 such that ⟨p0, . . . , pr⟩ = ℓ and ⟨q0, . . . , qr⟩ = m. Fur-
thermore, let Q1, Q2 be quadrics in P2r+1 which correspond in these coordinates to
symmetric matrices of the form(

0 Ir+1

Ir+1 0

)
,

(
0 M

M 0

)
,

where M is a diagonal (r + 1) × (r + 1) matrix with distinct diagonal entries. Then
the set of r-planes on the singular complete intersection of quadrics Y := Q1 ∩ Q2

coincides with
{⟨pi, qj⟩i∈I,j ̸∈I | I ⊂ {0, . . . , r}} .

Lemma 2.8. — Over an algebraically closed field of characteristic ̸= 2, fix g ⩾ 1, and
let X be a smooth complete intersection of two quadrics in P2g. Let ℓ,m be disjoint
(g − 1)-planes on X. Then there exist coordinate points p0, . . . , p2g ∈ P2g such that
⟨p0, . . . , pg−1⟩ = ℓ, ⟨pg, . . . , p2g−1⟩ = m, and X is defined by two quadrics which
correspond in these coordinates to symmetric matrices of the form 0 Ig ∗

Ig 0 ∗
∗ ∗ ∗

 ,

 0 M ∗
M 0 ∗
∗ ∗ ∗

 ,

where M is a diagonal g × g matrix with distinct diagonal entries.

For the proof, we need the following result stated in [Rei72, p. 44]:

Lemma 2.9. — Over an algebraically closed field of characteristic ̸= 2, let A,B be
n× n matrices. Then the following conditions are equivalent:

(1) there exists an invertible 2n× 2n matrix L of the form

L =

(
L1 0

0 L2

)
for some n × n matrices L1, L2, and there exists a diagonal n × n matrix M with
distinct diagonal entries such that

LT

(
0 A

AT 0

)
L =

(
0 In
In 0

)
, LT

(
0 B

BT 0

)
L =

(
0 M

M 0

)
;

(2) the polynomial det(λA+B) has n distinct roots.

Proof. — (1) ⇒ (2) is immediate. As for (2) ⇒ (1), the assumption implies that A is
invertible and BA−1 has n distinct eigenvalues. Let C be an invertible n× n matrix
such that C−1BA−1C equals some diagonal n × n matrix M with distinct diagonal
entries. Then we may take

L :=

(
(CT )−1 0

0 A−1C

)
. □

J.É.P. — M., 2025, tome 12



1170 L. Ji & F. Suzuki

Proof of Lemma 2.8. — The proof is outlined in [Rei72, p. 44]. Here is a detailed argu-
ment. Take coordinate points p0, . . . , p2g ∈ P2g such that ⟨p0, . . . , pg−1⟩ = ℓ and
⟨pg, . . . , p2g−1⟩ = m. In these coordinates, any two quadrics defining X correspond to
symmetric matrices of the form

S =

 0 A ∗
AT 0 ∗
∗ ∗ ∗

 , T =

 0 B ∗
BT 0 ∗
∗ ∗ ∗

 ,

where A,B are g × g matrices, and, by the smoothness of X, we may choose those
quadrics so that S is invertible. By [Rei72, Cor. 3.7], the polynomial det(λA + B)

divides the polynomial det(λS + T ), where the latter has distinct 2g + 1 roots by
the smoothness of X [Rei72, Prop. 2.1]. Hence det(λA + B) has distinct g roots,
which implies that after a suitable coordinate change we may take A = Ig and B

to be diagonal with distinct diagonal entries by Lemma 2.9. Accordingly, we obtain
coordinate points with the desired properties. □

2.4. CH2-scheme of Benoist–Wittenberg. — Throughout this section, let X be a
smooth, proper, geometrically connected, geometrically rational threefold over k, and
let Gk := Gal(k/kp) be the absolute Galois group of the perfect closure kp of k.
We recall several key properties of Benoist–Wittenberg’s codimension 2 Chow scheme
of X [BW23], which we will use in the proof of Theorem 1.2.

For such a threefold X, Benoist and Wittenberg use K-theory to define a functor
CH2

X/k,fppf for codimension 2 cycles that is analogous to the Picard functor PicX/k,fppf .
They show that this functor is represented by a smooth group scheme CH2

X/k over k
with the following properties [BW23, Th. 3.1]:

(1) The identity component (CH2
X/k)

0 is an abelian variety, which we refer to as
the intermediate Jacobian of X. Its base change to the perfect closure of k agrees
with the intermediate Jacobian as defined by Murre [Mur85, ACMV17].

(2) There is a Gk-equivariant isomorphism CH2(Xk)
∼= CH2

X/k(k).
(3) The component group CH2

X/k /(CH2
X/k)

0 is identified with the Gk-module
NS2(Xk).

(4) If X is k-rational, then there is a smooth projective (not necessarily connected)
curve B over k such that CH2

X/k is a principally polarized direct factor of PicB/k.
For each class

γ ∈ NS2(Xk)
Gk = (CH2

X/k /(CH2
X/k)

0)(k),

its inverse image (CH2
X/k)

γ in CH2
X/k is a(n étale) (CH2

X/k)
0-torsor. The quotient

map is a group homomorphism, so we have an equality of (CH2
X/k)

0-torsors

[(CH2
X/k)

γ ] + [(CH2
X/k)

γ′
] = [(CH2

X/k)
γ+γ′

]

for any γ, γ′ ∈ NS2(Xk)
Gk .

Hassett–Tschinkel, over k = R [HT21b], and Benoist–Wittenberg, over arbitrary
fields [BW23], (see also [HT21a] for k ⊂ C) observed that these intermediate Jacobian
torsors can be used to refine the rationality obstruction (4). We call their refined
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obstruction the intermediate Jacobian torsor obstruction to rationality. For simplicity,
we state a special case of this obstruction, which is enough for our application:

Theorem 2.10 (Special case of [BW23, Th. 3.11]). — For X as above, assume that
there exists an isomorphism (CH2

X/k)
0 ∼= Pic0C/k of principally polarized abelian

varieties for some smooth, projective, geometrically connected curve C of genus ⩾ 2.
If X is k-rational, then for every γ ∈ (NS2Xk)

Gk there exists an integer d such that
(CH2

X/k)
γ and PicdC/k are isomorphic as Pic0C/k-torsors.

3. Fano schemes of linear spaces and hyperbolic reductions of pencils
of quadrics

In this section, we construct the hyperbolic reduction of a pencil of quadrics Q → P1

with respect to a linear subspace in the base locus X. We show several properties
about the hyperbolic reductions, relating them to linear spaces on X, and we prove
Theorems 1.1, 1.3, and 1.4.

3.1. Construction of φ(r) : Q(r) → P1 and its properties. — Throughout Sec-
tion 3.1, we will work in the following setting. Fix an arbitrary field k of characteristic
̸= 2 and an integer N ⩾ 2. Let X be a smooth complete intersection of two quadrics
in PN , and let φ : Q → P1 be the associated pencil of quadrics. Let r be such that
0 ⩽ r ⩽ ⌊N/2⌋ − 1. By Lemma 2.1, the Fano scheme Fr(X) of r-planes on X is
non-empty. We will assume Fr(X)(k) ̸= ∅ in what follows.

Choose ℓ ∈ Fr(X)(k). The projection πℓ : PN PN−r−1 away from ℓ induces
diagrams

PPN−r−1(O⊕r+1 ⊕ O(1))

PN PN−r−1,

blℓ

πℓ

X̃

X PN−r−1,

blℓ f

πℓ|X

Q̃

Q P1 × PN−r−1.

blP1×ℓ h

id×πℓ|Q

To be more explicit, choose homogeneous coordinates x0, . . . , xN for PN so that

ℓ =
{
xr+1 = · · · = xN = 0

}
.

Then there exist forms lij , qi ∈ k[xr+1, . . . , xN ] with deg lij = 1,deg qi = 2 such that

X =


(
l00 . . . l0r q0
l10 . . . l1r q1

)
x0...
xr
1

 = 0

 ⊂ PN .

Choosing a section z whose zero set equals the divisor

PPN−r−1(O⊕r+1) ⊂ PPN−r−1(O⊕r+1 ⊕ O(1)),
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there exist homogeneous coordinates yr+1, . . . , yN for PN−r−1 such that xl = ylz, and

X̃ =


(
l00 . . . l0r q0
l10 . . . l1r q1

)
x0...
xr
z

 = 0

 ⊂ PPN−r−1(Or+1 ⊕ O(1)),

where lij , qi are in yr+1, . . . , yN . We also have

Q =


(
s t
)(l00 . . . l0r q0

l10 . . . l1r q1

)
x0...
xr
1

 = 0

 ⊂ P1 × PN ,

Q̃ =


(
s t
)(l00 . . . l0r q0

l10 . . . l1r q1

)
x0...
xr
z

 = 0

 ⊂ P1 × PPN−r−1(O⊕r+1 ⊕ O(1)).

We now define

P(r) :=

{(
s t
)(l00 . . . l0r

l10 . . . l1r

)
= 0

}
⊂ P1 × PN−r−1,

Q(r) :=

{(
s t
)(l00 . . . l0r q0

l10 . . . l1r q1

)
= 0

}
⊂ P1 × PN−r−1.

The first projection defines a PN−2r−2-bundle P(r) → P1, which restricts to a mor-
phism φ(r) : Q(r) → P1, which is a quadric fibration if dimQ(r) ⩾ 1. (By convention,
Q(−1) = Q and φ(−1) = φ.) Furthermore, define

E(r) := h−1(Q(r)) = PQ(r)(O⊕r+1 ⊕ O(0, 1)),

and let π(r) : E(r) → Q(r) be the projection.

Lemma 3.1. — Q(r) satisfies the following properties.
(1) φ(r) : Q(r) → P1 is the hyperbolic reduction of φ : Q → P1 with respect to ℓ.

In particular, the degeneracy locus of φ(r) is defined by a separable polynomial of
degree N + 1.

(2) Q(r) is smooth of dimension N −2r−2. If N −2r−2 > 0, Q(r) is geometrically
connected.

(3) π(r) : E(r) → Q(r) induces an embedding Q(r) ↪→ Fr+1(Q/P1) over P1, whose
image is the relative Fano scheme of isotropic (r+1)-planes of φ : Q → P1 containing ℓ.

(4) The restriction π(r)|E(r)∩(P1×X̃) : E
(r) ∩ (P1 × X̃) → Q(r) induces an isomor-

phism
Q(r) ∖

{
lij = 0 (i = 0, 1, j = 1, . . . , r)

}
∼−→
{
m ∈ Fr(X) | dim ℓ ∩m = r − 1 and ⟨ℓ,m⟩ ̸⊂ X

}
.

(5) If N−2r−2>0, the k-birational equivalence class of Q(r) does not depend on ℓ.
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(6) If N > 2, Q(0) is k-birational to X. If N = 2g for some g ⩾ 1, Q(g−1) is of
dimension zero and length 2g+1. If N = 2g+1 for some g ⩾ 1, Q(g−1) is k-isomorphic
to the curve C of genus g obtained as the Stein factorization of Fg(Q/P1) → P1.

(7) If N − 2r − 2 > 0, Q(r) has a 0-cycle of degree 1, in other words, the index of
Q(r) is 1.

(8) If N − 3r − 3 ⩾ 0, Q(r) has a k-point.

Proof
(1) For x = [s : t] ∈ P1, Qκ(x) corresponds to the symmetric matrix(

0 A

AT B

)
,

where A is the Jacobian matrix for {sl00 + tl10 = · · · = sl0r + tl1r = 0} and B is the
Hessian matrix for sq0 + tq1. This in turn shows that

ℓ⊥ =

{(
s t
)(l00 . . . l0r

l10 . . . l1r

)
= 0

}
⊂ PN

κ(x)

and the hyperbolic reduction of Qκ(x) with respect to ℓ equals Q
(r)
κ(x) ⊂ P

(r)
κ(x) =

ℓ⊥/ℓ ⊂ PN−r−1
κ(x) = PN

κ(x)/ℓ. The first statement follows. As for the second statement,
Lemma 2.5 shows that the degeneracy locus of φ(r) : Q(r) → P1 is the same as that
of φ : Q → P1, and the latter is defined by a separable polynomial of degree N +1 by
[Rei72, Prop. 2.1].

(2) By (1) and Lemma 2.3, Q(r) is smooth. Moreover, we deduce from (1) that
we have dimQ(r) = N − 2r − 2. This implies that Q(r) is a complete intersection of
r+ 2 ample divisors in P1 × PN−r−1. So if N − 2r− 2 > 0, then Q(r) is geometrically
connected.

(3)–(4) Using the equations for Q and Q(r), we may observe that π(r) : E(r) → Q(r)

is a Pr+1-bundle whose fibers are the (r + 1)-planes of φ : Q → P1 containing ℓ. The
induced morphism Q(r) → Fr+1(Q/P1) over P1 is an isomorphism onto its image
because the blow-up of Q along P1 × ℓ yields the inverse map.

Similarly, using the equations for X and Q(r), it is direct to see that

X ∩ {lij = 0 (i = 0, 1, j = 0, . . . , r)} = {lij = qi = 0 (i = 0, 1, j = 0, . . . , r)} ⊂ PN

is the union of all linear spaces on X containing ℓ, and that over the complement of the
proper closed subscheme Q(r) ∩ {lij = 0 (i = 0, 1, j = 1, . . . , r)} ⊂ Q(r), the morphism
π(r)|E(r)∩(P1×X̃) : E

(r) ∩ (P1 × X̃) → Q(r) is a Pr-bundle whose fibers are the r-planes
m on X such that dim ℓ ∩m = r − 1 and ⟨ℓ,m⟩ ̸⊂ X. The induced morphism

Q(r) ∖
{
lij = 0 (i = 0, 1, j = 1, . . . , r)

}
−→

{
m ∈ Fr(X) | dim ℓ ∩m = r − 1 and ⟨ℓ,m⟩ ̸⊂ X

}
is an isomorphism because the blow-up of X along ℓ yields the inverse map.

(5) It is enough for us to show that the k(P1)-isomorphism class of the generic
fiber of Q(r) → P1 does not depend on ℓ. For ℓ, ℓ′ ∈ Fr(X)(k), denote by Q

(r)
ℓ → P1,
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Q
(r)
ℓ′ → P1 the corresponding hyperbolic reductions. Letting H denote a split quadric,

we have

Qk(P1) ≃ (Q
(r)
ℓ )k(P1) ⊥ H ≃ (Q

(r)
ℓ′ )k(P1) ⊥ H.

The Witt cancellation theorem [EKM08, Th. 8.4] then shows (Q(r)
ℓ )k(P1) ≃ (Q

(r)
ℓ′ )k(P1).

(6) If N > 2, then Q(0) is k-birational to the image of X under the projection away
from a k-point on X, hence k-birational to X. If N = 2g for some g ⩾ 1, Q(g−1) is a
complete intersection of g divisors of type (1, 1) and a divisor of type (1, 2) in P1×Pg,
hence Q(g−1) is of dimension zero and length 2g + 1. If N = 2g + 1 for some g ⩾ 1,
the composition Q(g−1) ↪→ Fg(Q/P1) → C is an isomorphism over P1 since the double
covers φ(g−1) : Q(g−1) → P1 and C → P1 are both branched over the degeneracy locus
of φ : Q → P1.

(7) Since Q(r) is a complete intersection of r+1 divisors of type (1, 1) and a divisor
of type (1, 2) in P1×PN−r−1, the zero-cycle Q(r) · (P1×Pr+1)− (r+1)Q(r) · (∗×Pr+2)

is of degree 1.
(8) If N − 3r − 3 ⩾ 0, then {lij = 0 (i = 0, 1, j = 1, . . . , r)} ⊂ PN−r−1 is non-

empty by a dimension count. Using the equations for Q(r) and the fact that lij are
linear forms, Q(r) ∩ {lij = 0 (i = 0, 1, j = 0, . . . , r)} has a k-point. This concludes the
proof. □

The following result is well-known to the experts; see [CTSSD87a, Rem. 3.4.1(a)]
and [HT22, §6.1], where a special case is stated.

Proposition 3.2. — The following conditions are equivalent:

(1) Fr+1(X)(k) ̸= ∅;
(2) φ : Q → P1 has a relative (r + 1)-plane containing P1 × ℓ;
(3) φ(r) : Q(r) → P1 has a section.

If any of these equivalent conditions holds, then Q(r) is k-rational.

Proof. — For (1) ⇔ (2), the Amer–Brumer theorem [Lee07, Th. 2.2] shows that
Fr+1(X)(k) ̸= ∅ if and only if Fr+1(Qk(P1))(k(P1)) ̸= ∅; by the Witt extension
theorem [EKM08, Th. 8.3], the latter is equivalent to the existence of an (r+1)-plane
on Qk(P1), containing ℓ, and defined over k(P1). Next, the equivalence (2) ⇔ (3) fol-
lows from Lemma 3.1(3). Finally, if (3) holds, then the generic fiber of φ(r) is a smooth
quadric with a k(P1)-point, so Q(r) is k-rational. □

Remark 3.3. — If we allow X to be singular and assume that ℓ ∈ Fr(X)(k) is entirely
contained in the smooth locus of X, most of the results in this section, after some
suitable fixes, still hold. An analogue of Proposition 3.2 is also true. The point is
that if Qk(P1) is singular, then Q

(r)
k(P1) is singular, but any singular quadric contains

a rational point. We do not state and prove results in this generality in this paper
because it is not necessary for our purposes.
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3.2. Proofs of Theorems 1.1, 1.3, and 1.4

Proof of Theorem 1.3. — Under the assumptions of Theorem 1.3, choose ℓ ∈ Fr(X)(k)

so that Q(r) is defined. For m ∈ Fr(X), not necessarily a k-point, we say that m is
general with respect to ℓ if: (1) ℓ ∩ m = ∅; and (2) X ∩ ⟨ℓ,m⟩ ⊂ ⟨ℓ,m⟩ = P2r+1 is
defined by two quadrics which, over an algebraic closure of the residue field of m and
for some choice of coordinates, correspond to symmetric matrices of the form(

0 Ir+1

Ir+1 0

)
,

(
0 M

M 0

)
,

where M is diagonal with distinct diagonal entries. By Lemma 2.9, property (2) is
equivalent to separability of a certain polynomial associated to ℓ and m. Define

U :=
{
m ∈ Fr(X) | m is general with respect to ℓ

}
.

The set U is a priori only defined over k, but it actually descends to k as ℓ is defined
over k. Clearly, U is open in Fr(X), and moreover, it is non-empty by Lemma 2.6.
For every m ∈ U , Lemma 2.7 implies that the (singular) intersection X ∩ ⟨ℓ,m⟩ ⊂
⟨ℓ,m⟩ = P2r+1 contains exactly r + 1 distinct r-planes m1, . . . ,mr+1 that intersect ℓ
along an (r − 1)-plane. Using the isomorphism in Lemma 3.1(4), we now define a
morphism

ψ : U −→ Symr+1 Q(r), m 7−→ (m1, . . . ,mr+1).

The morphism ψ is defined over k by the same reasoning as above. Moreover, ψ is
one-to-one onto its image on the level of k-points because we have ⟨m1, . . . ,mr+1⟩ =
⟨ℓ,m⟩ and m is the unique r-plane on X ∩ ⟨ℓ,m⟩ that is disjoint from ℓ. Since
dimFr(X) = dimSymr+1 Q(r) = (r + 1)(N − 2r − 2) by Lemma 3.1(2) and ψ factors
through the smooth locus of Symr+1 Q(r), it then follows that ψ is an open immer-
sion. If N − 2r − 2 > 0, then Fr(X) and Symr+1 Q(r) are both geometrically integral
by Lemmas 2.1 and 3.1, so Fr(X) is k-birational to Symr+1 Q(r).

It remains to consider the caseN−2r−2 = 0. Set g = r+1. We have dimFg−1(X) =

dimSymg Q(g−1) = 0. In this case, Lemma 2.8 shows that if m ∈ Fg−1(X) satis-
fies property (1) of being general with respect to ℓ, then property (2) is automatic.
Hence U coincides with the subscheme of Fg−1(X) parametrizing (g−1)-planes on X
disjoint from ℓ. It remains to show that ψ gives an isomorphism between U and the
subscheme of Symg Q(g−1) parametrizing g-tuples of distinct points of Q(g−1). The for-
mer is of length

(
2g+1

g

)
by the analysis on the configuration of the (g−1)-planes on X

due to Reid [Rei72, Th. 3.8], and the latter is also of length
(
2g+1

g

)
by Lemma 3.1(6).

The claim thus follows, and this concludes the proof of the theorem. □

Proof of Theorem 1.1. — If Fr+1(X)(k) ̸= ∅, then Fr(X)(k) ̸= ∅, and hence Q(r) is
defined. Proposition 3.2 shows that Q(r) is k-rational, and Theorem 1.3 shows that
Fr(X) is k-birational to Symr+1 Q(r), hence to Symr+1 PN−2r−2. Symmetric powers
of a projective space over k are k-rational by a result of Mattuck [Mat69], completing
the proof. □
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Proof of Theorem 1.4. — The implications (1) ⇒ (2) ⇒ (3) are standard, so it remains
to show (3) ⇒ (1).

First we address the case of F1(X) and arbitrary k. For this, by Theorem 1.3
and [Mat69], it is enough to show that if F1(X)(k) ̸= ∅ then Q(1) is separably
k-unirational. We show this statement by induction on N . By [BW23, Lem. 4.9],
we may and will assume that k is infinite.

As for the base case N=6, by Lemma 3.1(8), Q(1) has a k-point. Since φ(1) : Q→P1

is a conic bundle with 7 singular fibers by Lemma 3.1(1) and (2), a result of Kollár–
Mella [KM17, Th. 7] shows that Q(1) is k-unirational with a degree 8 dominant rational
map P2 Q(1). Since k is of characteristic ̸= 2, Q(1) is separably k-unirational.

For N > 6, choose ℓ ∈ F1(X)(k) and consider a general pencil X P1 of hyper-
plane sections containing ℓ. By the proof of [CT24, Lem. A.4], a general member of
the pencil is smooth, hence the blow-up along the base locus X ′ → P1 has a smooth
generic fiber. Let Q(1) P1 be the induced pencil. For the blow-up along the base
locus (Q(1))′ → P1, the generic fiber is the hyperbolic reduction of the generic fiber
of X ′ → P1 with respect to the line ℓ, and it is separably k(P1)-unirational by induc-
tion. This implies that (Q(1))′ is separably k-unirational, so is Q(1). This completes
the proof for F1(X).

It remains to show for 0 ⩽ r ⩽ ⌊N/2⌋ − 2 that if Fr(X)(R) ̸= ∅, then Fr(X) is
R-unirational. Choose ℓ ∈ Fr(X)(R) so that Q(r) is defined. Then Q(r) has an R-point
by Lemma 3.1(7), so it is R-unirational by [Kol99, Cor. 1.8] applied to the quadric
bundle φ(r) : Q(r) → P1. Therefore Fr(X) is R-unirational by Theorem 1.3. □

Remark 3.4. — A potential strategy for further extending Theorem 1.4 to Fr(X)

for arbitrary r > 1 over arbitrary fields would be to reduce to showing separable
k-unirationality of the surface Q(r) for X ⊂ P2r+4. Nevertheless, for r > 1, it is not
even clear whether Q(r) has a k-point. The difficulty lies in the fact that a conic bundle
over P1 with a 0-cycle of degree 1 does not necessarily have a k-point, as first observed
by Colliot-Thélène–Coray [CTC79].

3.3. Rationality results for Fr(X) over certain fields. — In this section, we give
some consequences of Theorems 1.1 and 1.3 over some specific fields k. First, we prove
the following result, which generalizes the r = 0 case due to Colliot-Thélène–Sansuc–
Swinnerton-Dyer [CTSSD87a, Th. 3.4].

Corollary 3.5. — Over a field k of characteristic ̸= 2, let X be a smooth complete
intersection of two quadrics in PN .

(1) If k is a Ci-field for some i ⩾ 0, then, for every r such that 0 ⩽ r ⩽ ⌊N/2⌋ −
2i − 1, Fr(X) is k-rational. In particular, if k is algebraically closed, then Fr(X) is
rational for all r such that 0 ⩽ r ⩽ ⌊N/2⌋ − 2.

(2) If k is a p-adic field, then, for every r such that 0 ⩽ r ⩽ ⌊N/2⌋ − 5, Fr(X) is
k-rational.

(3) If k is a totally imaginary number field, then, for every r such that 0 ⩽ r ⩽
⌊N/3⌋ − 5, Fr(X) is k-rational.
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Proof. — First, we prove these statements under the assumption that Fr(X)(k) ̸= ∅.
(1) The function field k(P1) is a Ci+1-field by the Lang–Nagata theorem. Since

φ(r) : Q(r) → P1 is a fibration into quadrics in N − 2r − 1 > 2i+1 variables, the
assumption implies it has a section. Hence, Q(r) is k-rational, so Fr(X) is k-rational
by Theorem 1.3.

(2) Let k be a p-adic field. By theorems of Parimala–Suresh [PS10, Th. 4.6] (for
p ̸= 2) and Leep [Lee13, Th. 3.4] (for p = 2; see also [PS14]) on the u-invariant of
quadratic forms over p-adic function fields, any quadric bundle of relative dimension
⩾ 7 over a curve defined over k has a section. Applying this to φ(r) : Q(r) → P1,
together with Theorem 1.3, yields the result.

(3) Let k be a totally imaginary number field. If −1 ⩽ r ⩽ ⌊N/3⌋− 5, the result of
Leep [Lee84, Th. 2.7] implies that {lij = qi = 0 (i = 0, 1, j = 0, . . . , r)} ⊂ PN−r−1 has
a k-point, which yields a section for φ(r) : Q(r) → P1, showing that Q(r) is k-rational.
Theorem 1.3 then implies Fr(X) is k-rational.

It remains to show by induction on r that Fr(X)(k) ̸= ∅ in each of the above
cases. First assume r = 0. In each of the above cases, φ = φ(−1) has a section, hence
X(k) ̸= ∅ by [Lee07, Th. 2.2]. Now assume r ⩾ 1 and that Fr−1(X)(k) ̸= ∅. In each
of the above cases, φ(r−1) has a section, so Fr(X)(k) ̸= ∅ by Proposition 3.2. □

If k = Fq is a finite field, the i = 1 case of Corollary 3.5(1) applies, so the only
case when Fq-rationality of Fr(X) is undetermined is when r = ⌊N/2⌋ − 2. When N

is odd, we show Fq-rationality for the remaining case.

Corollary 3.6. — Let Fq be a finite field of characteristic ̸= 2. Fix g ⩾ 2, and let X
be a smooth complete intersection of two quadrics in P2g+1. Then, for every r such
that 0 ⩽ r ⩽ g − 2, Fr(X) is Fq-rational.

Proof. — By Corollary 3.5(1), it remains to consider the case r = g − 2. It follows
from [Rei72, Th. 4.8] that Fg−1(X) is a torsor under an abelian variety over Fq, so it
has a Fq-point by Lang’s theorem. Now the result is immediate from Theorem 1.1. □

When N is even, the analogue of Corollary 3.6 does not hold: the second maximal
Fano scheme FN/2−2(X) is not necessarily rational over finite fields. Indeed, for N = 4,
over any finite field Fq there exist degree 4 del Pezzo surfaces that are not Fq-rational
[Ryb05, Th. 3.2].

Finally, over an algebraically closed field of characteristic ̸= 2, let C be a hyperel-
liptic curve of genus g. One can then associate to C a smooth complete intersection X
of two quadrics in P2g+1, uniquely determined up to isomorphism, such that the Stein
factorization of Fg(Q/P1) → P1 yields C. In [Ram81], Ramanan established an iso-
morphism between various moduli spaces of orthogonal and spin bundles on C and
the Fano schemes of linear spaces on X. More precisely, let −1 be the hyperelliptic
involution on C and fix an (−1)-invariant line bundle L of degree 2g − 1 on C. For
1 ⩽ n ⩽ g, let Un,ξ be the moduli space of (−1)-invariant orthogonal bundles E of
rank 2n with Γ+(2n)-structure such that, for every Weierstrass point x ∈ C, the

J.É.P. — M., 2025, tome 12



1178 L. Ji & F. Suzuki

eigenspace associated to the eigenvalue −1 on E⊗L(x) has dimension 1. Here Γ+(2n)

is a certain subgroup of the group of units of the Clifford algebra introduced in
[Ram81, §2]. The moduli space Un,ξ is isomorphic to Fg−n(X) by [Ram81, Th. 3],
so using Corollary 3.5(1), we obtain:

Corollary 3.7. — Over an algebraically closed field of characteristic ̸= 2, let C be a
hyperelliptic curve of genus g. Then, for every 2 ⩽ n ⩽ g, the moduli space Un,ξ is
rational.

3.4. Applications to rational points. — The following applications were kindly sug-
gested to us by Jean-Louis Colliot-Thélène.

Corollary 3.8. — Over a field k of characteristic 0, let X be a smooth complete
intersection of two quadrics in PN . Let r be such that 0 ⩽ r < N/2 − 2. Then
Br(k) → Br(Fr(X)) is surjective.

Proof. — The Leray spectral sequence yields an exact sequence:

Br(k) −→ Ker(Br(Fr(X)) −→ Br(Fr(Xk))) −→ H1(k,Pic(Fr(Xk))).

Corollary 3.5(1) shows that Fr(Xk) is rational, hence Br(Fr(Xk)) = 0. Moreover,
we have Pic(Fr(Xk)) = Z by [DM98, Cor. 3.5], where the Galois group acts trivially,
thus H1(k,Pic(Fr(Xk))) = 0. The result is now immediate from the above exact
sequence. □

Remarks 3.9
(1) A conjecture of Colliot-Thélène states that the Brauer–Manin obstruction is

the only obstruction to the Hasse principle for smooth projective rationally connected
varieties over a number field. By Corollary 3.8, the conjecture predicts the Hasse prin-
ciple for rational points on Fr(X) for smooth complete intersections of two quadrics
X ⊂ PN and 0 ⩽ r < N/2− 2.

(2) If the assumptions on r in Corollary 3.8 do not hold, then in general the Hasse
principle fails for Fr(X). For N = 2g, r = g − 2, and g = 2, degree 4 del Pezzo
surfaces do not satisfy the Hasse principle [BSD75]. For N = 2g + 1 and r = g − 1,
this is related to the Tate–Shafarevich group of the Jacobian of C, see [BGW17, §8]
(see also [FJ24] for an explicit example when g = 2).

(3) For 0 ⩽ r ⩽ ⌊N/2⌋−4, the proof of Corollary 3.5(2) shows that Fr(X)(Qp) ̸= ∅.
However, Fr(X) may not have R-points in general; see Lemma 5.6(1).

The following result generalizes the r = 0 case in [CTSSD87a, Th. A(ii)]:

Corollary 3.10. — Over a number field k, let X be a smooth complete intersection
of two quadrics in PN . Let r be such that 0 ⩽ r < N/2 − 2. If Fr(X)(k) ̸= ∅, then
weak approximation holds for Fr(X).
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Proof. — The assumptions imply that Q(r) is defined and that the quadric fibration
φ(r) : Q(r) → P1 has relative dimension ⩾ 2; in particular, Q(r) is smooth and geo-
metrically integral (Lemma 3.1). Then [CTSSD87a, Prop. 3.9] (in the relative dimen-
sion ⩾ 3 case) and [CTSSD87a, Th. 3.10] (in the relative dimension 2 case; note that
the assumptions of the theorem are satisfied by Lemma 3.1(1) and Lemma 2.3) show
that Q(r) satisfies weak approximation (and the Hasse principle). By Theorem 1.3,
[CZ24, Th. 1.3], and Corollary 3.8, this implies that Fr(X) satisfies weak approxima-
tion. □

4. The odd-dimensional case

We now focus on the odd-dimensional case and prove Theorem 1.2. Throughout
this section, fix g ⩾ 2 and let X be a smooth complete intersection of two quadrics
in P2g+1. By Lemma 2.1, the maximal linear subspaces on X are (g − 1)-planes. The
Stein factorization of the relative Fano scheme Fg(Q/P1) → P1 yields a hyperelliptic
curve C of genus g. Before starting the proof of Theorem 1.2, we outline the main
ideas.

For arbitrary g ⩾ 2, the hyperbolic reduction Q(g−2) is a threefold. We show its
intermediate Jacobian (Section 2.4) is the Jacobian of C. A key result we need to
prove is to identify Fg−1(X) with an intermediate Jacobian torsor given by a certain
algebraic curve class on Q(g−2) (Proposition 4.10), which we do by studying actions
of correspondences coming from hyperbolic reductions. Using the explicit description
of the curve classes on Q(g−2), we prove directly that 2[Fg−1(X)] = [Pic1C/k] (Propo-
sition 4.7 is an important step toward this). To prove Theorem 1.2, if the threefold
Q(g−2) is k-rational, then the vanishing of the intermediate Jacobian torsor obstruction
over k (Theorem 2.10) implies that the torsor Fg−1(X) is PicdC/k for some d. Com-
bining this with the property that 2[Fg−1(X)] = [Pic1C/k] shows Fg−1(X)(k) ̸= ∅.

When g = 2, Q(0) is k-birational to the threefold X ⊂ P5. In this case,
Hassett–Tschinkel and Benoist–Wittenberg showed that k-rationality of X implies
F1(X)(k) ̸=∅ [HT21b, BW23]. In their case, the universal line on X can be used
to show that F1(X) is an intermediate Jacobian torsor, and a result of Wang
shows that 2[F1(X)] = [Pic1C/k] as torsors [Wan18]. In the present paper, we do
not rely on Wang’s result to prove Theorem 1.2, as we give a direct argument that
2[Fg−1(X)] = [Pic1C/k]. In fact, using Wang’s result does not significantly simplify the
proof of Theorem 1.2, because we still need to prove that Fg−1(X) is an intermediate
Jacobian torsor for arbitrary g (Proposition 4.10).

4.1. Preparation for the proof of Theorem 1.2. — First, we consider the Fano
scheme Fg−1(X) of maximal linear spaces. By [Wan18, Th. 1.1], Fg−1(X) is a torsor
under Pic0C/k. The following weaker statement, which follows from a theorem of Reid
[Rei72, Th. 4.8], is enough for our application.

Lemma 4.1 (Corollary of [Rei72, Th. 4.8]). — Fg−1(X) is a torsor under AlbFg−1(X)/k.
In particular, dimAlbFg−1(X)/k = g.
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Proof. — We will show that the natural map Fg−1(X) → Alb1
Fg−1(X)/k is an isomor-

phism. (See [Wit08, §2] for the definition and basic properties of the Albanese torsor
Alb1

Fg−1(X)/k.) By the universality of the map Fg−1(X) → Alb1
Fg−1(X)/k, it is enough

for us to show that Fg−1(Xk) is isomorphic to an abelian variety over k. This follows
from the fact that Fg−1(Xk) is isomorphic to Pic0

Ck/k
by [Rei72, Th. 4.8]. □

For the remainder of this section, fix r such that 0 ⩽ r ⩽ g − 1 and assume
Fr(X)(k) ̸= ∅. Choose ℓ ∈ Fr(X)(k), and let Q(r) and E(r) be as defined in Sec-
tion 3.1. We study the action (E(r))∗ on algebraic cycles. For this purpose, it is useful
to regard the hyperbolic reduction with respect to ℓ as iterations of the hyperbolic
reduction with respect to a point, as follows.

Choose k-points p0, . . . , pr ∈ ℓ with ⟨p0, . . . , pr⟩ = ℓ and coordinate points for P2g+1

that extend p0, . . . , pr, so that we get coordinate expressions of the key varieties as in
Section 3. Let l0j , q0, l1j , q1 ∈ k[xr+1, . . . , x2g+1] be the forms defined in Section 3.1.
For each i such that 0 ⩽ i ⩽ r, let

P(i−1) :=

{(
s t
)(l00 . . . l0,i−1

l10 . . . l1,i−1

)
= 0

}
⊂ P1 × P2g−i,

where the coordinates on P2g−i are [yi+1 : · · · : y2g+1]. Note that P(i−1) is the image of
P(i−1) ⊂ P1×P2g−i+1 under id×πpi

, which informs this choice of notation. Then, the
hyperbolic reduction Q(i) of φ : Q → P1 with respect to ℓi := ⟨p0, . . . , pi⟩ is given by

Q(i) =

{(
s t
)(l00 . . . l0i q0 +∑r

j=i+1 l0jyj
l10 . . . l1i q1 +

∑r
j=i+1 l1jyj

)
= 0

}
⊂ P1 × P2g−i.

We have a blow-up diagram (see [KS18, Rem. 2.6])

Q̃(i−1) Ei

Q(i−1) P(i−1) Q(i),

blP1×pi blQ(i) πi

id×πpi

where Ei is the exceptional divisor of blQ(i) and πi : Ei → Q(i) is the projection.

Lemma 4.2. — The following statements hold.
(1) E(r) = Er ◦ · · · ◦ E0 as correspondences, where we regard E(r) (resp. Ei) as a

correspondence on Q× Q(r) (resp. as a correspondence on Q(i−1) × Q(i)).
(2) For every 0 ⩽ i ⩽ r, there is an isomorphism

(Ei)∗ : CHg−i+1(Q(i−1))alg
∼−−→ CHg−i(Q(i))alg, α 7−→ (πi)∗((bl

∗
P1×pi

α)|Ei).

The inverse, which we denote by −(ET
i )∗, is given by β 7→ −(blP1×pi

)∗(πi)
∗β.

Proof
(1) Using Lemma 3.1(3) to identify Q(i) with the relative Fano scheme of isotropic

(i + 1)-planes of φ : Q → P1 containing ℓi = ⟨p0, . . . , pi⟩, we may regard E(i) as a
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subscheme of Q× Q(i) as follows:

E(i) = {(x, L) | x ∈ L} ⊂ Q×P1 Q(i) ⊂ Q× Q(i).

Similarly, identifying Q(i) with the relative Fano scheme of isotropic lines of
φ(i−1) : Q(i−1) → P1 containing pi, we may regard Ei as a subscheme of Q(i−1) × Q(i)

as follows:

Ei = {(y,m) | y ∈ m} ⊂ Q(i−1) ×P1 Q(i) ⊂ Q(i−1) × Q(i).

A line on a fiber of φ(i−1) : Q(i−1) → P1 and containing pi corresponds to an (i+ 1)-
plane on a fiber of φ : Q → P1 and containing ℓi, so E(i) = Ei◦E(i−1). Since E(0) = E0,
we have E(r) = Er ◦ E(r−1) = · · · = Er ◦ · · · ◦ E0.

(2): For 0 ⩽ i ⩽ g − 2, the blow-up formula for Chow groups implies

CHg−i+1(Q̃(i−1)) = CHg−i+1(Q(i−1))⊕ CH0(P1)⊕ CH1(P1)

= CHg−i+1(P(i−1))⊕ CHg−i(Q(i)),

where (blP1×pi
)∗? and −π∗(?|Ei

) respectively define the projectors onto

CHg−i+1(Q(i−1)) and CHg−i(Q(i)).

For i = g− 1, we have the same decomposition except that CH0(P1) does not appear
due to dimension reasons. Finally, note that

CH0(P1)alg = CH1(P1)alg = CHg−i+1(P(i−1))alg = 0

since P(i−1) is a projective bundle over P1. □

In particular, Lemma 4.2 implies:

Corollary 4.3. — There is an isomorphism

(E(r))∗ : CHg+1(Q)alg
∼−−→ CHg−r(Q(r))alg

with inverse given by (−1)r+1(E(r)T )∗.

4.2. Proof of Theorem 1.2. — In the following, we assume Fg−2(X)(k) ̸= ∅. For
any ℓ ∈ Fg−2(X)(k), Lemma 3.1(2) and (5) show that Q(g−2) is a smooth projec-
tive geometrically connected threefold, whose k-birational equivalence class does not
depend on ℓ. We start by showing that the k-isomorphism class of the intermediate
Jacobian (CH2

Q(g−2)/k)
0 (see Section 2.4) does not depend on ℓ.

Lemma 4.4. — For ℓ, ℓ′ ∈ Fg−2(X)(k), let Q
(g−2)
ℓ ,Q

(g−2)
ℓ′ denote the corresponding

hyperbolic reductions of Q, and let E(g−2)
ℓ , E

(g−2)
ℓ′ denote the exceptional subschemes.

Then the composition (−1)g−1E
(g−2)
ℓ′ ◦ E(g−2)T

ℓ induces an isomorphism of abelian
varieties

(CH2

Q
(g−2)
ℓ /k

)0
∼−−→ (CH2

Q
(g−2)

ℓ′ /k
)0.
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Proof. — Setting Γ := (−1)g−1E
(g−2)
ℓ′ ◦ E(g−2)T

ℓ , we will show that the morphisms

Γ∗ : (CH2

Q
(g−2)
ℓ /k

)0 −→ (CH2

Q
(g−2)

ℓ′ /k
)0, (ΓT )∗ : (CH2

Q
(g−2)

ℓ′ /k
)0 −→ (CH2

Q
(g−2)
ℓ /k

)0

are inverse to each other. By Corollary 4.3, the compositions (ΓT )∗Γ∗ and Γ∗(Γ
T )∗ are

the identities on the groups CH2(Q
(g−1)
ℓ )alg and CH2(Q

(g−1)
ℓ′ )alg, respectively. Since the

intermediate Jacobian of a geometrically rational threefold geometrically agrees with
Murre’s intermediate Jacobian [BW23, Th. 3.1(vi)], the universal property [Mur85,
§1.8] implies that (ΓT )∗Γ∗ and Γ∗(Γ

T )∗ are automorphisms of the abelian varieties
(CH2

Q
(g−1)
ℓ /k

)0 and (CH2

Q
(g−2)

ℓ′ /k
)0. This concludes the proof. □

Lemma 4.5. — dim(CH2
Q(g−2)/k)

0 = g.

Proof. — By passing to a finite extension of k, we may assume Fg−1(X)(k) ̸= ∅.
Using Lemma 4.4, we may further assume that ℓ is contained in some L ∈ Fg−1(X)(k).
After choosing a k-point in L∖ ℓ and identifying Q(g−1) with C by Lemma 3.1(6), the
blow-up formula of Benoist–Wittenberg [BW23, Prop. 3.10] yields an isomorphism of
(principally polarized) abelian varieties

(Eg−1)∗ : (CH2
Q(g−2)/k)

0 ∼−−→ Pic0C/k .

We conclude dim(CH2
Q(g−2)/k)

0 = dimPic0C/k = g. □

Lemma 4.6. — The inclusion ι : Q(g−2) → P1 × Pg+2 induces an isomorphism

ι∗ : NS2(Q
(g−2)

k
)

∼−−→ NSg+2(P1
k
×k Pg+2

k
).

In particular, if s, f ∈ NS2(Q
(g−2)

k
) denote the classes defined by s 7→ P1 × ∗ and

f 7→ ∗ × P1, we have NS2(Q
(g−2)

k
) = Zs⊕ Zf .

Proof. — Over k, let s′ denote the class of a section of the quadric surface fibration
φ
(g−2)

k
: Q

(g−2)

k
→ P1

k
(which exists by Tsen’s theorem), and let f denote the class of

a k-line f on a fiber of φ(g−2)

k
. We show that

Z2 −→ NS2(Q
(g−2)

k
), (a, b) 7−→ as′ + bf(1)

is an isomorphism. Since Q
(g−2)

k(P1)
is an isotropic quadric, CH2(Q

(g−2)

k(P1)
) = Z is gen-

erated by the image of s′. Moreover, the Chow group of 1-cycles on any fiber of
φ
(g−2)

k
: Q

(g−2)

k
→ P1

k
is generated by the classes of k-lines on it. The localization

exact sequence then yields that every class α ∈ CH2(Q
(g−2)

k
) may be written as

α = deg(α/P1)s′ + b1f1 + · · ·+ bnfn,

where b1, . . . , bn ∈ Z and f1, . . . , fn are k-lines on fibers of φ(g−2)

k
. Since F1(Q

(g−2)

k
/P1

k
)

is a P1-bundle over C, we have f1 = · · · = fn = f in NS2(Q
(g−2)

k
) and the map (1)

is surjective. The injectivity of (1) follows from the fact that the images of s′, f in
NSg+2(P1

k
×kP

g+2

k
) are linearly independent. Finally, this implies ι∗ is an isomorphism

because ι∗s′ and ι∗f freely generate NSg+2(P1
k
×k Pg+2

k
). □
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Now we can describe the intermediate Jacobian (CH2
Q(g−2)/k)

0 and the torsor asso-
ciated to the class f .

Proposition 4.7. — There exists an isomorphism of principally polarized abelian vari-
eties

Pic0C/k
∼−−→ (CH2

Q(g−2)/k)
0,

which underlies an isomorphism of torsors

Pic1C/k
∼−−→ (CH2

Q(g−2)/k)
f .

Proof. — Denote F := F1(Q
(g−2)/P1), and let U := U1(Q

(g−2)/P1) be the universal
family. Let p : F → C be the morphism induced by the Stein factorization of the
natural morphism F → P1, and let −1: C → C be the hyperelliptic involution.
We have morphisms of torsors

p∗ : Alb1
F/k −→ Pic1C/k, U∗ : Alb1

F/k −→ (CH2
Q(g−2)/k)

f

which induce morphisms of abelian varieties

p∗ : AlbF/k −→ Pic0C/k, U∗ : AlbF/k −→ (CH2
Q(g−2)/k)

0.

Since p : F → C is geometrically a P1-bundle, p∗ : AlbF/k → Pic0C/k is an iso-
morphism of abelian varieties. It now remains for us to show that the composition
U∗ ◦ (p∗)

−1 : Pic0C/k → (CH2
Q(g−2)/k)

0 is an isomorphism of principally polarized
abelian varieties. For this, we may assume that k is an algebraically closed. We have
the following diagram.

Pic0C/k AlbF/k

(CH2
Q(g−2)/k)

0

Pic0C/k Pic0F/k

p∗

U∗

U∗ ◦ U∗

U∗
p∗

The composition (p∗)−1 ◦ U∗ ◦ U∗ ◦ (p∗)−1 is equal to (−1)∗, and thus is an isomor-
phism. Since Lemma 4.5 shows dimPic0C/k = dim(CH2

Q(g−2)/k)
0 = g, all the arrows

in the above diagram are isomorphisms of abelian varieties. To show that U∗ ◦ (p∗)−1

respects the principal polarizations on Pic0C/k and (CH2
Q(g−2)/k)

0, consider the fol-
lowing diagram of ℓ-adic cohomology where all arrows are isomorphisms.

H1(C) H3(F )

H3(Q(g−2))

H1(C) H1(F )

(−1)∗

p∗

U∗

U∗ ◦ U∗

U∗
p∗
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For α, β ∈ H3(F ),

(U∗α) ∪ (U∗β) = α ∪ (U∗U∗β) = (p∗α) ∪ ((−1)∗p∗β) = −(p∗α) ∪ (p∗β),

where we have used that the pullback (−1)∗ on H1(C) is equal to multiplication by
−1. The characterization of the principal polarization on the intermediate Jacobian
(CH2)0 in [BW20, Property 2.4, the following comments, and Identity (2.9)] then
concludes the proof. □

Next, we will use the following lemmas to relate Fg−1(X) to the intermediate
Jacobian (CH2

Q(g−2)/k)
0.

Lemma 4.8. — Let L ∈ NSg(Xk) be the class of a (g − 1)-plane on X. Then there
exists a ∈ Z such that

(E(g−2))∗(P1 × L) = s+ af

in NS2(Q
(g−2)

k
), where s and f are the classes defined in Lemma 4.6.

Proof. — On the generic fiber level, each (Ei)∗ corresponds to taking the intersection
with the tangent hyperplane Hi to Q

(i−1)
k(P1) at pi and then projecting to the base of

the cone Q
(i−1)
k(P1) ∩ Hi. Hence a linear space on Q

(i−1)
k(P1) maps to a linear space of one

dimension lower on Q
(i)
k(P1). In particular, under (E(g−2))∗, a (g − 1)-plane on Qk(P1)

maps to a k(P1)-point on Qk(P1). (Note: since we are interested in algebraic equivalence
classes over k, we may assume that a linear space on a quadric in question does not
contain a blown-up point.) □

We will also need the following variant of Lemma 4.8.

Lemma 4.9. — Assume Fg−1(X)(k) ̸= ∅. Choose L ∈ Fg−1(X)(k) so that Q(g−1) is
defined, and, using Lemma 3.1(3), identify Q(g−1) with the relative Fano scheme of
isotropic g-planes of Q → P1 containing L. There exists a divisor class D on P1×Pg+1

such that for any (g − 1)-plane M on X with dimL ∩M = g − 2,

(E(g−1))∗(P1 ×M) = (−1)g−1⟨L,M⟩+ Q(g−1) ·D

in CH1(Q(g−1)).

Proof. — Fix a (g− 1)-plane M on X such that dimL∩M = g− 2. Choose k-points
p0, . . . , pg−1 ∈ L such that L∩M = ⟨p0, . . . , pg−2⟩ and L = ⟨p0, . . . , pg−1⟩. We induc-
tively show that for every i ∈ {0, . . . , g − 2}

(E(i))∗(P1 ×M) = (−1)i+1V
(i)
M + Q(i) ·

( i∑
j=0

(−1)j+1((j + 1)H1 ·Hg−i−1
2 −Hg−i

2 )

)

in CHg−i(Q(i)), where V (i)
M is the subvariety of Q(i) corresponding to P1 ×M , and

H1, H2 are the pull-backs of O(1) on P1,P2g−r respectively. This is a consequence of
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Lemma 4.2 and the equalities

(Ei)∗V
(i−1)
M = −V (i)

M + Q(i) · (−(i+ 1)Hg−i−1
1 ·H2 +Hg−i

2 ),

(Ei)∗(Q
(i−1) · (H1 ·Hg−i

2 )) = Q(i) · (H1 ·Hg−i−1
2 ),

(Ei)∗(Q
(i−1) ·Hg−i+1

2 ) = Q(i) ·Hg−i
2 ,

which may be directly verified. Note that the last two formulas also hold for i = g−1.
Finally, using that there is a unique point p ∈ P1 such that ⟨L,M⟩ ⊂ Qp,

⟨L,M⟩ = (Eg−1)∗V
(g−2)
M ,

and we get the desired formula with

D =

g−2∑
j=0

(−1)j+1((j + 1)H1 −H2). □

We are now ready to identify Fg−1(X) with an intermediate Jacobian torsor of
Q(g−2).

Proposition 4.10. — For the integer a in Lemma 4.8, there exists an isomorphism
of k-schemes

Fg−1(X)
∼−−→ (CH2

Q(g−2)/k)
s+af .

Proof. — Let Ug−1(X) ⊂ Fg−1(X) × X denote the universal family associated to
Fg−1(X). In addition, embed P1 × X into X × Q by the projection P1 × X → X

and the inclusion P1 × X ⊂ Q ⊂ P1 × PN . Then, if L is a (g − 1)-plane on X, the
image of its class under ((P1 ×X) ◦ Ug−1(X))∗ : CH0(Fg−1(X)) → CHg+1(Q) is the
class of P1 ×L. Recall that we view E(g−2) as a correspondence on Q×Q(g−2). Then,
by Lemma 4.8, E(g−2) ◦ (P1 ×X) ◦ Ug−1(X) induces a morphism of k-schemes

(E(g−2) ◦ (P1 ×X) ◦ Ug−1(X))∗ : Fg−1(X) −→ (CH2
Q(g−2)/k)

s+af .

We aim to show that this is an isomorphism. By Lemma 4.1, it is enough for us to
show that

(E(g−2) ◦ (P1 ×X) ◦ Ug−1(X))∗ : AlbFg−1(X)/k −→ (CH2
Q(g−2)/k)

0

is an isomorphism of abelian varieties. To verify this, we may assume k is algebraically
closed. As in the proof of Lemma 4.5, we may assume that ℓ is contained in some
(g−1)-plane L on X, and after choosing a point in L∖ℓ and identifying Q(g−1) with C
by Lemma 3.1(6), we get an isomorphism of principally polarized abelian varieties

(Eg−1)∗ : (CH2
Q(g−2)/k)

0 ∼−−→ Pic0C/k .

Moreover, Lemma 3.1(4) yields a morphism C → Fg−1(X), which induces

Pic0C/k −→ AlbFg−1(X)/k .

We claim that the composition

Pic0C/k −→ AlbFg−1(X)/k
(E(g−2)◦(P1×X)◦Ug−1(X))∗−−−−−−−−−−−−−−−−−−→ (CH2

Q(g−2)/k)
0 (Eg−1)∗−−−−−→ Pic0C/k,
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which by Lemma 4.2 equals the composition

Pic0C/k −→ AlbFg−1(X)/k
(E(g−1)◦(P1×X)◦Ug−1(X))∗−−−−−−−−−−−−−−−−−−→ Pic0C/k,(2)

is (−1)g−1 times the identity, hence an isomorphism. Since

dimPic0C/k = dimAlbFg−1(X)/k = g

by Lemma 4.1, this will conclude the proof.
We may identify a given point of C with a (g − 1)-plane M on X such that

dimL ∩M = g − 2, and also with a g-plane on a fiber of Q → P1 and containing L,
where they correspond by M 7→ ⟨L,M⟩. The map in (2) is well-defined on the Picard
group of C. By Lemma 4.9, the map may be described as

M 7−→ (−1)g−1⟨L,M⟩+ C ·D,

where D is a constant divisor class on P1 × Pg+1 (recall that we identify C with
Q(g−1) ⊂ P1 ×Pg+1). The see-saw theorem then shows that the map in (2) is induced
by a correspondence of the form

(−1)g−1∆C + β × C + C × γ,

where β, γ ∈ Pic(C). (See also [Rei72, Cor. 4.12].) Since β×C and C × γ act trivially
on Pic0C/k, this finishes the proof. □

The following shows that the obstruction to the existence of a (g− 1)-plane over k
is of order 4.

Lemma 4.11. — The following statements hold.
(1) The cokernel of ι∗ : NS2(P1

k
×k Pg+2

k
) → NS2(Q

(g−2)

k
) is generated by s and is

isomorphic to Z/4. The equivalence f ≡ 2s holds in this cokernel.
(2) As torsors, (CH2

Q(g−2))f and (CH2
Q(g−2))2s are k-isomorphic, and

(CH2
Q(g−2))

2f ∼= (CH2
Q(g−2))

4s

is split over k.

Proof. — Using that Q(g−2) ⊂ P1 × Pg+2 is a complete intersection of g − 1 divisors
of type (1, 1) and a divisor of type (1, 2), part (1) follows by observing that

P1 × Pg 7−→ 2s+ (2g − 1)f, ∗ × Pg+1 7−→ 2f

under NS2(P1
k
×k Pg+2

k
) → NS2(Q

(g−2)

k
). Part (2) is immediate from part (1) and

properties of the CH2-scheme (see Section 2.4). □

Finally, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. — The backward direction follows from Proposition 3.2, applied
for r = g−2. We show the forward direction. If Q(g−2) is k-rational, then Theorem 2.10
and Propositions 4.7 and 4.10 imply that there exists d ∈ Z such that

[Fg−1(X)] = [(CH2
Q(g−2)/k)

s+af ] = [PicdC/k].(3)

J.É.P. — M., 2025, tome 12



Linear spaces on intersections of two quadrics 1187

On the other hand, by Propositions 4.7 and 4.10, Lemma 4.11(2), and additivity of
(CH2)0-torsors (see Section 2.4), we have

2[Fg−1(X)] = [(CH2
Q(g−2)/k)

2s+2af ] = [(CH2
Q(g−2)/k)

f ] = [Pic1C/k],

which in turn implies

[Fg−1(X)] = [Pic1−d
C/k].(4)

Since C is hyperelliptic, [Pic2mC/k] = 0 for any integer m. Since the parities of d and
1 − d are distinct, the equalities (3) and (4) imply [Fg−1(X)] = 0, i.e., Fg−1(X) has
a k-point, completing the proof. □

Remark 4.12. — Let αX ∈ Br(C) be the Brauer class associated to the even Clifford
algebra of φ : Q → P1. Such Brauer classes of even Clifford algebras arise in the context
of derived categories and rationality problems, see, e.g., [ABB14]. We now state and
prove another version of Theorem 1.2 involving this class αX :

Theorem 4.13. — Over a field k of characteristic ̸= 2, fix g ⩾ 2, and let X be a
smooth complete intersection of two quadrics in P2g+1. The following conditions are
equivalent:

(1) Fg−1(X)(k) ̸= ∅;
(2) αX = 0 in Br(C);
(3) Fg−2(X)(k) ̸= ∅ and Q(g−2) is k-rational;
(4) Fg−2(X)(k) ̸= ∅ and φ(g−2) : Q(g−2) → P1 has a section;
(5) Fg−2(X)(k) ̸= ∅ and p : F1(Q

(g−2)/P1) → C has a section.

Proof. — Theorem 1.2 shows that (1) ⇔ (3), and (1) ⇔ (4) holds by Proposition 3.2.
Next, (4) ⇔ (5) follows from the following geometric argument. If S ⊂ Q(g−2) is a
section for φ(g−2), then the variety of isotropic lines of φ(g−2) intersecting S gives a
section for p. Conversely, if T ⊂ F1(Q

(g−2)/P1) is a section for p, define a rational
map T Q(g−2) as follows. Recall that −1 denotes the hyperelliptic involution on C.
For each (k-)line λ in a smooth fiber of φ(g−2), we send λ to the intersection point
λ∩ (−1)∗λ. This map T Q(g−2) is defined over k because the involution −1 is, and
the image of T gives a section for φ(g−2).

We show (5) ⇒ (2). By [ABB14, Prop. B.6], αX equals the Brauer class corre-
sponding to the smooth conic fibration p : F1(Q

(g−2)/P1) → C. Since the vanishing of
the latter class is equivalent to the existence of the section, (5) is equivalent to:

(6) Fg−2(X)(k) ̸= ∅ and αX = 0 in Br(C).
Clearly, we have (6) ⇒ (2), hence the implication that we want.

It remains for us to show (2) ⇒ (1). To achieve this, we use the “generic
point” trick (see [CT24, Th. 5.10]). First, if we assume Fg−2(X)(k) ̸= ∅, then by
(1) ⇔ (5) ⇔ (6), we get Fg−1(X) ̸= ∅. For the general case, we consider the base
change X ×k k(Fg−2(X)) to the function field of k(Fg−2(X)). Then the previous case
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implies that X×k k(Fg−2(X)) contains a (g−1)-plane over k(Fg−2(X)); equivalently,
the torsor Fg−1(X) splits over k(Fg−2(X)). But the map

H1(k,Pic0C) −→ H1(k(Fg−2(X)),Pic0C)

is injective, because Fg−2(X) is k-rational by Corollary 3.5(1) and any rational map
over k from a geometrically rationally connected variety to a torsor under an abelian
variety is constant. Hence Fg−1(X) is split over k, completing the proof. □

Remark 4.14. — By Theorem 1.2 and Theorem 1.3, the converse to Theorem 1.1
for (r,N) = (g − 2, 2g + 1) would imply that k-rationality of Q(g−2) is equivalent to
k-rationality of its (g − 1)th symmetric power. Constructing counterexamples to this
latter statement seems to be a subtle problem. For instance, for any Severi–Brauer
variety V of dimension n over k, Symn+1 V is k-rational [KS04, Th. 1.4]. However,
we can show that Q(g−2) is not birational to any non-trivial Severi–Brauer variety.
Indeed, by Lemma 3.1(7), there exists a zero-cycle of degree 1 on Q(g−2). Since non-
trivial Severi–Brauer varieties never admit a zero-cycle of degree 1, it is now enough
to note that the existence of a zero-cycle of degree 1 is a birational invariant of smooth
projective varieties over a field.

5. The even-dimensional case over R

In this section, we focus on the case of even-dimensional X ⊂ P2g defined over
the real numbers R. First, we prove Theorem 1.5. Then, in Section 5.2, we recall an
isotopy invariant that was studied by Krasnov [Kra18] and that was previously used
in [HT21b, HKT22] to study R-rationality of X. In Section 5.3, we use this invariant
to observe several consequences that the isotopy class has for linear subspaces on X.
Finally, we use this to prove Corollary 1.6 and give examples.

5.1. Rationality criterion for Fg−2(X). — The maximal linear subspaces that X ⊂
P2g contains over C are (g − 1)-planes. We first study the R-rationality of the Fano
scheme Fg−2(X) of second maximal linear subspaces, by proving the following more
precise version of Theorem 1.5.

Theorem 5.1. — Over the real numbers, fix g ⩾ 2, and let X be a smooth complete
intersection of two quadrics in P2g. The following are equivalent:

(1) Fg−2(X) is R-rational;
(2) Fg−2(X)(R) is non-empty and connected;
(3) Fg−2(X)(R) is non-empty and Q(g−2) is R-rational;
(4) Fg−2(X)(R) is non-empty and Q(g−2)(R) is non-empty and connected.

One key difference between the even- and odd-dimensional cases is that here Q(g−2)

is a surface, whereas it is a threefold when dimX is odd (Section 3.1). As one might
expect, the conclusion of Theorem 5.1 fails when X has odd dimension (see Exam-
ple 5.10 and the preceding discussion). To prove Theorem 5.1, we will use properties
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of R-rationality for surfaces. We will first need several lemmas about the images of
real points under quadric fibrations.

Lemma 5.2. — Let φ : Q → P1 be a quadric fibration of positive relative dimen-
sion over R. Then Q(R) is connected if and only if the image of the induced map
φ(R) : Q(R) → P1(R) is connected.

Proof. — The forward direction is immediate. As for the backward direction, assume
that Q(R) is disconnected and let U, V ⊂ Q(R) be two disjoint non-empty open subsets
that cover and disconnect Q(R). For every p in the image of φ(R), the fiber φ(R)−1(p)

is connected, hence is either fully contained in U or in V . This shows φ(R)(U) and
φ(R)(V ) are disjoint. Moreover, φ(R) is a closed map since Q is proper, so φ(R)(U)

and φ(R)(V ) are open in the image of φ(R). We conclude that the image of φ(R) is
disconnected by φ(R)(U) and φ(R)(V ). □

Lemma 5.3. — Let φ : Q → P1 be a quadric fibration over R. If the image of the induced
map φ(R) : Q(R) → P1(R) on R-points is disconnected, then so is the image of the
induced map (Symr Q)(R) → (Symr P1)(R) ∼= Pr(R) on real points of the symmetric
powers for any r ⩾ 1. In particular, (Symr Q)(R) is disconnected.

Proof. — Let φr : Symr Q → Symr P1 ∼= Pr be the induced morphism on the sym-
metric powers, and let ϖ : P1 × · · · × P1 → Symr P1 ∼= Pr be the quotient by the
symmetric action. Let I1, . . . , In be the connected components of the complement of
the image of φ(R) in P1(R), and let Vi ⊂ Pr(R) denote the image of Ii × P1(R)r−1

under
ϖ(R) : P1(R)× · · · × P1(R) −→ (Symr P1)(R) ∼−−→ Pr(R).

First, we claim that the image of φr(R) is equal to the complement

Pr(R)∖ (
n⋃

i=1

Vi).

For this, let p ∈ Pr(R). If p /∈
⋃n

i=1 Vi, then the fiber of φr over p is a finite
product of R-varieties, where each component either is the fiber φ−1(q) over a
real point q ∈ P1(R) ∖ (

⋃n
i=1 Ii) or is the Weil restriction RC/R(φ

−1(q)) for some
q ∈ P1(C)∖ P1(R). In both cases, these varieties have R-points, so the fiber (φr)−1(p)

has an R-point. On the other hand, if p ∈ Vi, then the fiber (φr)−1(p) over p is a
finite product of R-varieties, where at least one component is of the form φ−1(q) for
some q ∈ Ii, and hence the fiber has no R-points.

It remains to show that Pr(R)∖ (
⋃n

i=1 Vi) is disconnected. For this, choose points
s1 ∈ I1, s2 ∈ I2. For i = 1, 2, since Ii ⊂ P1(R) is an open interval, it deformation
retracts to si. Let Hi ⊂ Pr(R) be the image of si × P1(R)r−1 under ϖ(R). Each Hi

is the real locus of a hyperplane, and Vi deformation retracts to Hi. Since the com-
plement Pr(R)∖ (H1 ∪H2) is disconnected, we see that Pr(R)∖ (V1 ∪ V2) is as well.
This implies that the image of φr(R) is disconnected, since the image of φr(R) is
contained in this latter set and intersects each of the two connected components. (For
this latter claim, we may reduce to the r = 2 case. Then the image of the diagonal
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∆: P1 → Sym2 P1 ∼= P2 is a smooth conic with real points, and for any p ∈ P1(R), the
image of p×P1(R) under the quotient ϖ(R) is the line ℓp tangent to ∆(P1) at the point
∆(p). Then, for each i = 0, 1, we have Vi =

⋃
q∈Ii

ℓq, and for any p ∈ P1(R)∖(I1∪I2),
the line ℓp properly intersects both V1 and V2.) □

Proof of Theorem 5.1. — We may assume throughout the proof that Fg−2(X)(R) ̸=∅.
First, since Q(g−2) is a surface, a result of Comessatti [Com13, pp. 54–55] shows that
(3) ⇔ (4).

We next show the implications (1) ⇒ (2) ⇒ (3) ⇒ (1). First, (1) ⇒ (2) is [DK81,
Th. 13.3]. For (2) ⇒ (3), assume Q(g−2) is irrational over R. Then [Com13] implies
Q(g−2)(R) is disconnected, so Lemmas 5.2 and 5.3 applied to φ(g−2) : Q(g−2)→P1

imply that (Symg−1 Q(g−2))(R) is disconnected. The Hilbert–Chow morphism

ρ : Hilbg−1 Q(g−2) −→ Symg−1 Q(g−2)

is a resolution of singularities [Fog68], and the image of ρ(R) intersects every con-
nected component of (Symg−1 Q(g−2))(R), so the real locus (Hilbg−1 Q(g−2))(R) is
disconnected. The number of real connected components is a birational invariant of
smooth projective real varieties [DK81, Th. 13.3], so by Theorem 1.3 this implies
Fg−2(X)(R) is disconnected. Finally, (3) ⇒ (1) by Theorem 1.3 and [Mat69]. □

5.2. Isotopy classification for real complete intersections of quadrics

In this section, we recall an invariant that gives an isotopy classification of real
complete intersections of two quadrics in PN . This invariant dates back to work of
Mordell [Mor59, §3] and Swinnerton-Dyer [SD64, p. 268] (see also [CTSSD87b, §10]).
Using this invariant, Krasnov gave a topological classification of smooth complete
intersections of two quadrics when N = 5, 6 [Kra18] (see also [HT21b, §11.2] and
[HKT22, §4.1]).

Over R, let X = {Q0 = Q1 = 0} ⊂ PN be a smooth complete intersection of two
quadrics. The degeneracy locus ∆ of the pencil Q = {sQ0+ tQ1 = 0} → P1 contains r
real points for some integer 0 ⩽ r ⩽ N +1. Consider the Z2

⩾0-valued function defined
by the signatures of the real quadratic forms

{sQ0 + tQ1 | (s, t) ∈ R2 such that s2 + t2 = 1}

as (s, t) varies counterclockwise over the unit circle S1 ⊂ R2. This function has 2r

points of discontinuity, given by the preimage of ∆(R) under the quotient S1 → P1(R).
At each of these points, the number of positive eigenvalues either increases (denoted
by +) or decreases (denoted by −) by exactly 1. Since antipodal points have opposite
signs, the number of maximal sequences of consecutive +’s is odd. Thus, we obtain
an odd partition

r = r1 + · · ·+ r2u+1

for some non-negative integer u, where each ri is the length of a maximal sequence of
consecutive +’s. Following [HKT22], we call the sequence (r1, . . . , r2u+1) the Krasnov
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invariant of X. It is well defined up to cyclic permutations and reversal of the order.
This invariant determines the rigid isotopy class of X:

Theorem 5.4 ([Kra11, Th. 1.1], see also [DIK00, App. A.4.2]). — For N ⩾ 3, isotopy
classes of smooth complete intersections of two real quadrics in PN correspond to
equivalence classes of odd decompositions r1 + · · ·+ r2u+1 = r, where r is an integer
such that 0 ⩽ r ⩽ N + 1 and with parity equal to N + 1.

In particular, for each (r1, . . . , r2u+1) as above, there exist smooth complete inter-
sections of quadrics X ⊂ PN with this given Krasnov invariant.

Definition 5.5. — In the above setting, for the Krasnov invariant (r1, . . . , r2u+1),
[Kra18, §2] defines Imin to be the minimum number of negative eigenvalues that occurs
for the quadratic form sQ0 + tQ1 as (s, t) varies on the unit circle S1. We define the
height h := N +1− 2Imin, and we define the frequency f to be the number of distinct
intervals, i.e., components of S1 after removing the preimage of ∆(R), where Imin is
achieved. Note that 0 ⩽ Imin ⩽ ⌊N+1

2 ⌋, so we always have 0 ⩽ h ⩽ N+1. If (s, t) ∈ S1

is such that sQ0+ tQ1 has Imin negative eigenvalues, then the signature of sQ0+ tQ1

is (h+ Imin, Imin).

One can check that the Krasnov invariant uniquely (up to cyclic permutations and
order reversal) determines the following sign sequence, where +/− refers to if the
number of positive eigenvalues of sQ0 + tQ1 increases/decreases:

ri︷ ︸︸ ︷
+ · · ·+,

ri+u+1︷ ︸︸ ︷
− · · ·−,

ri+1︷ ︸︸ ︷
+ · · ·+,

ri+u+2︷ ︸︸ ︷
− · · ·−,

ri+2︷ ︸︸ ︷
+ · · ·+, . . . ,

ri+2u︷ ︸︸ ︷
− · · ·−,

ri+u︷ ︸︸ ︷
+ · · ·+,

− · · ·−︸ ︷︷ ︸
ri

,+ · · ·+︸ ︷︷ ︸
ri+u+1

,− · · ·−︸ ︷︷ ︸
ri+1

,+ · · ·+︸ ︷︷ ︸
ri+u+2

,− · · ·−︸ ︷︷ ︸
ri+2

, . . . ,+ · · ·+︸ ︷︷ ︸
ri+2u

,− · · ·−︸ ︷︷ ︸
ri+u

.

Here the subscripts are modulo 2u+ 1, so h and f in Definition 5.5 are well defined.
Notice that h > N − 1 if and only if the Krasnov invariant is (N + 1).

For an explicit example of the values in Definition 5.5, if N = 6, the Krasnov
invariant (2, 2, 1) corresponds (up to cyclic permutations and order reversal) to the
sequence of signatures

(2, 5) (3, 4) (4, 3) (3, 4) (4, 3) (5, 2) (4, 3) (3, 4) (4, 3) (3, 4).

We have Imin = 2, h = 3, f = 1, and the corresponding sign sequence is
++,−,++,−−,+,−−.

5.3. Consequences of the isotopy class for linear subspaces. — Hassett–Kollár–
Tschinkel and Krasnov observed that Krasnov invariant determines when X, F1(X),
and Fg−1(X) have R-points [HKT22, Prop. 5.1], [Kra18, Th. 3.1 & 3.6]. We extend
their analysis to all linear subspaces on X:

Lemma 5.6. — Over R, let X be a smooth complete intersection of two quadrics in PN .
(1) Fr(X)(R) ̸= ∅ if and only if h ⩽ N − 2r − 1.
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(2) Assume h ⩽ N − 2r − 1 and N − 2r − 2 ̸= 0. Then Q(r)(R) is non-empty and
connected if and only if either h ⩽ N − 2r − 3 or f = 1.

Proof
(1) The proof is by induction on r. For r = 0, the Amer–Brumer theorem [Lee07,

Th. 2.2] shows that X(R) ̸= ∅ if and only if φ : Q → P1 has a section; this is further
equivalent to surjectivity of the induced map φ(R) on real points by a result of Witt
[Wit37, Satz 22]. The latter happens exactly when neither (N + 1, 0) nor (0, N + 1)

appears as the signature of a real fiber of φ, which is equivalent to h ⩽ N − 1. For
r > 0, Proposition 3.2 and [Wit37, Satz 22] show that Fr(X)(R) ̸= ∅ if and only
if Fr−1(X)(R) ̸= ∅ and φ(r−1)(R) : Q(r−1)(R) → P1(R) is surjective. Surjectivity of
φ(r−1)(R) happens exactly when (N − 2r + 1, 0), (0, N − 2r + 1) never appear as the
signatures of real fibers of φ(r−1), which is equivalent to h ⩽ N − 2r − 1.

(2) If h ⩽ N − 2r − 1, then (1) shows Fr(X)(R) ̸= ∅. Hence φ(r) : Q(r) → P1

is defined and the assumptions imply that N − 2r − 2 > 0, so Q(r)(R) ̸= ∅ by
Lemma 3.1(7). If h ⩽ N−2r−3, then Fr+1(X)(R) ̸= ∅ by (1), so by Proposition 3.2,
Q(r)(R) is R-rational and in particular has non-empty and connected real locus by
[DK81, Th. 13.3]. Finally, if h = N − 2r − 1, then (N − 2r − 1, 0) appears as the
signature of a real fiber of φ(r), and the induced map φ(r)(R) on real points is not
surjective. By Lemma 5.2, Q(r)(R) is connected if and only if the image of φ(r)(R) is
connected, and the latter is equivalent to f = 1. □

Lemma 5.6 and (the proof of) Theorem 1.4 show that the Krasnov invariant de-
termines R-unirationality for Fano schemes of non-maximal linear subspaces and the
corresponding hyperbolic reductions. That is, for X ⊂ PN and 0 ⩽ r ⩽ ⌊N/2⌋ − 2,
the R-unirationality of Fr(X) (resp. Q(r)) is determined by the isotopy class of X.

Furthermore, in the case when N = 2g is even and r = g − 2, Theorem 5.1
and Lemma 5.6 imply that the isotopy class further determines the following
R-(uni)rationality properties. In particular, we can find the isotopy classes of
even-dimensional X violating the conclusion of Theorem 1.2.

Corollary 5.7. — Over R, fix g ⩾ 2, and let X be a smooth complete intersection of
two quadrics in P2g.

(1) Then R-rationality of Fg−2(X) (resp. Q(g−2)) is determined by the isotopy class
of X.

(2) Fg−1(X)(R) = ∅, Fg−2(X)(R) ̸= ∅, and Q(g−2) is R-rational if and only if
h = 3 and f = 1.

(3) Fg−2(X) is R-unirational but not R-rational if and only if h = 3 and f > 1.

In particular, for any g ⩾ 2, there exist smooth complete intersections of quadrics
X ⊂ P2g with Krasnov invariant (3) by Theorem 5.4, so examples satisfying Corol-
lary 5.7(2) exist in any even dimension.
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Remark 5.8. — In general, for N ⩾ 7, it is not known whether the isotopy class of X
determines R-rationality of Fr(X). See [HKT22, §6.2] for an isotopy class in the case
N = 8 where the R-rationality of its members is unknown.

As a sample application of Lemma 5.6, for the case N = 6 we show the following
properties for the Fano schemes Fr(X), extending the analysis in [HKT22]. One could
similarly carry out an analysis for any N .

Corollary 5.9. — Over R, let X be a smooth complete intersection of two quadrics
in P6.

(1) F2(X)(R) is non-empty if and only if the Krasnov invariant is one of (1),
(1, 1, 1), (1, 1, 1, 1, 1), or (1, 1, 1, 1, 1, 1, 1).

(2) F1(X)(R) is non-empty and Q(1)(R) is non-empty and connected if and only
if the Krasnov invariant is one of those listed in item 1, or is (3), (2, 2, 1), or
(2, 1, 2, 1, 1).

(3) F1(X)(R) is non-empty if and only if Krasnov invariant is one of those listed
in item 2, or is (3, 1, 1), (3, 2, 2), (3, 1, 1, 1, 1), or (2, 2, 1, 1, 1).

(4) X(R) is non-empty and Q(0)(R) is non-empty and connected if and only if the
Krasnov invariant is one of those listed in item 3, or is (5), (4, 2, 1), or (3, 3, 1).

(5) X(R) is non-empty if and only if the Krasnov invariant is one of those listed
in item 4 or is (5, 1, 1).

Proof. — There are only finitely many possible Krasnov invariants for a given smooth
complete intersection of two real quadrics. For the list when N ⩽ 8 is even, see the
r ⩽ 7 cases in [HKT22, §4.1, Fig. 1]. Lemma 5.6 and a direct computation then
conclude the proof. □

Proof of Corollary 1.6
The result follows by combining Corollary 5.9 with [CTSSD87a, Rem. 3.28.3],

[HKT22, Th. 1.1], and Theorems 1.4 and 5.1. Since Q(0) is R-birational to X (Lem-
ma 3.1(6)), Q(0)(R) is non-empty and connected if and only if X(R) is by [DK81,
Th. 13.3]. □

Finally, we end the paper by returning to odd-dimensional X ⊂ P2g+1. For any
g ⩾ 2, Theorem 1.2 and Lemma 5.6(1) and (2) imply that Krasnov invariants with
h = 4 and f = 1 correspond to X ⊂ P2g+1 where Q(g−2) has non-empty and connected
real locus but is irrational over R. In particular, applying Theorem 5.4 to the isotopy
class (4), we see that Theorem 1.5 fails in every odd dimension. For concreteness,
we list the possible Krasnov invariants here for g = 2, 3:

Example 5.10. — For g = 2 and N = 5, the Krasnov invariants with h = 4 and f = 1

are (4), (4, 1, 1), and (3, 2, 1). For g = 3 and N = 7, the Krasnov invariants with h = 4

and f = 1 are (4), (4, 1, 1), (3, 2, 1), (3, 1, 2, 1, 1), (2, 2, 2, 1, 1), and (3, 3, 2). For each
of these, Q(g−2)(R) ̸= ∅ is connected but Fg−1(X)(R) = ∅, so Q(g−2) is irrational
over R.
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